

UNIVERSITI PUTRA MALAYSIA

THE DEVELOPMENT OF AN ALGORITHM TO DETERMINE AXIAL CAPACITY OF PILES FROM SPT N-VALUES

JASMIN A/L AMBROSE

FK 2000 56

THE DEVELOPMENT OF AN ALGORITHM TO DETERMINE AXIAL CAPACITY OF PILES FROM SPT N-VALUES

By
JASMIN A/L AMBROSE

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Engineering Universiti Putra Malaysia

November 2000

To God, Appa, Amma, Anan, Tangai, and Abhe.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

THE DEVELOPMENT OF AN ALGORITHM TO DETERMINE **AXIAL CAPACITY OF PILES FROM SPT N-VALUES**

By

JASMIN AMBROSE

November 2000

Chairman: Dr. Rosely Ab.Malik

Faculty:

Engineering

An algorithm was developed to determine axial capacity of piles in sand and clay. The standard static formulae to determine pile capacity in clay were selected (α -API, λ , SEMP and RAND) and the calculated capacities were calibrated using measured results to produce prediction formulae. For capacity prediction in sand, comparison of results using other methods (Davisson and Chin's formulae) were selected and recalibrated according to the iterative technique (IT). The combined calibrated formulae (The Algorithm) were later tested using five static loading test results. The comparison between measured and predicted capacities was conducted using standard deviation values to determine the amount of error in the prediction.

Final analysis showed that a combination of capacity prediction formulae calibrated from Davisson's failure criterion for piles in

sand and America Petroleum Institute formula for piles in clay, [D]+[API], compared to measured capacity from Butler & Hoy failure criterion was the most consistent algorithm. Another comparison between measured capacity from Pile Dynamic Analyzer (PDA), predicted capacity using [D]+[API] and calculated capacities from iterative technique for piles in sand and clay [IT]+[IT] was conducted. Results indicate that [IT]+[IT] is more consistent with PDA analyzer results than [D]+[API] results.

In the search to determine a consistent yet suitable and advanced method of determining pile capacity, an iterative technique was also developed whereby IT has long been used in numerical analysis for microcomputers (engineering software). The developed IT was used for all cases of algorithm testing. It is speculated that better correlation values can be obtained if more loading test data are available during the course of this study.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

MEMBENTUK SUATU ALGORITMA UNTUK MENENTUKAN BEBANAN CERUCUK MENEGAK MENGGUNAKAN NILAI SPT-N

Oleh

JASMIN AMBROSE

November 2000

Pengerusi: Dr. Rosely Ab.Malik

Fakulti:

Keiuruteraan

Suatu algoritma telah diwujudkan untuk menentukan beban menegak cerucuk tertanam dalam tanah pasir dan tanah liat. Formula static yang biasa digunakan untuk menentukan beban menegak yang telah dipilih $(\alpha$ -API, λ , SEMP dan RAND) dan beban menegak yang dikira telah dibetulkan menggunakan data dari beban menegak yang diukur untuk menentukan formula menganggar beban menegak. Untuk menentukan beban menegak cerucuk didalam pasir, data yang telah dibetulkan oleh penulis lain telah dianalisa semula mengikut kaedah iterasi, IT. Kombinasi formula yang telah diubahsuai telah diuji menggunakan data lima ujian bebanan statik. Perbandingan telah dijalankan untuk menentukan tahap deviasi formula yang dibetulkan daripada nilai yang diukur.

Analisa terhadap data menggunakan formula yang dihasilkan dari criteria kegagalan Davisson untuk cerucuk dalam tanah pasir dan

formula yang dihasilkan oleh American Petroleum Institute untuk cerucuk dalam tanah liat, [D]+[API], dibandingkan dengan data ujian menggunakan criteria kegagalan Butler & Hoy menunjukkan bahawa kedua-dua kombinasi perbandingan ini adalah yang paling sesuai untuk ujian bebanan statik. Kajian juga dijalankan terhadap data bebanan menegak dari alat PDA dengan bebanan menegak daripada [D]+[API] dan [IT]+[IT]. Didapati bahawa [IT]+[IT] adalah lebih sesuai digunakan untuk menganggar bebanan menegak yang dibandingkan dengan bebanan menegak PDA.

Adalah dijangka bahawa keupayaan menegak cerucuk dapat diramal dengan lebih baik jika lebih banyak data ujian cerucuk dapat dikumpulkan dalam jangkamasa kajian ini dijalankan.

AKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Rosely Ab.Malik for constantly guiding me throughout the course of study. His guidance and rationalization during the whole research was an important element in completion of this thesis. I am also grateful for the level of tolerance and understanding that he had displayed while I was completing this write—up. I would also like to thank En. Husaini Omar who always gave me advice, motivation and support to complete my studies. To En. Shukri and En. Azlan who first started my interest in the field of Geotechnical engineering, your efforts are deeply appreciated. Finally my appreciation is also extended to En. Zainuddin, Dr. Mahgoub, En. Razali, and Chong Kau Ping for making my studies here a worthwhile and interesting one.

