DISTRIBUTION AND CHARACTERIZATION OF DISEASES OF DRAGON FRUIT (Hylocereus SPP.) IN PENINSULAR MALAYSIA

MASANTO MASYAHIT
FP 2010 1
DISTRIBUTION AND CHARACTERIZATION OF DISEASES OF DRAGON FRUIT (Hylocereus SPP.) IN PENINSULAR MALAYSIA

By

MASANTO MASYAHIT

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2010
Dedication

“I dedicated this thesis to my beloved families

As a written evidence which

Proved that I had been able to do the useful thing

Because of

Their struggle obstinacy

Which wishful me

Keep going to

Reach my dream “
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DISTRIBUTION AND CHARACTERIZATION OF DISEASES OF DRAGON FRUIT (Hylocereus spp.) IN PENINSULAR MALAYSIA

By

MASANTO MASYAHIT

October 2010

Chair : Kamaruzaman Sijam, PhD
Faculty : Agriculture

Field surveys were conducted from December 2007 to August 2008 at 43 dragon fruit-orchards in Peninsular Malaysia with 50 posts of sampled plants per location. The results revealed that among recorded diseases, anthracnose, brown spot and necrotic spot were encountered in almost all sampled states with the range of frequency around 50 to 100%; whereas fruit brown rot was only found in Negeri Sembilan with frequency of 33.33%. Meanwhile, other diseases such as fruit fungal soft rot, stem end rot and bacterial soft rot occurred in 2, 5 and 6 surveyed states, respectively. Statistical analysis showed that the occurrence of anthracnose and necrotic spot diseases were maximum in Malacca with incidence and severity level around 58.00%; 21.20% and 72.00%; 30.00%, respectively. Meanwhile, the maximum occurrences of bacterial soft rot, brown spot and stem end rot were documented in Johore, Negeri Sembilan and Kelantan with incidence and severity levels of about 17.33%; 4.53%, 94.00%; 25.87%, and 14.00%; 4.20%, respectively. These diseases have strong relationships of incidence and severity with the range of
R² value around 0.8995 to 0.9978. Pearson correlation analysis resulted in the incidence of anthracnose which was significantly correlated with necrotic spot (r value of 0.852 at 0.05 level); whereas bacterial soft rot and brown spot were significantly interrelated with each other at the 0.01 level with r value of 0.515. Similarly, the Pearson coefficient correlation also revealed that bacterial soft rot was negatively correlated with temperature (r value of -0.478 at 0.01 level). The positive correlations were shown by bacterial soft rot and brown spot against altitude with r value of 0.508 and 0.523, respectively at 0.01 level. These diseases were categorized according to the characteristics of symptoms found on diseased plants and group of pathogenic agents. Although a number of bacteria and fungi species could be isolated and identified correspondingly based on their responses to biochemical sources within BiOLOG® Microplate as well as their cultural and morphological characteristics, the pathogenicity test showed that only some (e.g. *Enterobacter cloacae*, *Bipolaris* sp., *Botryosphaeria* sp., *Colletotrichum gloeosporioides*, and *Monilinia* sp.) positively resulted in similar symptoms with diseased plants in the field. In the mean time, the presence of viral infection was successfully detected on young stems with necrotic small mottle or spot symptoms. The spindle-shaped inclusion bodies of filamentous and rod-shaped *Cactus virus X* were observed at 4,000 and 20,000 X magnifications under transmission electronic microscopy (TEM). The findings derived from *in vitro* assays demonstrated that a temperature of 35°C could inhibit the colony diameter of the tested fungi up to around 7.36 mm for *Pestalotiopsis* sp. to 34.63 mm for *Fusarium* sp. during the final incubation period. Although pH 4 might restrict the colony diameter around 43.71 mm for *Botryosphaeria* sp. and 74.87 mm for *Colletotrichum gloeosporioides* on the last day of incubation, no significant effect of all pH levels against *Monilinia* sp. was found.
after 4 days of incubation (DAI). For the effect of salinity, only the colony growth of *Bipolaris* sp. and *Botryosphaeria* sp. was affected by 100 ppm of salinity level up to 57.50 and 68.26 mm in diameter, respectively at 10 DAI; whereas other fungi could grow well under all salinity treatments. Meanwhile, the test carried out for antagonistic bacteria revealed that the ability of *Burkholderia cepacia*, *B. multivorans* and *Pseudomonas aeruginosa* in inhibiting the growth of *Bipolaris* sp., *C. gloeosporioides* and *Pestalotiopsis* sp. fungi was almost maximum at 8 DAI ranging from 61.80 to 85.11%. The effect of the employed bacteria was also found to be maximum against *Fusarium* sp. at 6 DAI with the range of inhibition percentage around 74.79 to 80.67% and this was maximum against *Botryosphaeria* sp. during the final incubation period with the range of 50.18 to 65.63%. The most maximum inhibition was shown by *B. cepacia* against *Monilinia* sp. since the first incubation period. In conclusion, anthracnose, brown spot and necrotic spot were three predominant diseases which have been nationwide found to occur on dragon fruit in Peninsular Malaysia. Statistically, temperature was found to negatively influence the occurrence of bacterial soft rot disease; whereas the altitude was positively correlated with the incidence of bacterial soft rot and brown spot diseases. Some fungal, bacterial and viral plant pathogenic have been proven as the causal agents of these diseases which mostly infected stem and fruit. Under *in vitro* condition, the colony growth of most fungi was affected by the temperature of 35°C, pH 4 and 100 ppm of NaCl concentration; whereas the maximum inhibition ability of antagonistic bacteria against the tested fungi commenced at 2 and 8 DAI. Good agricultural practices can decrease or even prevent some orchards from definite diseases. In addition, proper combination of environmental modification may be useful for the growth of this crop in the fields and its storage life at post harvest preservation. Nevertheless, further
study is required to investigate the probability of disease-resistant species among the
dragon fruits species cultivated in Peninsular Malaysia which are not infected by
certain diseases.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

