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Web applications’ popularity has raised attention in various service domains, which increased the con-
cern about cyber-attacks. One of these most serious and frequent web application attacks is a Cross-
site scripting attack (XSS). It causes grievous harm to victims. Existing security methods against XSS fail
due to the evolving nature of XSS attacks. One evolving aspect of XSS attacks is feature drift which
changes the feature relevancy and causes degradation in the performance. Unfortunately, dynamic
awareness of drift occurrence is missing. Thus, this study attempts to fill the gap by proposing a feature
drift-aware algorithm for detecting the evolved XSS attacks. The proposed approach is a dynamic feature
selection based on a deep Q-network multi-agent feature selection (DQN-MAFS) framework. Each agent
is associated with one feature and is responsible for selecting or deselecting its feature. DQN-MAFS pro-
vides a sub-model for reward distribution over agents, which is named as fair agent reward distribution
based dynamic feature selection FARD-DFS. This framework is capable of supporting real-time, dynamic
updates and adjustment of embedded knowledge as long as new labelled data arrives. DQN-MAFS has
been evaluated using four real XSS attack datasets with various feature length sizes. The evaluation pro-
cess was conducted and compared with state-of-the-art works. The obtained results show the superiority
of our FARD-DFS over the benchmarks in terms of the majority of metrics. The improvement percentages
of the mean accuracy and F1-measure ranged from 1.01% to 12.1% and from 0.55% to 6.88%, respectively,
in comparison with the benchmarks. This approach can be deployed as an autonomous detection system
without the need for any offline retraining process of the model to detect the evolved XSS attack.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In modern days, people are surrounded by billions of web appli-
cation pages in many distinct domains; with just a single click by
the user, enormous amounts of data streams are produced at extre-
mely high-speed rates. Most of these web applications are high-
frequency use applications that impose fast-evolving data to
respond immediately and dynamically (X. Wang et al., 2022). In
this case, the data is processed in real-time and the browser envi-
ronment is changed due to the client interactions. On the other
-

side, the adoption of Industry 4.0 and 5.0 has been expedited by
recent developments in information and communication plat-
forms, such as big data, cloud, artificial intelligence, Internet-of-
things (IoT), and nanotechnology. Industry sectors confront new
concerns due to cybersecurity threats caused mainly by these tech-
nological improvements. The frequency of cyberattacks directed
against the industry sector has risen dramatically in recent years
(S. Kumar & Mallipeddi, 2022). At the same time, cyber threats
are evolving to conduct attacks with high severity levels (Sun
et al., 2019). One of these evolving attacks is cross-site scripting
(XSS) (Sarmah et al., 2020; Tariq et al., 2021; Zhou & Wang,
2019), as the industry 4.0 and 5.0 rely heavily on web-based inter-
faces to provide remote access and control of industrial processes.
An XSS attack is a special type of injection attack that occurs on the
application level. The attacker can conduct the XSS attack by
exploiting the vulnerabilities that may be found in Web applica-
tions due to the use of improper or dangerous scripts by developers
(Sarmah et al., 2018). An XSS attack is used to threaten various
domains such as industries, individual privacy, medical,
economics, and even the military (Rodríguez et al., 2020). In the
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context of industry 4.0 and 5.0, there has been a significant
increase in the use of internet-of-things (IoT) sensors with
supervisory-control and data-acquisition (SCADA) systems for
monitoring and controlling the industrial processes by allowing
remote access. Though SCADA has improved control and manage-
ability, it has also subjected such systems to cyberattacks. XSS is
one of these threats, according to an investigation conducted by
(Upadhyay et al., 2020) in the analysis of Omega2, a tiny Linux ser-
ver from OnionTM that is employed to construct different SCADA-
IoT systems. Typically, the attacker uses the same steps to perform
the XSS regardless of which domain is targeting, but the only dif-
ference is the type of exposed information. At the initial step, the
attacker looks for and identifies potential vulnerabilities in the
web application (Z. Liu et al., 2023). A malicious script is created
and injected into a susceptible Web application’s trusted context.
The URL link of this web application is given to the victim via var-
ious media. When the victim is lured to click on the received link,
the browser executes the malicious script that masquerades as part
of the legitimate code because of the browser’s inability to distin-
guish between malicious and normal scripts. As a result, the users
of vulnerable applications fall prey to attackers who obtain creden-
tials information. In industry domain, the attacker could then use
these exploited credentials to gain unauthorized access to the
SCADA web-based interface systems, control production systems,
disrupt the production process, and steal sensitive production data.
In general, the total XSS attacks has sharply risen over the years.1

Currently, the XSS has the third-highest total count with 23,363
attacks from its discovery time to September 2022, making approx-
imately 12.7 % of the total reported vulnerabilities. Furthermore, XSS
has been included in every Open Web Application Security-Project
(OWASP) top-10 list to present.

Various classes of methods were used to counter XSS. Initially,
with the emergence of XSS attacks to the public, specialists relied
on traditional methods to detect the XSS attacks on the client-
side, server-side, or pair sides. These approaches can be broadly
classified into three kinds: static, dynamic, and hybrid analysis
(Mereani & Howe, 2018; Rodríguez et al., 2020). The static analysis
method focuses on reviewing the source code without running it,
while the dynamic analysis approach focuses on analysing the
behaviour of the script during execution with some input. Finally,
Hybrid analysis combines static and dynamic analysis to mitigate
the disadvantages of both techniques. Static, dynamic, and hybrid
are regarded as classical XSS defence methods. Such classical
methods might provide some promises that such XSS vulnerabili-
ties will not occur. However, they are also criticized for being slow,
unable to provide an efficient result due to its high false positive
rates, complex, costly in terms of both resource-consuming and
time-consuming, and requiring high-security domain knowledge
(M. Liu et al., 2019; R. Wang et al., 2018).

Current researchers attempt to leverage artificial intelligence
(AI) principles to add intelligence to boost detection, as seen by
the widespread usage of machine learning/deep learning (ML/DL)
techniques in detecting cyber-attacks. On the other hand, tradi-
tional machine-learning techniques have a low detection rate
and are incapable of detecting minor mutants of current malicious
attacks, such as zero-day attacks (Mokbal et al., 2019; Sahoo et al.,
2019). Moreover, the evolving nature of attacks requires an ML/DL-
based approach equipped with dynamic awareness. More specifi-
cally, the monitoring of drift occurrence and adapting the model
accordingly. One special type of drift that researchers in web secu-
rity applications have ignored is feature drift, which indicates the
dynamic or temporal change in the relevancy of features. Such
1 Vulnerability distribution of cve security vulnerabilities by types
(cvedetails.com).
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change leads to a model trained with part of non-relevant features,
and consequently, a degradation in the accuracy occurs (Barddal
et al., 2017; Sato et al., 2022). To handle such issues, researchers
relied on traditional feature selection methods to select the most
relevant features. The traditional feature selection methods have
a static nature and are based on batch learning which assumes that
the set of relevant features does not change over time and needs
multiple passes over data. However, in many applications, and
XSS is one of them, the features might be subject to change in their
relevancy with respect to time due to the evolving nature of
attacks. The evolved XSS attack can be defined as confusing and
aggressive innovative XSS attacks that are generated with different
combinations of features from the benign or malicious existing XSS
records (Gupta et al., 2022). Usually, such combinations are created
by using escaping strategies such as encoding, obfuscation tech-
niques, replacing the alphabet style lowercase/uppercase, remov-
ing, or substituting the JavaScript and HTML attributes/functions/
events/tags/symbols/expression, adding or removing the blank
spaces, etc. The various combinations are highlighted by security
experts (OWASP, XSS cheat sheet) (Jim Manico, 2018) and
researchers’ validation analysis on different repositories (Stock
et al., 2017).

Feature drift has emerged only recently, and a limited number
of techniques have been developed so far (Barddal et al., 2017).
Dynamic feature selection (DFS) is an emerging sub-topic in
machine learning that has been used recently to capture feature
drift (Barddal et al., 2016; Ferone & Maratea, 2021). It involves
selecting an optimal subset of features based on their relevancy
and filtering out non-relevant features with respect to a set of
records. DFS can be applied to both stream data and non-stream
data. However, the DFS is more convenient for the stream and
sequential nature of data due to the drift that indicates changing
the distribution that represents the source of the data. It is essen-
tial to distinguish between terms, namely, feature drift which indi-
cates relevancy change with respect to time and concept drift
which indicates data distribution change with respect to time
(Barddal et al., 2017). The former is the focus of this article within
the application of XSS detection.

Hence, this article aims at handling this gap by proposing DFS
based on a deep Q-network multi-agent feature selection (DQN-
MAFS) framework. The DQN-MAFS selects the relevant features
dynamically to update the detection model’s knowledge over time.
The suggested methods are evaluated using four real XSS datasets
and compared with the state-of-the-art works. This article presents
several contributions. They can be stated as follows:

� It is the first article that provides a dynamic feature selection in
the domain of XSS detection by considering incremental learn-
ing and enabling knowledge updates for both feature selection
and classification at the same time. This provides a feature drift
aware XSS detection algorithm.
� The article proposes a novel framework for multi-agent
dynamic feature selection using RL by including several compo-
nents. The framework is named as deep Q-network multi agent
feature selection DQN-MAFS. Furthermore, it provides a sub-
model for reward distribution which is named as fair agent
reward distribution based dynamic feature selection FARD-DFS.
� It provides four reward distribution methods for FARD-DFS,
namely, accumulative contribution (ACC), alternative contribu-
tion (ALC) and impurity based (IM), and one action at one time
(OA-OT). Furthermore, it allows simultaneous action change to
the agents, which enables fast exploring of the solution space
and increases the efficiency of the learning.