I would like to extend my deepest gratitude to the Ministry of Science Technology and Environment and the cooperation by the staff of GeoEnTech Sdn. Bhd. who made this study possible.

TABLE OF CONTENTS

		Page
ABSTRACT ABSTRAK . ACKNOWLI APPROVAL DECLARAT LIST OF TA LIST OF FIG	EDGEMENTS. SHEETS. TION FORM. BLES. GURES. DTATIONS.	ii v vii viii x xvii xviii
CHAPTER '	1 INTRODUCTION	
1	Introduction	1
1.1	Objectives	3
1.2	Scope and Limitation	4
1.3	Background	6
1.4	Summary	8
CHAPTER 2	2 LITERATURE REVIEW	
2	Categories of Analysis and Design	9
2.1	Formulation of a New Method of Analysis	10
2.2	Formulae Involved for Calculated Pile Capacities in Clay	14
2.2.1	Semple & Rigden Method	15
2.2.2	α – Method (RP 2A)	17
2 2 3	Randolph Method	18

2.2.4	λ – Method	21
2.3	Formulae for the Determination of Calculated Pile Capacity in Sand	22
2.4	Predicted Pile Capacity	23
2.5	Some Characteristics of Pile Capacity Behavior	24
2.5.1	The Critical Depth Phenomenon	25
2.5.2	Residual Driving Stress	26
2.5.3	Toe and Shaft Capacities – Prove of Non Limiting Capacity	27
2.5.4	Some Aspects of Analysis of Driven Concrete Pile	28
2.5.5	Shaft Resistance: A Total Stress Approach in Clay	29
2.5.6	Shaft Resistance: Simplified Effective Stress Approach in Clay	31
2.5.7	Capacity Prediction for Layered Soil	33
2.6	Skin Friction on Concrete	34
2.6.1	Cohesive Granular Soil	35
2.6.2	f₀ and f₀ on Smooth Surfaced Concrete	37
2.7	Static Load Test	38
2.7.1	Interpretation of Failure Load	40
2.7.2	Choice of Method of Analysis	41
2.7.3	Cyclic Loading	41
2.7.4	Davisson Failure Criterion	43
2.7.5	Chin Failure Criterion	44
2.7.6	Butler & Hoy Failure Criterion	44

2.7.7	Fuller and Hoy Failure Criterion	45
2.8	Summary	48
CHAPTER 3	METHODOLOGY	
3	Capacity Prediction Technique in Sand Using IT (Development of a New Method)	50
3.1	N-values and IT	51
3.1.1	Stepwise Procedures for IT	52
3.2	Earth Pressure Coefficient	58
3.2.1	Modified Bearing Capacity Factor	59
3.3	Calculated Pile Capacity in Sand, Qc	59
3.3.1	Correction Factors for Capacity Prediction in Sand	60
3.3.2	Bias Factor, F _{bs} , in Sand	62
3.3.3	Development of the Bias Factor, F _{bs}	63
3.3.4	Predicted Shaft and Toe Capacity	65
3.4	Capacity Prediction in Clay	66
3.4.1	Correction Factor between N-values and c _u in Cohesive Soil	68
3.4.2	Unit Weight of Cohesive Soil	69
3.4.3	Normalised Stress Factor, $c_{\text{u}}/\sigma_{\text{v}}$ ' in Cohesive Soil	70
3.4.4	Normalized Shape Factor (L _e /d) in Cohesive Soil	71
3.4.5	Derivation of the Normalized Shape Factor, L _e d	73
3.4.6	9 in Cohesive Soil	75
3.4.7	Compression Piles	77

3.5	Summary	78
CHAPTER 4	RELIABILITY CONCEPT	
4	Reliability Method in Geotechnical Engineering	79
4.1	Previous Study Using Bayesian Theorem	80
4.2	Bayes Theorem	81
4.3	Factor of Safety	82
4.4	Central Factor of Safety	83
4.5	Reliability Index, β , and Safety Measure	84
4.6	Relationship between Q_m , Q_p , Q_a and β	89
4.7	Probability of Failure	92
4.8	Summary	93
CHAPTER 5	ALGORITHM DEVELOPMENT	
5	Stage 1: Calibration and Data Collection	94
5.1	Stage 2: Capacity Prediction, SF and β	96
5.2	Stage 3: Allowable Capacity Determination	97
5.3	Calibration Data	98
5.4	Derivation of the Shaft Correction Factor, F _{sc} , for Piles in Clay	99
5.5	Bias Factor, F_{bc} , and Site Variability, $s_c\dots$	105
5.6	Predicted Capacity for Piles in Clay Layer	109
5.7	Determination of Allowable Capacity Using Chart	111
5.8	Summary	112