TABURAN DAN PENCIRIAN PENYAKIT-PENYAKIT PADA BUAH MATA NAGA (Hylocereus SPP.) DI SEMENANJUNG MALAYSIA

Oleh

MASANTO MASYAHIT

Oktober 2009

Pengerusi : Kamaruzaman Sijam, PhD
Fakulti : Pertanian

Tinjauan-tinjauan lapangan dilakukan dari Disember 2007 sehingga Ogos 2008 di 43 ladang penanaman buah mata naga di Semenanjung Malaysia dengan sample yang mempunyai 50 tiang tanaman di setiap lokasi. Dapatan kajian menunjukkan bahawa antraknos, tompok coklat dan bintik nekrotik adalah di antara penyakit-penyakit yang tercatat dan dijumpai di hampir semua negeri pensampelan dengan rentang kekerapan sekitar 50 sehingga 100%; manakala penyakit reput coklat pada buah hanya ditemui di Negeri Sembilan dengan kekerapan 33.33%. Penyakit-penyakit lainnya seperti reput lembik coklat pada buah, reput hujung batang dan reput lembik bakteria masing-masingnya berlaku pada 2, 5 dan 6 negeri-negeri yang ditinjau. Analisis statistikal menunjukkan bahawa kejadian penyakit antraknos dan bintik nekrotik adalah maksima di Melaka dengan taraf kejadian dan keterukan masing-masingnya sekitar 58.00%; 21.20% dan 72.00%; 30.00%. Sementara itu, kejadian maksima penyakit reput lembik bakteria, tompok coklat dan reput hujung batang dicatat di Johor, Negeri Sembilan dan Kelantan dengan taraf kejadian dan keterukan masing-masingnya sekitar 17.33%; 4.53%, 94.00%; 25.87%, dan 14.00%; 4.20%.
Penyakit-penyakit ini mempunyai hubungan yang kuat antara taraf kejadian dan keterukannya dengan nilai R^2 di antara 0.8995 hingga 0.9978. Sementara itu, analisis pertalian Pearson menunjukkan kejadian antraknos yang secara nyata saling berkaitan dengan bintik nekrotik (nilai r 0.852 pada taraf 0.05); manakala penyakit reput lembik bakteria dan tompok coklat didapati berhubung-kait secara terus dengan satu sama yang lain pada taraf 0.01 dengan nilai r 0.515. Koefisien pertalian Pearson juga menyatakan bahawa penyakit reput lembik bakteria berhubung-kait secara negatif dengan suhu (nilai r -0.478 pada taraf 0.01. Hubungan positif yang ditunjukkan oleh penyakit reput lembik bakteria dan tompok coklat terhadap altitud adalah dengan nilai r masing-masingnya 0.508 dan 0.523 pada taraf 0.01. Penyakit-penyakit ini dikategorikan mengikut ciri-ciri gejala pada tanaman yang sakit dan kelompok ejen-ejen patogenik. Walaupun sejumlah spesies bakteria dan kulat dapat diasingkan dan dikenalpasti secara bersesuaian berasaskan kepada sumber-sumber biokimia dalam Microplate BiOLOG® dan ciri-ciri kultural dan morfologinya, ujian patogenisiti menunjukkan bahawa hanya sesetengah daripadanya seperti *Enterobacter cloacae, Bipolaris sp., Botryosphaeria sp., Colletotrichum gloeosporioides,* dan *Monilinia sp.* menghasilkan gejala yang sama secara positif seperti tanaman-tanaman yang sakit di lapangan. Dalam pada itu, kehadiran jangkitan virus juga telah berjaya dikesan pada batang muda dengan pertanda bintik atau tompok kecil nekrotik. Tubuh-tubuh inklusi berbentuk gelendong daripada *Cactus virus X* yang berbentuk filamen dan batang panjang diamati pada pembesaran 4,000 dan 20,000X dibawah mikroskop transmisi elektronik (TEM). Penemuan-penemuan ujian *in vitro* menunjukkan bahawa suhu 35°C dapat menjelaskan garis tengah koloni kulat yang diuji sehingga berkisar pada 7.36 mm bagi *Pestalotiopsis* sp. dan sehingga 34.63 mm bagi *Fusarium* sp. pada jangkamasa pengeraman.