The remaining article is organized as follows. Section 2
summarizes the main contributions of the article. Section 3
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reviews the literature regarding ML/DL-based XSS detection
approaches and reinforcement learning-based dynamic feature
selection works. Section 4 describes the proposed DQN-MAFS
methodology in detail. Section 5 demonstrates the experimental
design, numerical, time series visualization, and memory reduction
results. Section 6 presents this work’s conclusion and suggests
potential future aspects that can carry out further work.

2. Background

Rt Fð Þ : X ! Y is relevancy function that is related to time t
where:

F represents the set of features that we want to check their
relevancy.

X Denotes the candidate combination of features.
Y denotes a decision variable that has value of 0 or 1 where 0

indicates to non-relevancy and one indicates to relevancy
relationship.

The feature drift happens if and only if

9 t1; t2 2 0; t½ �; F 2 X; t1–t2; whereRt1 ðFÞ–Rt2 ðFÞ
When a feature drift happens at some moment in the interval

½0; t�, there are four main types of feature drift (Ferone &
Maratea, 2021). We present them in Fig. 1.

� Sudden drift: It occurs when a specific feature throughout a
specific number of time periods drifts from being relevant to
irrelevant for classification and vice versa. The feature should
either be removed or added to the optimal subset of features
based on their relevancy changes. The feature relevancy
changes remain in that state for a certain number of consecutive
time periods.
� Gradual drift: It happens When several successive time periods
are considered, and the frequency of a feature being considered
relevant or irrelevant changes with time. In this case, a feature
initially sporadically emerges and then vanishes from the sub-
set of relevant features before stabilising.
� Incremental drift: It happens when the feature relevance
within several successive time periods is represented by a serial
number in the range of [0, 1] that grows or declines
incrementally.
� Reoccurring drift: It occurs when a feature loses its relevance
suddenly during a specific period and becomes significant again
in subsequent periods, and vice versa, with no discernible pat-
tern. If the changeover is rapid, it can turn into a reoccurring
shift.

Evolving XSS attacks might encounter any of these types or
even a combination of them. For example, sudden drift may occur
with Zero attacks. In contrast, the gradual or incremental or reoc-
curring feature drift can be seen when the attacker uses the escape
strategies to evolve their attack and generate a new combination
attack. Some attack vectors are produced by the evolved strategies
used by attackers, such as the mutation of some HTML events and
properties, including innerHTML, outerHTML, etc. These new
(a) Sudden drift         (b) Gradual drift

Time

R(F)

Time

R(F)

Fig. 1. Main types o
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classes of XSS can be considered a sudden drift caused by bypass-
ing almost all the XSS filters on the server-side and client-side
(Heiderich et al., 2013).

3. Related work

This section presents the literature survey. It is decomposed
into two sub-sections: the first one is about XSS detection methods
using ML/DL in the literature. The second one is about dynamic fea-
ture selection using RL.

3.1. ML/DL-based XSS detection

The literature contains numerous ML/DL-based methods and
algorithms for detecting XSS attacks:

Some methods were developed based on traditional classifiers.
Artificial Neural Network (ANN) and Support Vector Machine
(SVM) have been used by researchers. In the work of (Alazab
et al., 2022), an automatic IDS is suggested by using machine learn-
ing for JavaScript attack detection. Other researchers have used a
set of traditional machine learning classifiers. In the work of
(Malviya et al., 2021), various features types of XSS were used.
The classification includes several machine learning classifiers:
Naïve-Bayes, SVM, Random Forest, and ADTree. In the work of
(Mokbal et al., 2019), an ANN-based multilayer perceptron (MLP)
scheme integrated with the preprocessing components is proposed
for XSS attack.

Other researchers have used ensemble learning-based
approaches. In the work of (Mokbal et al., 2021), a development
of Extreme Gradient Boost (XGBoost) based XSS detection is pro-
posed. The development is based on a new web-based XSS attack
detection framework that uses an ensemble-learning technique.
In addition, a combination of information gain (IG) with sequential
backward selection (SBS) to select relevant subset features. In the
work of (Mokbal et al., 2020), an integration of a conditional
Wasserstein generative adversarial network with a gradient pen-
alty was presented for XSS attack detection. In the work of (Zhou
& Wang, 2019), the set of Bayesian networks (BNs) model is used
to build the ensemble learning model. Their learning algorithm
adopted scoring and searching techniques to evaluate nodes’
importance based on their influences. A voting method is also
applied here to ensemble the individual model to create the
ensemble learner.

Another direction of ML/DL-based methods is the usage of rein-
forcement learning (RL). In the work of (Tariq et al., 2021), an inte-
grated XSS detection approach based on three models was
proposed, namely, A Genetic Algorithm (GA), Statistical Inference,
and Reinforcement Learning (RL). First, the best chromosomes for
detecting a vulnerability are compared. If differentiation cannot
be achieved, fit chromosomes are compared to find the most differ-
entiating chromosomes first. In this phase, a payload will most
likely be classified as susceptible or non-vulnerable, but if the pay-
load cannot be distinguished, the next phase of statistical inference
will be performed. This RL is used to adapt to new attacks and is
accomplished by altering, deleting, and adding chromosomes
(c) Incremental drift (d) Reoccurring drift

Time

R(F)

Time

R(F)

f feature drift.



I. Kareem Thajeel, K. Samsudin, S. Jahari Hashim et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101490
inside the model. The Distinguisher, Declarator, and Model are the
components that the RL module employs to improve performance.
However, this work can be criticized for lacking structure for
knowledge preservation, such as a neural network. In addition, it
does not explicitly address the issues of feature drift that are
caused by the XSS attack evolution.

The usage of deep neural networks (DNN) in general and convo-
lutional neural networks (CNN) in particular was also found by
other researchers. In another study by (Maurel et al., 2022), an
experimental and comparative study was introduced by static
approaches for XSS vulnerabilities detection with deep neural net-
works. The obtained results from several experiments that have
been conducted with different settings of deep neural network
hyper-parameters were compared. However, this method suffers
from high false positive (FP) and false negative (FN) rates for both
given methods. In the study of (J. Kumar et al., 2022), the CNN algo-
rithm is used to detect XSS attacks. This method relayed com-
pletely on the CNN components in feature extraction on feature
map layers and feature reduction on pooling layers. In the work
of (Chaudhary et al., 2021), CNN has been used after two steps of
data preparation, namely, decoding and contextual tagging. The
algorithm has been deployed in Fog nodes connected with IoT net-
work. In the work of (Abaimov & Bianchi, 2019), a model called
CODDLE is proposed to detect the injection attacks such as XSS
and SQL injection. In this model, a CNN algorithm is adopted. The
extraction results are used as features for training the CNN. In
the work of (Z. Liu et al., 2021), a graph convolutional network-
based XSS payload detection model was proposed. The graph con-
volutional and residual networks were used to train the XSS detec-
tion model after preprocessing the sample using word2vec and
constructing the processed data into a graph structure.

The usage of recurrent neural networks (RNN) in general and
long short-term memory (LSTM) was also used by some
approaches for effective feature learning. In the work of (Huang
et al., 2021), JSContana consists of flexible text analysis based on
dynamic word embeddings using word2vec and Bi-LSTM of both
the segments (payloads) and the words (keywords) of feature vec-
tors. Finally, the Text-CNN is used for classification. In the work of
(Y. Fang et al., 2020), an email XSS detection model using
Bidirectional-RNN algorithm and the Attention mechanism was
proposed. Word2Vec model was used for pre-processing the email
information and fed them for the classification model.

Many researchers refer to the Evolving aspect of XSS
(Applebaum et al., 2021; Singh, 2020; Sun et al., 2019; Ye et al.,
2021), but it has not been under the focus of researchers despite
its high impact on the detection of XSS. Furthermore, some studies
show that the current detection scanners and approaches have
failed to detect the evolved XSS attacks. Automated scanners,
namely, BruteXSS,2 XSpear,3 XSSer,4 XSSmap,5 w3af,6 wapiti,7 have
shown low recall when they are evaluated with mutated XSS attacks
using reinforcement learning (Caturano et al., 2021). Furthermore,
many of the models for XSS attack detection have shown failure in
detection attacks when they are challenged with adversarial attack
generation. This shows the limitation of offline trained models or
even models that lack knowledge updates or awareness to the evolv-
ing nature of XSS attacks. For example, the study of (Q. Wang et al.,
2022) has shown that the escape rate of LSTM has increased from
75 % to 86 % when it is tested with adversarial attack generation.
2 https://github.com/shawarkhanethicalhacker/BruteXSS-1.
3 https://github.com/hahwul/XSpear.
4 https://xsser.03c8.net.
5 https://awesomeopensource.com/project/secdec/xssmap.
6 https://w3af.org/.
7 https://wapiti-scanner.github.io.
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Similarly, the SVM escape rate has increased from 80 % to 86 % under
adversarial attacks.

Overall, it is found that the majority of researchers have
addressed the problem of XSS detection from the perspective of
feature extraction, reduction, classification, and data generation
for improving performance, as shown in Table 1. However, the
problem was almost handled as offline learning and online testing
without tackling the changeable nature of data nor enabling con-
tinuous knowledge updates whenever new labelled data arrived.
Such an aspect is crucial to be leveraged for countering the drift
and evolving behaviour that occurs in XSS attacks. According to
(Alazab et al., 2022; Gupta et al., 2022), where attackers generate
new malicious payloads, each with a different combination and
unique enough, by arbitrarily inserting or modifying certain com-
ponents of the current XSS scripts, such a new generated XSS pay-
load can evade the detection tools. In this study, we called such
attack as an evolved XSS attack. Hence, we focus in this article
on developing dynamic feature selection for XSS to counter the fea-
ture drift caused by evolved XSS attacks. Furthermore, we select
the reinforcement learning model as a framework for developing
our dynamic feature selection because of its capability of support-
ing real-time, dynamic update, and adjustment of embedded
knowledge as long as new labelled data arrived with a novel
rewards distribution schema proposed for this purpose. The fol-
lowing sub-section provides a survey of the existing algorithms
of RL-based dynamic feature selection.