CHAPTER 6 TESTING OF THE ALGORITHM

6	Algorithm Testing for Measured Capacities Obtained from Static Load Test	113
6.1	Data Collection and Procedures for Algorithm Testing	114
6.2	Data Selection Criteria for Alaorithm Testina	115
6.3	Deviation of Prediction	116
6.4	Most Consistent Approach for Davisson Failure Criterion	119
6.5	Most Consistent Approach for Chin Failure Criterion	120
6.6	Most Consistent Approach for Fuller and Hov Failure Criterion	121
6.7	Most Consistent Approach for Butler and Hovs Failure Criterion	123
6.8	Determination of Most Consistent Formula using IT with PDA Analyser Measured Results	124
6.9	Suggested Deterministic Safety Factors	126
6.10	Comparison with Other Predictor's Model	127
6.11	Comparison with Other Predictors at the Northwestern Pile Prediction Symposium	129
6.12	Allowable Capacity according to Reliability Approach	131
6.13	Determination of Allowable Capacity According to Deterministic Approach	134
6.14	Summary	136

CHAPTER 7

ALGORITHI	M FOR COMPUTER PROGRAMMING	137
CHAPTER 8	}	
SUMMARY,	CONCLUSION AND RECOMMENDATION	
8	Summary	146
8.1	Recommendations	148
REFERENC	ES	150
APPENDICE	:S	
1A	Data for F _{bs} Development	160
2A	Data for s _c , F _{sc} and F _{bc} Development	161
3A	Data for Testing of the Algorithm	169
4A	Q_{m} for the Northwestern Pile Prediction Symposium	174
5A	Example of Spreadsheet Developed for Capacity Prediction	175
VITA		177

List of Tables

Table		Page
2.1	Categories of Analysis and Design Procedures (Poulos, 1989)	11
2.2	Categorization of Method for Evaluation of Axial Pile Capacity (Poulos, 1989)	13
2.3	Proposed Coefficient of Skin Friction between Soil and Construction Materials (Potyondy, 1961)	35
3.1	Shaft and Toe Correction Factor, F_{ss} and F_{ts} , for Pile Capacity Prediction in Sand (Ab.Malik, 1992)	61
3.2	N-Cu Correlation Equations and Conditions for Application	68
4.1	Reliability index and its P _f	92
5.1	Shaft Correction Factors, F _{sc} , for Piles in Clay	105
5.2	Bias Factors, F _{bc} , and Site Variability, s _c , for Piles in Clay	108

List of Figures

Figure		Page
2.1(a)	\mathbf{f}_{ullet} on Smooth Surfaced Concrete for Non-Cohesive Soil	37
2.1(b)	f _c on Smooth Surfaced Concrete for Cohesive Soil	37
2.2	Load vs Settlement chart	42
2.3(a)	Measured Capacity for Davisson Method	46
2.3(b)	Measured Capacity for Chin Method	46
2.3(c)	Measured Capacity for Fuller and Hoy Method	47
2.3(d)	Measured Capacity for Butler and Hoy Method	47
2.4	Capacity Estimates of [C], [B], [F] & [D]	48
3.1	IT LOOP	57
3.2	F _{bs[C]} derived from Chin Criterion	63
3.3	F _{bs[D]} derived from Davisson Criterion	64
3.4	Capacity ratio (Q _{cs} /Q _m correlated with c _u /σ _{ov} ')	71
3.5	Capacity Ratios (Q _m /Q _c) vs L _e /d	74
3.6	Simulated Result of c _υ /σ _ν ' vs L _e /d	76
3.7	Capacity Ratios correlated with 1/9	76
3.8	Capacity Ratios Correlated with 9	77
4.1	Failure State, Limiting State and Safe State	86

Figure		Page
4.2	Failure State, Limiting State and Safe State in a Reduced Coordinate System	88
4.3	Graphical Representation of β for a Normal Distribution of SM (Bourguard, 1987; Oboni, 1989)	88
5.1	Calibration of the Algorithm	95
5.2	The Algorithm	100
5.3(a)	F _{sc} for API Method	102
5.3(b)	F _{sc} for LAMBDA Method	103
5.3(c)	F _{sc} for RANDOLPH Method	103
5.3(d)	F _{sc} for SEMPLE & RIGDEN Method	104
5.4(a)	F _{bc} for API Method	106
5.4(b)	F _{bc} for LAMBDA Method	107
5.4(c)	F _{bc} for RANDOLPH Method	107
5.4(d)	F _{bc} for SEMPLE & RIGDEN Method	108
5.5	Design Chart	111