terakhir. Walaupun pH 4 boleh menyekat garis tengah koloni pada kisaran 43.71 mm bagi *Botryosphaeria* sp. dan 74.87 mm bagi *Colletotrichum gloeosporioides* pada hari terakhir pengeraman, tiada kesan nyata daripada semua peringkat pH terhadap *Monilinia* sp. dijumpai daripada semua peringkat pH selepas 4 hari pengeraman (HSP). Untuk kesan paras kandungan garam, hanya pertumbuhan koloni dari *Bipolaris* sp. dan *Botryosphaeria* sp. didapati telah dipengaruhi oleh paras kandungan garam 100 ppm sehingga masing-masing garis tengah koloninya 57.50 dan 68.26 mm pada 10 HSP; sedangkan kulat lainnya mampu tumbuh dengan baik dibawah semua perlakuan paras kandungan garam berkenaan. Ujian bakteria antagonistik menunjukkan bahawa kemampuan *Burkholderia cepacia*, *B. multivorans* dan *Pseudomonas aeruginosa* dalam menjejaskan pertumbuhan kulat *Bipolaris* sp., *C. gloeosporioides* dan *Pestalotiopsis* sp. yang kebanyakannya maksima pada 8 HSP dengan peratusan di antara 61.80 hingga 85.1%. Kesan bakteria-bakteria yang diuji tersebut juga maksima terhadap *Fusarium* sp. pada 6 HSP dengan peratusan penghambatan sekitar 74.79 hingga 80.67% dan ini juga didapati maksima terhadap *Botryosphaeria* sp. pada pengeraman terakhir dengan peratusan sekitar 50.18 hingga 65.63%. Penghambatan yang paling maksima ditunjukkan oleh *B. cepacia* terhadap *Monilinia* sp. sejak jangkamasa pengeraman pertama. Kesimpulannya, antraknos, tompok coklat dan bintik nekrotik ialah tiga penyakit utama yang terjadi pada buah mata naga secara merata di kesemua negeri di Semenanjung Malaysia. Secara statistik, suhu didapati mempengaruhi kejadian penyakit reput lembik bakteria secara negatif; manakala altitud berhubung-kait secara positif dengan kejadian penyakit reput lembik bakteria dan tompok coklat. Kajian juga membuktikan bahawa beberapa kulat, bakteria dan virus patogenik tumbuhan sebagai ejen-ejen penyebab penyakit-penyakit ini yang kebanyakannya
menjangkiti batang dan buah mata naga. Dibawah kondisi in vitro, pertumbuhan koloni kebanyakan kulat dipengaruhi oleh suhu 35°C, pH 4 dan paras kandungan garam 100 ppm; manakala kemampuan penghambatan yang maksima didapati daripada bakteria antagonistik terhadap kulat-kulat yang diuji bermula pada 6 HSP. Oleh itu, amalan-alaman pertanian yang baik boleh menurunkan dan bahkan mencegah penyakit tertentu daripada menyerang sesetengah ladang. Penggabungan pengubahsuaian persekitaran yang tepat juga dapat membantu di dalam pertumbuhan tanaman di lapangan dan jangkama masa penyimpanan buah semasa pengawetan yang dilakukan selepas penuaan. Walau bagaimanapun, kajian lanjut masih diperlukan untuk menyiasat kemungkinan species tahan penyakit atau tidak boleh dijangkiti penyakit-penyakit tertentu di antara semua jenis buah mata naga yang diusahakan di Semenanjung Malaysia.
ACKNOWLEDGEMENTS