3.2. Dynamic feature selection

Only a few methods in the literature are found that specifically
seek to identify and respond to feature drifts problem (Barddal
et al., 2019). The most effective method to handle feature drift is
the DFS which provides the classification model with only the most
relevant features and ignores the irrelevant features. The current
methods were reviewed by (Barddal et al., 2017), and the authors
found that most of these methods focused on applying implicit DFS
for streaming learning, while less attention has been paid to expli-
cit DFS. However, almost all the current methods that perform
implicit DFS, such as decision tree learning, decision rule learning,
combination, and randomness, have limitations in identifying the
potential concept or feature drift since it presumes that the under-
lying distribution remains constant over time (X. Wang et al.,
2022). Thus, this article focused on the emerging trend in the liter-
ature to solve the problem of feature drift using explicit DFS based
on RL based models. This is due to the effectiveness of RL in han-
dling dynamic changes and updating embedded knowledge corre-
sponding to them inside the RL agent. Different types of agents
were used in the literature for this purpose.

The usage of traditional Q-learning has been found in many
studies. In the work of (Paniri et al., 2021), a feature selection
method based on Ant Colony Optimization (ACO) was proposed.
The temporal difference (TD) reinforcement learning algorithm
was used to accomplish a heuristic learning approach for the
ACO. Features represent the states (S) and selecting the unvisited
features by each ant represents a set of actions. Reward signals
are composed of two criteria when ants take action. In the work
of (Xu et al., 2021), a method was introduced based on fitting a dis-
criminant function using Q-learning. The agent will select the clas-
sification action while the function is approximated based on the
feedback from the decision of the agent. However, this algorithm
was built based on a linear discriminant function which limiting
it to simple data.

A more advanced type of agent was found, like deep determin-
istic policy gradient (DDPG). In the work of (Cheng et al., 2021), the
feature selection process is modelled as a Markov Decision Process
(MDP), and formalized as an RL problem. They proposed a Deep

https://github.com/shawarkhanethicalhacker/BruteXSS-1
https://github.com/hahwul/XSpear
https://xsser.03c8.net
https://awesomeopensource.com/project/secdec/xssmap
https://w3af.org/
https://wapiti-scanner.github.io


Table 1
Literature Survey of the existing ML/DL-based XSS detection approaches.

Authors/year Components Feature
selection

Feature
drift

Classification Online
learning

(Alazab et al., 2022) Statistical analysis and SVM classifier
p � SVM �

(Maurel et al., 2022) Word embedding representation components and DNN – � Sigmoid �
(J. Kumar et al., 2022) CNN

p � Softmax �
(Tariq et al., 2021) RL, GA, and statistical inference – – Distance based �
(Huang et al., 2021) Word2vec, Dynamic word embedding using Bi-LSTM – – TextCNN �
(Mokbal et al., 2019) Feature extractor and MLP – – MLP �
(Mokbal et al., 2021) Preprocessing components and XGBoost classifier

p
– Multiple classifier

(Z. Liu et al., 2021) Graph building, Word2Vec, and GCN � � GCN �
(Y. Fang et al., 2018) Decode, tokenizer, generalizer, word2vec and LSTM � � Softmax �
(Mokbal et al., 2020) CGAN and WGAN-GP. And detection model based on XGBoost

algorithm
� � XGBoost �

(Abaimov & Bianchi,
2019)

Pairs coding and CNN � � Softmax �

(Zhou & Wang, 2019) Ensemble learning, domain knowledge and threat intelligence � � Bayesian networks �
(Malviya et al., 2021) Feature extractor and Classification model � � SVM and other

classifiers
�

(Chaudhary et al., 2021) Data preparation and CNN � � – �
(Y. Fang et al., 2020) Data preparation, bi-RNN and attention � � RNN �
(Yang et al., 2020) Bi-LSTM With two levels of attention word and segment, and

TextCNN
� � Softmax �

Proposed approach RL, DQN,
p p

Multiple classifiers
p
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Reinforcement Learning-based Feature Selector (DRLFS), as well as
a dynamic randomness policy for controlling exploration and
exploitation, and two search protocols, namely, fixed depth search
and adaptive depth search.

Other researchers use deep Q-learning network-based agents
(DQN) for DFS. In the work of (K. Liu et al., 2021), a multi-agent
framework was proposed. Each agent is responsible for one fea-
ture, and the overall decisions of all agents provide the selected
features. The agent’s state is built based on descriptive statistics;
the reward is a weighted average of three terms: relevancy, redun-
dancy, and accuracy. The learning agent embeds DQN, which is
trained using experience replay buffer sampling by using GMM.
However, this framework did not include a unique mechanism
for exploration and exploitation balance. The algorithm suffers
from non-efficiency when the number of features increases due
to the linear relationship between the features’ size length and cre-
ated DQN, which makes it limited in the application of XSS. In the
work of (Fan et al., 2020), a navigation mechanism using interac-
tive reinforcement learning (IRL) as an external trainer-agent inter-
action was proposed. The decision tree feedback (DTF) was used as
learning feedback. Graph Convolutional Network (GCN) is adopted
to learn state representation from both the graph and the tree at
the same time. A customized reward assignment is set for agents
depending on the relevance of decision tree features. In the work
of (Z. Fang et al., 2019), A framework architecture of a Deep Q-
learning based Feature Selection (DQFSA) was proposed for mal-
ware detection. The Q-learning agent is implemented with a
sequential learning manner. In addition, the accuracy of the
machine learning classifiers is used as a reward. In the work of
(Li et al., 2021), a Deep Q-Network has been proposed. A single
agent is represented by DQN, which takes the action of one feature
at one time. The reward is formulated as a piecewise equation
combined with four branches. In the work of (Wu et al., 2022), a
framework based on Double DQN (DDQN) algorithm has been pro-
posed for Android malware classification. The RNN is adopted as
the decision network of DDQN to accept the unfixed input length.
Word embedding is applied for feature representation to find the
semantic relevance of features. In the work of (Fan et al., 2021), a
framework for Group-based Interactive Reinforced Feature Selec-
tion (GIRFS) was suggested. Their framework balances single-
agent RFS and multi-agent RFS. In this formulation, they first divide
the given features into groups based on feature similarity. Then,
5

each group creates agents, with each agent taking action on its cor-
responding group. Furthermore, they propose a hierarchical
teacher-like trainer to provide external action advice to agents.

The reviewedmethods are summarised in Table 2, from the per-
spectives of the elements of RL, namely, state, action, reward, agent
type, and exploration vs exploitation balance. It is observed that
non-of the existing methods have provided an algorithm for
reward distribution to handle the multi-agent rewarding. The
tricky part of multi-agent rewarding is that the agents’ contribu-
tion to the overall performance is not equal (Gronauer & Diepold,
2021; Nguyen et al., 2020). This is because each agent’s decision
is weighted based on the importance of its feature in the overall
performance; figuring out this importance is not a straightforward
process. Hence, it is necessary to come up with an approach that
accomplishes fair reward distribution based on the real contribu-
tion of each agent.
4. Methodology

This section illustrates the methodology of the proposed
approach called DQN-based multi-agent features selection (DQN-
MAFS) to detect the evolved XSS attacks in an incremental manner
dynamically. Firstly, we formulated the handling of streaming XSS
attacks as the dynamic feature selection problem. Following that,
the significant components of the DQN-MAFS framework are intro-
duced, as shown in the following sub-sections.
4.1. Problem formulation

Assuming a stream data set D ¼ ðxt ; ytÞ with partial labeling
where:

t denotes the time and xt denotes the feature vector xt 2 Rm

yt ¼
ytarget;t; if label is available
r; if label is not available

�
ð1Þ

The percentage of labelling is Rt 2 ½rmin; rmax� indicates the num-
ber of labelled samples over the total number of samples within a
small time-interval T.

The goal is to build a prediction of the label of the data stream

f xtð Þ ¼ yt
�

where the error of the prediction is minimized or



Ta
bl
e
2

Li
te
ra
tu
re

Su
rv
ey

of
th
e
ex

is
ti
ng

al
go

ri
th
m
s
in

RL
ba

se
d
dy

na
m
ic

fe
at
ur

e
se
le
ct
io
n.