List of Notations

Q_c Calculated axial pile capacity

Q_m Measured axial pile capacity

Q_p Predicted axial pile capacity

Q_a Allowable axial pile capacity

Q_{tm} Measured toe capacity

Q_{sm} Measured shaft capacity

L_e Effective embedded pile length

d Effective pile diameter

c_u Undrained shear strength

 σ_{v} Overburden stress

API Pile capacity analytical formula

developed by the American Petroleum Institute

RAND Pile capacity analytical formula developed by Randolph

S&R Pile capacity analytical formula developed by Semple and Rigden

λ Pile capacity analytical formula in clay developed by Focth

and Vijaygerjaya and later corrected by Kraft

Q_{cs} Calculated pile shaft capacity in clay layer

F_{ss} Shaft correlation factor for piles in sand

F_{ts} Toe correlation factor for piles in sand

F_{bs} Bias factor for piles in sand

F_{sc} Shaft correlation factor for piles in clay

F_{bc} Bias factor for piles in clay

Site variability factor for piles in sand Se Site variability factor for piles in clay Sc Site variability factor for piles in layered soil Ssc в Dimensionless factor N **SPT N-Values** No Bearing capacity factor Tip bearing capacity q_b St Ratio of radial effective stress to end bearing pressure in vicinity of the pile φ, Effective angle of shearing resistance Effective unit weight of soil $\gamma_{\rm D}$ Total unit weight of soil γ_n Unit weight of water γ_{w} σ'_{v} Effective overburden stress Unit shaft friction capacity τ_s Interpretation method of loading test using [D]Davisson's failure criterion [C] Interpretation method of loading test using Chin's failure criterion Calculated pile capacity using Iterative Technique Pile prediction formula for piles in clay layer derived from API method [RAND] Pile prediction formula for piles in clay layer derived from Randolph's method [S&R] Pile prediction formula for piles in clay layer derived from Semple and Rigden's method

[λ] Pile prediction formula for piles in clay layer derived from λ method

[X]+[Y] Combination of pile prediction formula in sand derived from

X and pile prediction formula in clay derived from Y

[X]+[Y]+[Z] [X]+[Y] Prediction is compared with [Z] failure criterion

[X] [D], [C] or [IT]

[Y] [API, [RAND], [S&R] and [λ]

[Z] Q_{mfPDA1} , Q_{mfD1} , Q_{mfC1} , Q_{mfF1} or Q_{mfB1}

Q_{mIPDA1} Measured capacity from PDA test

Q_{m[D]} Measured capacity using Davisson failure criterion

Q_{mlC1} Measured capacity using Chin failure criterion

Q_{mfFi} Measured capacity using Fuller and Hoy failure criterion

Q_{mfB1} Measured capacity using Butler and Hoy failure criterion

 Q_m/Q_p

Or Capacity ratios

 Q_p/Q_c

σ^{*} Interpreted standard deviation

CHAPTER 1

INTRODUCTION

1 Introduction

Piled foundation was previously differentiated from shallow foundation using the ratio of embedded pile length to pile diameter (L_e/d>4). This method of differentiating deep and shallow foundation has long been used for carrying the superstructure load into the soil stratum (Berezantzev, 1965). Pile design is usually based on the requirement that the pile and the soil surrounding it must be able to withstand the maximum load, which can occur during the life span of the structure, (Meyerhof, 1970). The analysis involved is usually carried out by introducing a safety factor on the pile capacity, and this is known as **deterministic** design. However, the safety factors are arbitrarily chosen.

For this reason **reliability** methods were introduced into the capacity analysis procedure. Reliability technique is recognized as well as suited for pile capacity studies since piles are one of the few civil engineering materials that are routinely tested to failure, (Bourguard, 1987). Reliability methods are nowadays recognized as a powerful tool in geotechnical engineering. The Bayesian rule, which is the principal reliability method used

in this study, allows prior probability distribution to be upgraded. The reliability method has been used extensively in geotechnical engineering related problems for at least the past two decades. Previously Ab.Malik, (1992), has developed an algorithm for capacity determination in sand, whereby a simple static formula and reliability method (Bayesian-theorem) was applied to rationally determine the allowable capacity. This was probably a premier study attempting to associate deterministic and reliability method in the analysis of axial pile capacity.

A large portion of this study will concentrate on the prediction of pile axial capacity. Demand for economic and fast track construction makes the prediction of pile capacity and performance before piles are constructed a very attractive alternative (Thurman & D'Applonia, 1965). Capacity prediction has come a long way since Mr. Wellington in 1888, who claimed that the Engineering News (EN) formula which is based on dynamic equation, to be the safest and none the better (..."no better or safer formula than this for the safe working load for piles under all ordinary conditions"...) than this formula (Komornik, 1971). However, it is well known that since the EN formula, there have been many computational methods developed for the determination of pile capacity. This is mainly contributed by the increased knowledge on the pile soil behavior and the increased usage of computers. As stated by Terzaghi in 1960 "...our theories will be superseded by better ones..."