Alhamdulillah, I am grateful to Allah for the blessing and the guidance during my life, particularly awarding the special chance to be a postgraduate student under Master of Science program in Universiti Putra Malaysia (UPM). This is the most valuable opportunity to exhaustively study and explore agricultural science as one of the most glorious of His creations.

Exclusively, I would like to express my heartfelt thanks to parents, Mr. Masyahit Arrohman and Mrs. Zuriati Ahek, for their never ending truthful pray and encouragement in my entire life. To my sisters Susana and Nani Lidia as well as my brother Undiyansyah, I would also like to show my greatest gratitude for supporting me and taking care of our parents while I have to make a long distance with them due to continuing my study in overseas. I would also like to address my special thanks to Cintia Anggraini for her support, understanding and endless love.

I would also like to thank Associate Professor Dr. Kamaruzaman Sijam as the chairman of my supervisory committee for his continuous supervision during the period of my graduate study. A lot of new priceless experiences I gained as his supervised master student, either throughout conducting my experiments in plant pathology field at Department of Plant Protection, Faculty of Agriculture, UPM or for the period of my stay in this truly Asia country, Malaysia.

My sincere appreciation also goes to Associate Professor Dr. Yahya Awang as the member of the supervisory committee for his constructive comments for the duration
of my research and thesis writing. I also thankfully acknowledge Mr. Mohd Ghazali Mohd Satar for his assistance in accompanying me doing the surveys as well as in sharing important information pertaining to dragon fruit cultivation in Peninsular Malaysia.

To all lab technicians in Microbiology and Pathology Laboratories under Department of Plant Protection and in Microscopy Unit under Institute of Biological Sciences (IBS), UPM, I would like to extend my acknowledgment for their assistances in conducting my lab researches. My thanks also go to all dragon fruit growers in Peninsular Malaysia for allowing me performing the samplings and collecting samples in their farms as well as for sharing their field-experiences in planting dragon fruit.

Special appreciations are expressed to all my lab mates, Azlan, Farah, Hazwani, Norsazilawati, Roslina, Shokrollah and Sholmaaz for their kind cooperation and friendship. To my bench friends, Mohd Naim, Neni Kartini, Norhayati, Sathiapriya and Yang Jie Yong, I am thankful for their togetherness, either in certain courses or in other occasions.