A
rt
ic
le

M
u
lt
i

ag
en

t
St
at
e

A
ct
io
n

R
ew

ar
d

R
ew

ar
d

d
is
tr
ib
u
ti
o
n

A
ge

n
t

E
xp

lo
ra
ti
o
n

E
xp

lo
it
at
io
n
B
al
an

ce
C
la
ss
ifi
er

(C
h
en

g
et

al
.,
20

21
)

�
En

co
di
n
g
of

th
e
su

bs
et

of
se
le
ct
ed

fe
at
u
re
s

B
in
ar
y
de

ci
si
on

D
ec
li
n
e
of

Er
ro
r

�
D
D
PG

R
an

do
m
n
es
s
po

li
cy

SV
M

(K
.L

iu
et

al
.,
20

21
)

p
D
es
cr
ip
ti
ve

st
at
is
ti
cs

B
in
ar
y
de

ci
si
on

A
cc
u
ra
cy

,r
ed

u
n
da

n
cy

,r
el
ev

an
ce

�
D
Q
N

e�
gr
ee

du
y

R
F,

LA
SS

O
,D

T,
SV

M
,

X
G
B
oo

st
(F
an

et
al
.,
20

20
)

p
G
C
N

B
in
ar
y
de

ci
si
on

D
T
ba

se
d
pe

rs
on

al
re
w
ar
di
ng

an
d
A
cc
u
ra
cy

fr
om

h
yb

ri
d
te
ac
h
in
g

�
D
Q
N

e�
gr
ee

du
y

D
ec
is
io
n
tr
ee

(Z
.F

an
g
et

al
.,
20

19
)

p
Se

le
ct
ed

fe
at
u
re

Se
le
ct
/d
es
el
ec
t

A
cc
u
ra
cy

�
D
Q
N

e�
gr
ee

du
y

Se
t
of

cl
as
si
fi
er
s

(P
an

ir
i
et

al
.,
20

21
)

p
Fe

at
u
re

Se
le
ct
/d
es
el
ec
t

C
os

si
m
il
ar
it
y
an

d
co

rr
el
at
io
n

�
Q
-

le
ar
n
in
g

Po
ly
n
om

ia
l
de

ca
y
ra
te

K
N
N

(X
u
et

al
.,
20

21
)

�
Fe

at
u
re

C
la
ss

Fi
xe

d
va

lu
es

fo
r
re
w
ar
di
ng

an
d
pu

n
is
h
m
en

t
�

Q
-

le
ar
n
in
g

e�
gr
ee

du
y

Li
n
ea

r
di
sc
ri
m
in
an

t
fu
n
ct
io
n

(F
an

et
al
.,
20

21
)

p
G
ra
ph

C
on

vo
lu
-
ti
on

al
N
et
w
or
k
(G

C
N
)

Se
le
ct
io
n
/d
e-

se
le
ct
io
n

A
cc
u
ra
cy

�
N
/A

e�
gr
ee

du
y

D
ec
is
io
n
tr
ee

(L
i
et

al
.,
20

21
)

�
B
in
ar
y

Se
le
ct
io
n
/d
e-

se
le
ct
io
n

Pi
ec
ew

is
e
ba

se
d
on

th
e
ac
cu

ra
cy

�
D
Q
N

e�
gr
ee

du
y

K
N
N

(W
u
et

al
.,
20

22
)

�
B
in
ar
y

se
qu

en
ti
al

se
le
ct
io
n
by

R
N
N

A
cc
u
ra
cy

�
D
D
Q
N

e�
gr
ee

du
y

Se
t
of

cl
as
si
fi
er
s

Pr
op

os
ed

ap
pr
oa

ch
p

B
in
ar
y

B
in
ar
y
de

ci
si
on

D
ev

el
op

ed
(F
A
R
D
-D

FS
)

p
D
Q
N

D
ec
ay

e
gr
ee

dy
Se

t
of

cl
as
si
fi
er
s

I. Kareem Thajeel, K. Samsudin, S. Jahari Hashim et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101490

6

e ¼Ptc
t¼t0 ðyt

�
�ytarget;t;Þ is minimum where t0 denotes the starting

time and tc denotes the current time.
The function f is a feature selector function. Its mission is to

assign for each feature i ¼ 1; � � �m a binary value bi 2 f0;1g where
bi denotes the decision of whether the feature is selected or not.
This process is to minimize the error e.

Mathematically, we write the problem as an optimization prob-
lem according to the following formula:

b� ¼ bi;1; bi;2; bi;3; � � � bi;m
� � ¼ argmin eð Þ

¼ argmin
Xtc
t¼t0
ðyt
�
�ytarget;t;Þ2

 !

¼ argminð
Xtc
t¼t0
ðf xtð Þ � ytarget;t;Þ2Þ ð2Þ

This formulation provides a Markov Decision Process (MDP)
based modelling of the feature selection system where the current
decision of feature selection represents an action that is made
based on the state that is originated according to the previous
taken action and based on the obtained reward that is also calcu-
lated from our suggested reward mathematical formulation.

4.2. The general methodology

As shown in Fig. 2, the methodology consists of three main
stages: (1) preparation of data streaming which is responsible for
generating stream data from original XSS data (2) DQN-MAFS
framework, which is responsible for dynamic feature selection
(3) Detector which is responsible on classifying the records accord-
ing to their feature’s values.

4.3. Preparation of data streaming

The literature contains a wide range of use of the XSS data with
ML/DL approaches. However, they all assume batch learning, and
no sequential chunks were generated. In order to enable the incre-
mental learning approach, we decompose the data into chunks as
we provide them to the framework. The chunks are assumed based
on the pre-given number of chunks. The time has not been used as
a feature, but it helps in ordering the records (sequence order of
the data). The data is presented as a stream of chunks to the
method based on Eq. (1). Each chunk consists of a certain number
of rows representing the records x1; x2; x3; � � � ; xn and certain num-
ber of columns representing the features f 1; f 2; f 3; � � � ; f m. The
dimension of features is fixed, while the number of rows changes
from one chunk to another according to the way the data is
generated.

4.4. DQN-MAFS framework

The framework of DQN-MAFS is presented in Fig. 2. The frame-
work supports multi-agent learning for feature selection, like (K.
Liu et al., 2021) in general and different in details of various com-
ponents such as state representation, reward schema, exploration,
and exploitation policy. In our suggested DQN-MAFS, each agent is
responsible for one feature, and it has one of two actions, namely,
selection or de-selection. Each agent generates the state from the
chunk and uses it for selecting or de-selecting the corresponding
feature of the agent. The aim is to reduce the data to a more dis-
criminative subset that improves prediction and efficiency. The
agent contains a deep Q network trained based on a mini-batch
sampled from an experience-replay buffer similar to (Mnih et al.,
2013). The neural network is trained based on loss function using
gradient descent.
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This section provides the formulation of the elements of our
DQN-MAFS. We define each of the environment, state, agent,
action, and reward.

4.4.1. Environment
In general, the environment represents all entities outside the

agent. In this research, the environment represents the data in
terms of the number of features, their types, values, and their asso-
ciated labels (ground truth) that provides the capability of learning
the knowledge based on the calculated reward.

4.4.2. State
The state is represented by a binary vector that has a length

equal to the number of features. The vector elements are zeros or
ones based on the last generated decision of the agents for select-
ing or deselecting their features. The selection is encoded with one,
while the de-selection is encoded by zero. Hence, the model main-
tains Markov Decision Process (MDP) or

p StjSt�1; St�2ð Þ ¼ p StjSt�1ð Þ ð3Þ
4.4.3. Action
The action is associated with the agent decision of selecting or

deselecting its feature. Assuming that we have a total m features,
then the selection decision is a binary value ranging from 1, which
is the decision to select the first features only to 2m, which repre-
sents the decision of selecting the entire set of features. This is
given by the Eq. (4).

at ¼
1; when the feature is selected

0; when the feature is deselected

�
ð4Þ

a#A where Aj j ¼ 2m � 1 and.a ¼ ða1a2 � � � :atÞ

4.4.4. Agent
The modelling of feature selection will be based on multi-agent

reinforcement learning. Each reinforcement learning agent ith is
responsible on making a decision of selecting a subset of features
based on the state. The agent is supposed to capture the knowledge
generated from the subsequent instances of records, states si; t ,
action ai; t , next state si; tþ1, and the reward ri; t obtained by the
taken action. To enable the learning of the agent, we use a replay
buffer for storing the instances (si;t , ai;t , si;tþ1, ri;t) that resulted after
agents take different actions several times. After that, and accord-
ing to our batch learning method in Section 5.4.6, we sample the
stored instances from the replay buffer for training each agent’s
Deep-Q-network (DQN).

4.4.5. Reward scheme
The role of reward distribution is to assign to each agent a

reward value equivalent to its contribution to changing the overall
prediction accuracy. Considering that the agents are operating
simultaneously, it is difficult to separate the contribution of each
agent. Consequently, a non-stationary environment will occur. To
resolve this, we propose different methods for reward distribution.
Each of these methods is based on changing the decision within
certain number of iterations and calculating the corresponding
accuracy that is resulted from the overall decisions of all agents.
We assume that the set of combinations of the various decisions

is a ¼ ai;1ai;2 � � � ai;3:::ai;k

� �T where each a denotes the joint action
of all agents. In addition, we assume that the corresponding accu-

racy of each decision is given as Ac¼ ðac1ac2 � � � aci:::ackÞT where k
denotes the number of combinations. The reward for each agent
is derived from one of the four suggested mathematical models.
The collection of all combinations with the corresponding accura-
7

cies is added to a matrix named as a combinatory matrix (CM) that
is shown in Eq. (5). Fig. 3 provides a conceptual diagram of our pro-
posed framework for fair reward distribution based on CM.

CM ¼

a1;1 a2;1 : am;1 ac1
a1;2 a2;2 : am;2 ac2

: : : : :

: : : : :

a1;k a2;k : am;k ack

0
BBBBBB@

1
CCCCCCA

ð5Þ
4.4.5.1. Accumulative contribution (ACC). This method is proposed
to calculate the reward of each agent based on their importance
contribution to the actions taken. In this method, the reward for
each agent is calculated as an aggregation of the various decisions
multiplied by the aggregation of the accuracies. This is applied
when the decision is changing. However, when the decision is fixed
and the average accuracy is below certain threshold (Thr), then the
reward is discounted with the factor w that denotes the window
length, as shown in Eq. (6). This is achieved by utilizing a sliding
window with a specific length size w, the sliding window
crosses over the CM to calculate the reward contribution for each
agent.

rj ¼
Pk

i¼1ai;j�
Pk

i¼1acj
w if

Pk
i¼1ai;j ¼¼ 0 or

Pk
i¼1ai;j ¼¼ w and

Pk

i¼1acj
w < ThrPk

i¼1ai;j �
Pk

i¼1acj otherwise

8<
:

ð6Þ
4.4.5.2. Alternative contribution (ALC). The second method proposed
in this study for reward distribution is Alternative Contribution
(ALC). This method aims to distribute the reward values according
to the frequency of decision changes and the relation of this fre-
quency with the accuracy changes. The reward calculation accord-
ing to this method is done using Eq. (7) and (8). The goal of Eq. (7)
is to measure the effect of accuracy change concerning decision
change, and Eq. (8) is to perform probabilistic scaling of the
rewards.

rj ¼
PK

i¼1 ai;j � ai;j�1
� �ðacj � acj�1ÞPK

i¼1 ai;j � ai;j�1
� � ¼

PK
i¼1dai;jdacjPK

i¼1dai;j
ð7Þ

smj ¼ smðrjÞ ¼ erkPM
k¼1erk

ð8Þ

Where:
dai;j denotes the differentiation of action over time.
dacj denotes the differentiation of accuracy over time.
sm represents softmax normalization.
For more elaboration, we present the calculation of the reward

of the agent in the two methods, ACC and ALC, in Fig. 4. As it is
shown, in the case of ACC, the reward is calculated as the multipli-
cation of two areas: the area under the accuracy curve (Ac) and the
area under the action curve. The only exception is that when the
decision is fixed, the area under the action curve is 0 or 1. In this
case, we divide the calculated reward by w, which represents the
length of the window. On the other side, in the case of alternative
contribution ALC, the reward is represented geometrically by sum-
mation of samples from the curve of accuracy derivative dacj mul-
tiplied by the derivative of actions dai and divided over the
derivative of actions. Next, the rewards are scaled by applying
the SoftMax function sm, as shown in Eq. (8).

4.4.5.3. Impurity (IM). The third method of the proposed FARD-DFS
uses a regression model based on the selected features and their
corresponding labels. This information is considered after training



Fig. 2. The overall methodology.
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as the importance of feature and is used as a reward given the
information of other features as well as the information of labels.
This article uses random forest (RF) with feature impurity to calcu-
late the reward. We chose the RF because it has a robust built-in
feature-importance measurement. In this case, variance reduction
(V) is used as a measure of impurity, as shown in Eq. (9). The low-
est impurity is equivalent to a higher reward. Also, this method is
based on CM to calculate the impurity of the selected features by
agents’ action.
V ¼ 1
k

Xk
i¼1

yi � lð Þ2 ð9Þ

Where:
yi is label for an instance, k denotes the number of instances and

l is a value obtained by the mean 1
k

Pk
i¼1yi.
4.4.5.4. One action at one time (OA-OT). The last proposed method
in this work for reward distribution is named as One-Action at
One-Time (OA-OT). This method avoids the challenge of reward
distribution by allowing one agent to change a decision at one
time. In other words, at one time unit t, it is only permitted one
8

agent to make a decision change. Mathematically, this is described
as:

8t;
XN
i¼1

ai tð Þ � ai t � 1ð Þj j ¼ 1 ð10Þ

Where:
N denotes the number of agents, aiðtÞ denotes the decision of

agent i at moment t
Hence, the change amount of the accuracy after the action is

used as a reward value for the subject agent. To accomplish this,
we add a restriction to the combinatory matrix (CM) Eq. (5) to only
have hamming distance between two consecutive rows equal to 1;
according to that, a new CM will be generated based on this
method and the action policy.

4.4.6. Batch learning for training DQN
The buffer inside the agent contains a wide range of records that

are combined of state, action, next state, and reward. They cannot
be used all for training. Hence, a subset of them is used for this pur-
pose. In order to enable effective training, we build a statistical dis-
tribution for sampling from the buffer to train DQN. The statistical
distribution will give a higher probability for selecting samples
subject to misclassification in previous trials. Assuming that the



Fig. 3. Our proposed sub-model for DQN-MAFS, which is used for fair reward distribution to agents and is designated as fair agent reward distribution based dynamic feature
selection FARD-DFS.
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buffer size is N, then the initial probability selection of each sample
is 1

N.
When the sample is selected, it is fed again for evaluation, and a

counter C indexð Þ is associated with each sample index:
C indexð Þ ¼ C indexð Þ þ 1; if the reward has increased

C indexð Þ; else

�
ð11Þ

Next, the probability of selection is calculated as
P indexð Þ ¼ CðindexÞPM
i¼1CðiÞ

ð12Þ

The increase of the reward is measured by the difference
between the current reward ri; t and the reward after training
ri; tþ1 based on the batch and making a decision.
Fig. 4. Reward calculation for ACC and ALC approaches.

9

4.4.7. General DQN-MAFS algorithm
The agents take their own action decisions based on their policy

networks pi : s! pðaiÞ. The policy pi denotes the transition probabil-
ity that identifies which action ai should be taken by an agent to
evolve the feature sub-space from state st to stþ1, and each agent i
should receive a reward ri; t . For exploring more possibilities for select-
ing features, we utilise the e� greedy policy in this study, as shown in
Eq. (13). Algorithm 1 shows the pseudocode of the e� greedy policy.

p si;t ; ai;t
� � ¼ random ai;t ; e

argmaxaQp si;t; ai;t ; h
� �

;1� e

(
ð13Þ

Random ai; t denotes the agent has transition probability e to
make random action at state si; t , whilst in case the agent has the
transition probability 1� e to take action ai; t by exploiting the
maximum action value according to the output of the evaluation
network that provides the maximum expected reward. This step
enables the proposed approach to balance the exploration and
exploitation processes (Z. Fang et al., 2019).

Algorithm 1 (Epsilon greedy action).

Input: (1) expectedReward: list of expected rewards for each
possible action
(2) epsilon: float number between 0 and 1, refers to
exploration probability.
Output: (1) action: an integer represents the index of the
best action.
Start Algorithm
1: action = None
2: if random() <= epsilon then
3: action = randInteger()
4: else
5: action = argmax(expectedReward)
6: end if
End Algorithm

Thus, in the training DQN process, each agent trains its policy
networks via sampling its instances from their replay buffer sepa-
rately using our proposed model given in Sub-section 4.4.2. Then
feed them to the DQN for training in order to achieve the maxi-
mum action value and maximum long-term expected reward value
according to Bellman Equation (Barto, 2018).
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Q si;t; ai;t ; ht
� � ¼ ri;t þ cmaxQ si;tþ1; ai;tþ1; htþ1

� � ð14Þ
Where ht is the parameters of the Q network setting (evaluation

network), maxQ(si; tþ1; ai; tþ1) denotes the maximum action value
according to the e� greedy policy, and c represents the discount
factor. The sampled transition from the replay buffer (si; t , ai; t ,
si; tþ1, ri; t) is input into the Q network, in which si; t is fed into the
evaluation network to obtain the Q value Q si; t ; ai; t ; h

� �
of the

action ai; t , while the si; tþ1 is inputted to the target network to
achieve the maximum Q value maxQ si; tþ1; ai; tþ1; htþ1

� �
. Then the

expectation yi; t of the reward is obtained based on the output of
the target network via calculating the maximum Q value as
demonstrated in Eq. (15).

yi;t ¼
ri;t ; if step ends at t þ 1
ri;t þ cmaxQ si;tþ1; ai;tþ1; htþ1

� �
; otherwise

(
ð15Þ

In order to set the parameters of the Q network, the gradient
descent method is used. Thus, the parameters of the Q network
can be updated frequently to calculate the Q value accurately.
The loss function LðhÞ is calculated according to expectation value
yi; t , and Q value Q si; t ; ai; t ; h

� �
shown in Eq. (16).

L hð Þ ¼ yi;t �Qðsi;t ; ai;t; hÞ
� �2 ð16Þ

The evaluation network’s parameters are modified by calculat-
ing the derivative of the h as shown in Eq. (17).

h �hþ a yi;t �Q si;t; ai;t ; h
� �� �rQ si;t ; ai;t ; h

� � ð17Þ
To preserve the stability of the proposed method that may be

impacted by the rapid updating of Q network’s parameters, the tar-
get network’s parameters htþ1 are derivative from the parameters
of the evaluation network h at every end of the epoch in training.
Hence, after the given number of epochs, the process of parameter
updating will be finished.

Algorithm 2 (DQN-MAFS algorithm).

Input: Chunks of Dataset, list of feature spaces
f ¼ f 1; f 2; f 3; � � � ; f mf g, window w
Output: selectedFeatures
Start Algorithm:
1: Initialize replay buffer size (RB)
2: Initialize multi-agents RL equal to number of features
3: Initialize Q action_value with weights parameter h for
evaluation network
4: Initialize �Q action_value with weights parameter
htþ1  h for target network
5: for everyChunk
6: for t ¼ 1 to T do
7: for each agent
8: Using a classifier to produce CM based on Eq. (5) for
selected features based on window w
9: for n ¼ 1 to N sample in CM do
10: Using FARD-DFS approaches to observe the reward rt
for each agent i
11: Assign generated ri;t for each agent based on their
actions ai; t and store in RB
12: end for
13: Sample batches of transitions ðsi; t; ai; t; si; tþ1; rtÞ
14: Calculate the target value of the target network using
Eq. (15)
15: Perform gradient descent using Eq. (16)
16: action at ¼ argmaxa �Q si; t; ai; t; h

� �
based on Eq. (13)
10
17: end for
18: end for
19: Add action to selectedFeatures
20: Update e, reset htþ1  h
23:end for
End Algorithm
4.5. Detector

The last component of our proposed framework is the classifica-
tion process implemented in this study since it is crucial for pre-
dicting XSS attacks. Thus, a set of classifiers are adopted to
classify the records based on the selected optimal features pro-
vided sequentially from the previous stage DQN-MAFS for each
chunk. Then the current knowledge of the classifier is updated with
new knowledge for the next chunk at the moment t þ 1 or when-
ever a new data stream is available. In our framework, we evaluate
DFS on four classifiers, namely, support vector machine (SVM), K-
nearest neighbour (KNN), decision tree (DT), and logistic regression
(LR).

5. Experimental works and results

This section presents the experimental design, dataset, time
series visualization, comparison with other benchmarks, and over-
all discussion.

5.1. Experimental design

The experiments were performed using four real XSS datasets,
namely, D1-66, D2-167, D3-30, and D4-30. The two benchmarks
used for comparison are Tariq et al., (2021) and K. Liu et al.,
(2021). We benchmarked our work with Tariq et al., (2021)
because of their adaptive XSS detection method based on genetic
algorithm and RL, while the method of K. Liu et al., (2021) because
of their dynamic feature selection based on multi-agent RL
approach. Both these two benchmarks are re-implemented in a
similar design to our method to reproduce their results using four
datasets, as mentioned earlier. For evaluation, each dataset was
partitioned into chunks, similar to how data streams feed incre-
mental learning models. The method was required to provide a dif-
ferent feature selection decision for each chunk. The total number
of chunks is 9 for each dataset. The dataset splitting for training
and testing depends on how many data samples we have. In this
article, all used datasets are divided into 0.8 for training and 0.2
for testing. This is due to the fact that we have divided each of
the used datasets into several chunks in which the number of the
data in each chunk is small; thus, we select the highest percentage
of the data samples for training to generalize the model and avoid
the under-fitting of the model. The chunks are provided to each of
the agents simultaneously at the specific moment as well as to
benchmarks to guarantee objective evaluation. The comparisons
are evaluated in terms of mean and maximum accuracy, precision,
recall, and F1-measure. All these metrics are based on confusion
matrix parameters which are True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). Hence, the deriva-
tion of the performance metrics mentioned above metrics are
listed in Eq. (18–21).

Accuracy ¼ TP þ TN
ðTP þ TN þ FP þ FNÞ ð18Þ
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Precision ¼ TP
ðTP þ FPÞ ð19Þ

Recall ¼ TP
ðTP þ FNÞ ð20Þ

F1�measure ¼ 2� ðRecall� PrecisionÞ
ðRecallþ PrecisonÞ ¼

2TP
2TP þ FP þ FNÞ ð21Þ

All the experiments were carried out using Microsoft Azure for
code execution with GPU Tesla 24 cores and 256 GB RAM. In our
experiments, we set the DQN-MAFS with several parameters. Each
agent has its own deep Q-network; the batch learning is set as
shown in Eq. (11–12). We use the e� greedy policy to balance
between the exploration and exploitation processes. The value
e� greedy policy is 0.97 and the e decay value is 0.01 from 1 to 0
at the end of each episode. For the experience replay, the capacity
of the replay buffer is set to 800. The Q-network is set in this
approach as three neural network layers. ReLU is used as the acti-
vation function at the hidden layers 2nd and 3rd layers with 32 and
16 neurons, respectively. Whilst the loss function is mse, and the
optimizer is Adam. The total number of epochs is 5, with a batch
size of 32. The learning rate a is 0.001, and the discount factor c
is 0.995. The four predictors (SVM, KNN, DT, and LR) are set with
different parameters. SVM is set with radial basis function (RBF)
kernel, maximum iteration = 8000, regularization proportion
c = 0.2, and probability = true. Also, five neighbours are used with
the KNN. Furthermore, LR is set with a maximum iteration equal to
500. Finally, the DT is used with 15 estimators, and the random
generator is initialized with 42. In the ACC and ALC methods, we
used a sliding window with a size equal to 4 steps to calculate
the reward contribution from the CM. The ALC method’s threshold
value is set at a 0.6 of accuracy rate.

5.2. Dataset

According to (Melicher & Fung, 2021; Nunan et al., 2012), there
is lacking of real-world benchmarking XSS datasets. Nevertheless,
we came across four XSS attacks datasets used in this study with
a purpose of demonstrating the efficiency of our proposed
approach when it comes to the low and high number of dimen-
sions; we summarize them in Table 3, and we give details of each
of them in the following sub-sections.

5.2.1. Datasets of (Mokbal et al., 2019) (D1-66) and (Mokbal et al.,
2021) (D2-167)

The first dataset, D1-66, was published by (Mokbal et al., 2019)
and updated in (Mokbal et al., 2021) and used in this study as the
second dataset, D2-167. These two datasets are considered the first
comprehensive cross-site scripting-based numerical features data-
set extracted from real XSS attacks. The benign samples in this
dataset were created by crawling the top 50,000 websites ranked
by Alexa. In contrast, the malicious samples were collected by
crawling raw XSS repositories such as XSSed and Open Bug
Bounty.8 Initially, the author extracted only 66 numerical features.
Then (Mokbal et al., 2021) extracted more comprehensive features,
were extracted 167 numerical features. Both datasets have been
available online recently on GitHub.9 Furthermore, these datasets
consist of three types of features: HTML, JavaScript, and URL.

5.2.2. Dataset of (Zhou & Wang, 2019) (D3-30)
The third dataset D3-30 was created by (Zhou & Wang, 2019).

This dataset was gathered from multiple GitHub sources and secu-
8 https://www.openbugbounty.org/.
9 https://github.com/fawaz2015/XSS-dataset.

11
rity forms and contained around 6503 normal records and 3497
XSS payloads. Then 30 script and URL context features were
obtained using open-source ontology modelling tools (Protégé)
based on only four characteristics.

5.2.3. Dataset of (Y. Fang et al., 2018) (D4-30)
The fourth dataset used in this study is D4-30 which was ini-

tially collected by (Y. Fang et al., 2018) as a raw dataset from dif-
ferent sources, namely, GitHub10 and XSSed. Then the features
were extracted directly from the XSS payload by (Tariq et al.,
2021) based on (Zhou & Wang, 2019); here also, only 30 features
were extracted using the JSoup parser library. The raw dataset is col-
lected from GitHub11 and XSSed. Both datasets D3-30 and D4-30 are
available on.12

5.3. Time series visualization

The first set of results provides time series of both accuracy and
F1-measure. The latter considers both recall and precision by mea-
suring their harmonic mean. In order to evaluate our proposed
method of dynamic feature selection for evolved XSS detection,
four classifiers were used, namely, SVM, KNN, DT, and LR. Thus,
we select the largest dataset in terms number of features, i.e.,
D2-167, and provide its time series behaviour in Fig. 5. It is
observed that each method has a variable accuracy and F1-
measure according to the chunk. However, in all methods, the min-
imum and maximum values were in the range of 85.79 % � 98.81 %
and 71.45 % � 97.84 % for accuracy and F1-measure, respectively.
Another observation is that a drop in the accuracy and F1 measure
to the values 85.79 % and 71.45 %, 86.51 % and 73.09 %, respec-
tively, has occurred in chunk 7 with IM and ALC methods. On the
other side, another drop has shown in the accuracy and F1 measure
to 92.14 % � 84.45 % respectively, within the ACC method in chunk
3. Furthermore, OA-OT approach has less steady performance com-
pared with other methods. The maximum achieved accuracy,
recall, F1-measure, and AUC were 98.81 %, 97.70 %, 97.84 %, and
98.41 %, respectively; they were obtained using a DT classifier.
Overall, all methods have provided an outstanding performance
with four classifiers used despite the variation. This is interpreted
by the fact that each rewarding method focuses on one aspect that
can be captured in a specific chunk and lost partially in others.

5.4. Comparison with other studies

We compare our proposed method with two studies Tariq et al.,
(2021) that have proposed an adaptive method to detect the new
XSS attacks; this method was tested using two datasets, D3-30
and D4-30 datasets. The second work is K. Liu et al., (2021), which
proposed a method for dynamic feature selection based on MARL.
This comparison is conducted using four different datasets with
various feature sizes in each dataset. The goal of using different
sizes and numbers of features for the data is to explore the perfor-
mance variations according to these factors. According to the pre-
vious results., we selected the DT classifier as a predictor with our
proposed approach because of its results’ superiority over other
used classifiers such as SVM, KNN, and LR. In the subsequent sec-
tions, we present the analysis of the results for the mentioned
datasets.

5.4.1. Results of D1-66 dataset
Another evaluation was performed on 66 features dataset is

provided in Table 5. As it is shown, we find that the best achieved
10 https://github.com/duoergun0729/1book/tree/master/data.
11 https://github.com/duoergun0729/1book/tree/master/data.
12 https://github.com/IramTariq/XSS-attack-detection/tree/master/Testing_Data.
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https://github.com/duoergun0729/1book/tree/master/data
https://github.com/duoergun0729/1book/tree/master/data
https://github.com/IramTariq/XSS-attack-detection/tree/master/Testing_Data


Table 3
Existing XSS benchmarking datasets.

Dataset
name

Author name No. of samples No. of
features

Source of malicious
samples

Source of benign
samples

Collection method

D1-66 (Mokbal et al., 2019) 100,000 benign samples, and 38,569
malicious samples

66
features

XSSed and Open Bug
Bounty

50,000 Top Alexa
websites

Crawling and parsers

D2-167 (Mokbal et al., 2021) 167
features

D3-30 (Zhou & Wang, 2019) 6503 normal records and 3497 XSS
payloads

30
features

XSSPL and XSSed GitHub Ontology modeling tools
(Protégé)

D4-30 (Y. Fang et al., 2018) 135,507 normal records and 16,151 XSS
payloads.

30
features

XSSed GitHub JSoup parser library
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mean and maximum accuracy was for FARD-DFS-IM with values of
99.59 % and 100 %, respectively. Furthermore, we find that the
mean and maximum achieved F1-score were for FARD-DFS OA-
OT and FARD-DFS-IM, with values of 90.75 % and 100 %, respec-
tively. Furthermore, we observe that the accuracy of all FARD-
DFS variants is always higher than 99 %. Hence, we readily con-
clude that FARD-DFS is superior. In addition, we observe that
FARD-DFS-IM has provided the least standard deviation (Std) in
accuracy 0.44 %, which is an indicator of more expected
performance.

5.4.2. Results of D2-167 dataset
The second used dataset has a high number of features, which is

167. Hence, the evaluation based on this dataset tests the model’s
capability to perform on a large number of extracted features.
Table 6 shows that the most superior method in terms of accuracy
and F1-score is FARD-DFS OA-OT. The reached mean and maxi-
mum accuracy rates were 97.66 % and 98.81 %, respectively and
the reached mean and maximum F1-score were 95.81 % and
97.84 %, respectively. This shows an overall outperformance of
FARD-DFS OA-OT over the remaining models.

Furthermore, it is observed that all variants of FARD have pro-
vided good performance compared with other models. For exam-
ple, the maximum accuracy was always higher than 98 % for all
FARD variants. This provides the capability of FARD to attain
needed dynamic knowledge for selecting the most relevant fea-
tures compared with other models. Furthermore, The least accu-
racy and F-measure have been observed at Tariq et al., (2021)
with a value of 87.19 % and 88.93 %.

In order to capture the consistency in the performance, we cal-
culated the standard deviation. The lower values of the latter indi-
cate to more expected performance. It is observed that the least std
has occurred in OA-AT for accuracy, which was 0.77 % compared
with the std of Tariq et al., (2021) 13.21 %.

5.4.3. Results of D3-30 dataset
The analysis of obtained results of our model and the bench-

marks based on the D3-30 dataset is detailed in Table 7. It can be
found that the best-achieved accuracy, a mean of 98.28 %, and a
maximum value of 100 % were for FARD-DFS-IM and K. Liu et al.,
(2021), respectively. Furthermore, the best-achieved F1-measure
in terms of mean was for FARD-DFS-ACC and in terms of maximum
value was for K. Liu et al., (2021) for values of 97.38 % and 100 %,
respectively. This implies that FARD-DFS has better performance
overall than the benchmarks regarding accuracy and F-measure.
Another observation is that Tariq et al., (2021) have a recall for
both mean and maximum values of 99.97 % and 100 %, respec-
tively. However, FARD-FDS is better at balancing true positive
and negatively predicted results, which means more reduction of
false alarms and attaining good optimistic predictions. Lastly, we
observe that FARD-DFS-ACC has achieved the least std, which is
0.51 %. Again, this is an indicator of a better estimation of the per-
formance of the approach.
12
5.4.4. Results of D4-30 dataset
The results of comparing FARD-DFS with other methods for the

D4-30 dataset are presented in Table 8. It is found that FARD-DFS-
IM and FARD-DFS-ACC obtain the best mean and maximum accu-
racy with values of 98.37 % and 99.01 %, respectively. Similarly, the
best mean and maximum achieved F1-score are 98.42 % and
99.10 % for FARD-DFS-IM and FARD-DFS-ACC, respectively. K. Liu
et al., (2021) has provided a higher precision; however, the recall
was relatively low 95.63 % for mean. On the hand, Tariq et al.,
(2021) has accomplished a higher mean recall of 99.99 %; however,
the precision was relatively low, 93.32 %. This shows that FARD-
DFS was generally superior to both K. Liu et al., (2021) and Tariq
et al., (2021) from two perspectives of positive and negative pre-
dictions. Lastly, the minimum std for accuracy is observed at
FARD-DFS-ACC, which is 0.48 %. This is an indicator of more
expected performance. Another observation that can be made from
this dataset results and the previous ones is that the accuracy was
higher than recall in general. This is a common observation when
the dataset contains more negative samples than positive ones.
This leads to higher accuracy than recall because the model tends
to predict negative samples which is not captured by the recall.
5.4.5. Features and memory reduction
The percentage of memory reduction measures the effective-

ness of feature selection. In order to measure memory reduction,
we take the percentage of deselected features as an indicator of
memory reduction. This is given for two datasets, namely, the
one with the highest number of features, i.e.,167, which is D2-
167, and the second one with the minimum number of features,
i.e., 30, which is D3-30. For the memory reduction in the D2-167
dataset, the results are presented in Table 9. The results show that
the highest reduction has occurred for FARD-DFS-ALC, ranging
from 65 % to 49 % within all chunks. This indicates that our meth-
ods are most effective than the method that used in the work of
Mokbal et al., (2021) with same dataset that reduced the memory
statically by 60 %, thanks to using hybrid approach that consists of
two most popular feature selection approaches are Information
Gain (IG) integrated with the Sequential Backward Selection
method (SBS). For the memory reduction in D3-30, the results
are introduced in Table 10. As can be seen, the maximum memory
reduction is obtained by FARD-DFS-ACC, with the percentage rang-
ing from 67 % to 33 % in all chunks. Whilst both Tariq et al., (2021)
and Zhou & Wang, (2019) used the same dataset and selected
entire features based on the knowledge and without any memory
reduction attempts.

For more elaboration, we present a comparison between the
methods in terms of the number of selected features for D2-167
and D3-30 datasets in Fig. 6. It is confirmed that ALC has accom-
plished the least number of selected features for every chunk with
respect to D2-167. Conversely, ACC has accomplished the least
number of selected features in almost chunks of data stream with
respect to D3-30, except in 1st, 3rd, and 7th chunks, where ALC has



Fig. 5. Time series virtualization results of our developed FARD-DFS in terms of accuracy, precision, recall, and f1-measure metrics, by using D2-167 datasets.

Table 5
Numerical comparison of our developed FARD-DFS and its comparison with Tariq et al., (2021) and K. Liu et al., (2021) by using D1-66 dataset.

Methods Name Accuracy Precision Recall F1-measure

Mean Max Std Mean Max Std Mean Max Std Mean Max Std

FARD-DFS-ACC 99.42 % 99.82 % 0.57 % 86.04 % 96.77 % 16.89 % 85.21 % 97.22 % 22.45 % 85.27 % 97.00 % 20.23 %
FARD-DFS-ALC 99.06 % 99.82 % 1.13 % 85.03 % 95.00 % 12.09 % 81.36 % 95.00 % 16.70 % 82.98 % 94.74 % 14.32 %
FARD-DFS-IM 99.59 % 100 % 0.44 % 89.91 % 100 % 15.40 % 88.50 % 100 % 9.62 % 88.62 100 % 11.31 %
FARD-DFS OA-OT 99.52 % 99.91 % 0.45 % 89.79 % 100 % 7.59 % 91.90 % 100 % 7.30 % 90.75 % 97.44 % 6.79 %
K. Liu et al., (2021) 94.88 % 98.30 % 2.75 % 96.58 % 99.85 % 3.91 % 84.69 % 93.58 % 6.67 % 90.20 % 96.61 % 5.44 %
Tariq et al., (2021) 87.49 % 94.80 % 9.57 % 84.58 % 94.40 % 19.02 % 90.44 % 97.86 % 7.33 % 85.94 % 94.63 % 14.09 %

Table 6
Numerical comparison of our developed FARD-DFS and its comparison with Tariq et al., (2021) and K. Liu et al., (2021) by using D2-167 dataset.

Methods Name Accuracy Precision Recall F1-measure

Mean Max Std Mean Max Std Mean Max Std Mean Max Std

FARD-DFS-ACC 97.06 % 98.27 % 0.92 % 94.68 % 96.58 % 1.73 % 94.80 % 97.09 % 1.67 % 94.78 % 96.83 % 1.63 %
FARD-DFS-ALC 96.64 % 98.67 % 2.81 % 94.00 % 97.72 % 4.86 % 93.99 % 97.57 % 5.12 % 93.99 % 97.53 % 4.98 %
FARD-DFS-IM 96.99 % 98.38 % 1.22 % 94.77 % 97.19 % 2.26 % 94.39 % 97.12 % 2.37 % 94.58 % 97.05 % 2.23 %
FARD-DFS OA-OT 97.66 % 98.81 % 0.77 % 95.63 % 98.16 % 1.37 % 96.00 % 97.70 % 1.57 % 95.81 % 97.84 % 1.34 %
K. Liu et al., (2021) 95.56 % 97.01 % 0.84 % 99.36 % 99.85 % 0.39 % 84.67 % 89.57 % 2.83 % 91.41 % 94.30 % 1.67 %
Tariq et al., (2021) 87.19 % 95.38 % 13.21 % 91.99 % 95.93 % 1.86 % 87.80 % 99.54 % 16.55 % 88.93 % 95.20 % 9.38 %
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selected the least number of features in the earlier chunks. This
confirms the results of memory reduction provided earlier.

5.5. Overall discussion

We present a comparative analysis of the mean and max accu-
racy for all methods in Table 11. The results provide that majority
of values of FARD-DFS are superior over the benchmarks K. Liu
et al., (2021) and Tariq et al., (2021). Another observation is that
FARD-DFS OA-OT is more superior when the number of features
is high compared with FARD-DFS-ACC, which has behaved better
for a low number of features around 30, while FARD-DFS-IM has
behaved better with a medium number of features around 66. In
addition, we find that both K. Liu et al., (2021) and Tariq et al.,
(2021) have a degradation in the performance when the number
13
of features increases, which means less scalability. This can be
interpreted by the powerfulness of the reward calculation and dis-
tribution in FARD-DFS. Furthermore, the dynamicity handling of
FARD-DFS is consistent and promising when it is used against
the evolving nature of XSS attacks in an incremental or stream
learning manner.

As an assessment step for demonstrating the statistical signifi-
cance of our proposed FARD-DFS approaches’ results compared to
benchmark methods, we conducted some statistical significance
tests. Firstly, we applied a t-test mechanism on the accuracy and
F1-measure results of the D2-167 dataset for each method in all
nine chunks compared with K. Liu et al., (2021) and Tariq et al.,
(2021), as shown in Table 12. Observing the table, we find that a
statistical significance with a confidence level of more than 90 %
has been achieved to support the superiority of our proposed



Table 7
Numerical comparison of our developed FARD-DFS and its comparison with Tariq et al., (2021) and K. Liu et al., (2021) by using D3-30 dataset.

Methods Name Accuracy Precision Recall F1-measure

Mean Max Std Mean Max Std Mean Max Std Mean Max Std

FARD-DFS-ACC 98.28 % 99.00 % 0.51 % 98.53 % 100 % 1.64 % 96.29 % 98.65 % 1.82 % 97.38 % 98.67 % 0.93 %
FARD-DFS-ALC 98.00 % 99.50 % 1.12 % 98.95 % 100 % 2.08 % 95.13 % 98.59 % 2.32 % 96.98 % 99.29 % 1.69 %
FARD-DFS-IM 97.50 % 99.00 % 1.48 % 98.36 % 100 % 1.89 % 94.32 % 97.33 % 2.66 % 96.27 % 98.65 % 2.03 %
FARD-DFS OA-OT 97.83 % 99.50 % 3.72 % 99.77 % 100 % 0.68 % 93.90 % 98.64 % 9.97 % 96.51 % 99.32 % 6.24 %
K. Liu et al., (2021) 97.00 % 100 % 1.41 % 98.32 % 100 % 3.33 % 92.59 % 100 % 3.14 % 95.32 % 100 % 2.32 %
Tariq et al., (2021) 93.48 % 98.57 % 5.77 % 86.98 % 97.25 % 11.55 % 99.97 % 100 % 0.05 % 92.63 % 98.55 % 7.16 %

Table 8
Numerical comparison of our developed FARD-DFS approaches and its comparison with Tariq et al., (2021) and K. Liu et al., (2021) by using D4-30 dataset.

Methods Name Accuracy Precision Recall F1-measure

Mean Max Std Mean Max Std Mean Max Std Mean Max Std

FARD-DFS-ACC 98.29 % 99.01 % 0.48 % 99.52 % 100 % 0.47 % 97.20 % 98.36 % 0.83 % 98.35 % 99.10 % 0.47 %
FARD-DFS-ALC 96.39 % 98.74 % 2.97 % 99.13 % 100 % 0.91 % 93.95 % 97.86 % 5.71 % 96.38 % 98.85 % 3.18 %
FARD-DFS-IM 98.37 % 98.98 % 0.49 % 99.57 % 100 % 0.60 % 97.31 % 98.29 % 0.63 % 98.42 % 99.06 % 0.47 %
FARD-DFS OA-OT 97.98 % 99.06 % 0.84 % 99.43 % 100 % 0.69 % 96.70 % 98.39 % 1.74 % 98.04 % 99.09 % 0.86 %
K. Liu et al., (2021) 97.36 % 98.27 % 0.58 % 99.32 % 100 % 0.73 % 95.63 % 98.00 % 1.49 % 97.43 % 98.42 % 0.57 %
Tariq et al., (2021) 96.66 % 97.92 % 0.82 % 93.32 % 95.85 % 1.64 % 99.99 % 100 % 0.01 % 96.53 % 97.87 % 0.88 %

Table 9
Percent of feature reduction of the FARD-DFS methods in comparison with Mokbal et al., (2021).

Methods Name 1st Chunk 2nd Chunk 3rd Chunk 4th Chunk 5th Chunk 6th Chunk 7th Chunk 8th Chunk 9th Chunk

FARD-DFS-ACC 50 % 54 % 46 % 58 % 46 % 50 % 46 % 46 % 49 %
FARD-DFS-ALC 53 % 59 % 49 % 65 % 62 % 51 % 64 % 51 % 56 %
FARD-DFS-IM 50 % 53 % 40 % 59 % 43 % 40 % 60 % 50 % 38 %
FARD-DFS OA-OT 35 % 44 % 39 % 41 % 49 % 35 % 44 % 39 % 44 %
Mokbal et al., (2021) The memory was reduced statically by 60 %

Table 10
Percent of feature reduction of the FARD-DFS methods in comparison with Tariq et al., (2021) and Zhou & Wang, (2019).

Methods Name 1st Chunk 2nd Chunk 3rd Chunk 4th Chunk 5th Chunk 6th Chunk 7th Chunk 8th Chunk 9th Chunk

FARD-DFS-ACC 53 % 67 % 57 % 60 % 53 % 63 % 47 % 33 % 67 %
FARD-DFS-ALC 57 % 30 % 63 % 53 % 37 % 30 % 60 % 40 % 30 %
FARD-DFS-IM 40 % 57 % 53 % 27 % 27 % 50 % 23 % 60 % 47 %
FARD-DFS OA-OT 43 % 27 % 37 % 50 % 23 % 27 % 33 % 30 % 73 %
Tariq et al., (2021) No memory/feature reduction was implemented 0 %
Zhou & Wang, (2019)

Fig. 6. Number of the selected features over time by using FARD-DFS methods.
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approaches over both K. Liu et al., (2021) and Tariq et al., (2021) for
almost all variants of our approach regarding both accuracy and
F1-measure. In another observation, we found that all variants
14
were superior to Tariq et al., (2021) with respect to accuracy with
confidence levels of 0.0518, 0.0639, 0.0811, and 0.0445 of p-values
for ACC, ALC, IM, and OA-OT, respectively. Furthermore, we find



Table 11
Overall accuracy results of the methods with respect to different feature size datasets.

Methods Name D1-66 dataset D2-167 dataset D3-30 dataset D4-30 dataset

Mean Max Mean Max Mean Max Mean Max

FARD-DFS-ACC 99.42 % 99.82 % 97.06 % 98.27 % 98.28 % 99.00 % 98.29 % 99.01 %
FARD-DFS-ALC 99.06 % 99.82 % 96.64 % 98.67 % 98.00 % 99.50 % 96.39 % 98.74 %
FARD-DFS-IM 99.59 % 100 % 96.99 % 98.38 % 97.50 % 99.00 % 98.37 % 98.98 %
FARD-DFS OA-OT 99.52 % 99.91 % 97.66 % 98.81 % 97.83 % 99.50 % 97.98 % 99.06 %
K. Liu et al., (2021) 94.88 % 98.30 % 95.56 % 97.01 % 97.00 % 100 % 97.36 % 98.27 %
Tariq et al., (2021) 87.49 % 94.80 % 87.19 % 95.38 % 93.48 % 98.57 % 96.66 % 97.92 %

Table 12
t-test statistical significance testing of the accuracy and F1-measure results in comparison with benchmarks methods.

Methods Name t-test

Accuracy F1-measure

K. Liu et al., (2021) Tariq et al., (2021) K. Liu et al., (2021) Tariq et al., (2021)

FARD-DFS-ACC 0.0152 0.0518 0.0075 0.0847
FARD-DFS-ALC 0.0238 0.0639 0.0105 0.1378
FARD-DFS-IM 0.1806 0.0811 0.0726 0.2335
FARD-DFS OA-OT 0.0001 0.0445 0.0001 0.0581
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that each of ACC, IM, and OA-OT were superior over K. Liu et al.,
(2021) for both accuracy and F-measure with p-values of 0.0152,
0.0238 and 0.0001, respectively; and 0.0075, 0.0105, 0.0726 and
0.0001 for F1-measure of all suggested variants respectively. Sec-
ondly, we performed a Shapiro-Wilk test on the accuracy rates of
the same dataset; the obtained p-values were 0.3944, 0.0037,
0.2524, 0.9999, 0.9115, and 0.002036 for the ACC, ALC, IM, OA-
OT, K. Liu et al., (2021), and Tariq et al., (2021), respectively. This
shows that the ALC and Tariq et al., (2021) are statistically more
significant than other methods. Finally, in case the results are not
normally distributed, we also applied the Friedman test as a non-
parametric measure for calculating the statistical significance.
Such testing method is based on a ranking mechanism instead of
the average, since in some cases, the average is equal; thus, this
method can handle this issue. The results of the Friedman test
showed a significant efficiency of the accuracy of all our methods
with compared approaches R2

j ¼ 21:89; p < :0001. According to
previous findings, we can conclude that the proposed approaches
are statistically more significant performance than other compared
methods.
6. Conclusion and future works

This article has provided a dynamic feature selection in the
domain of XSS detection by considering incremental learning and
enabling knowledge updates for both feature selection and classi-
fication simultaneously. The proposed method can be described
as the first feature drift-aware XSS detection algorithm. It includes
a DQN-MAFS as a novel framework for multi-agent dynamic fea-
ture selection using RL, including several components. The core
contribution of the article is a sub-model for reward distribution
named fair agent reward distribution based dynamic feature selec-
tion FARD-DFS. The latter provides four reward distribution tech-
niques: accumulative contribution, alternative contribution,
impurity based, and one action at one time. The proposed FARD-
DFS approaches are compared with state-of-the-art algorithms;
namely, the work of K. Liu et al., (2021) which also provides
multi-agent based feature selection, and the work of Tariq et al.,
(2021) which provides and adaptive XSS detection using feature
selection based on genetic and reinforcement learning. The results
showed the superiority of FARD-DFS over the benchmarks in terms
of the majority of metrics in general and with increasing the num-
15
ber of features in particular. Future work is to explore the incorpo-
ration of FARD-DFS with various types of XSS feature extraction in
incremental learning. Another future work is to test our model in a
federated learning scenario for XSS detection.
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