For their familiarity and encouragement, as the youngest mate, I would like to show my thankful appreciations to my house mates, Bang Saiful Bahri Panjaitan, Mas Muhammad Zukhrufuz Zaman, Mohd Shamzi Mohamed and Ahmad Nafi. Last but not least, my grateful gratitude also goes to all Indonesian students in UPM as well as in other universities who are joined into Indonesian Students Association for their good collaboration in studying and staying in Malaysia.
I certify that a Thesis Examination Committee has met on 14 October 2009 to conduct the final examination of Masa nto Masyahit on his thesis entitled “Distribution and Characterization of Diseases of Dragon Fruit (Hylocereus Spp.) in Peninsular Malaysia” in accordance with Universities and University Colleges Act 1971 and the Constitution of Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Radziah Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Jugah Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Zainal Abidin Mior Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Sepiah Muid, PhD
Associate Professor
Department of Plant Science and Environmental Ecology
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 December 2009
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Kamaruzaman Sijam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Yahya Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 January 2010
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MASANTO MASYAHIT

Date:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE PAGE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION PAGE</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION 1
 1.1 Background 1
 1.2 General Objectives 3
 1.3 Statement of the Problem 4

2 LITERATURE REVIEW 5
 2.1 Dragon Fruit 5
 2.1.1 Origin, Distribution and Classification 5
 2.1.2 Botanical Characteristics 9
 2.1.3 Cytogenetical Characteristics 11
 2.1.4 Ecological Characteristics 11
 2.2 Cultivation of Dragon Fruit 12
 2.2.1 Propagation 12
 2.2.2 Land Preparation 13
 2.2.3 Trellises Construction 13
 2.2.4 Spacing 14
 2.2.5 Training to Trellises 14
 2.2.6 Irrigation 15
 2.2.7 Fertilization 15
 2.2.8 Pruning 16
 2.2.9 Flowering Stimulation 17
 2.2.10 Manual Pollination 17
 2.2.11 Management of Abiotic and Biotic Disorders 18
 2.2.12 Harvesting 21
 2.2.13 Post-harvest Handling 21
 2.3 Commercialization and Marketing 25
 2.4 Uses and Nutritional Content 26
 2.5 Production Cost and Profitability 28
 2.6 Genetic Resources and Breeding Improvement 29
 2.7 Future Prospect 29
 2.8 The Status of Dragon Fruit in Malaysia 30
 2.8.1 Dragon Fruit Cultivation in Malaysia 30
 2.8.2 Researches on Dragon Fruit in Malaysia 33
Pathogens

5.3.5 Statistical Analysis

5.4 Results and Discussion

5.4.1 Effect of Temperature on Colony Growth of Pathogens

5.4.2 Effect of pH on Colony Growth of Pathogens

5.4.3 Effect of Salinity on Colony Growth of Pathogens

5.4.4 Effect of Antagonistic Bacteria on Colony Growth of Pathogens under

5.5 Conclusion

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES

APPENDICES A

APPENDICES B

APPENDICES C

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Dragon fruit-planting areas in several countries</td>
</tr>
<tr>
<td>2.1</td>
<td>Some vernacular names of dragon fruit</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification and characteristics of Hylocereus species according to Britton & Rose (1963)</td>
</tr>
<tr>
<td>2.3</td>
<td>Grading standards for dragon fruits in some producing countries</td>
</tr>
<tr>
<td>2.4</td>
<td>Nutrient values per 100 g of fresh dragon fruit flesh</td>
</tr>
<tr>
<td>2.5</td>
<td>The acreage of dragon fruit growing areas in Malaysia until 2006</td>
</tr>
<tr>
<td>2.6</td>
<td>Grading standards for dragon fruit in Malaysia</td>
</tr>
<tr>
<td>3.1</td>
<td>The occurrence of observed diseases on dragon fruit in surveyed orchards in Peninsular Malaysia</td>
</tr>
<tr>
<td>3.2</td>
<td>The frequency of diseases occurred on surveyed states in Peninsular Malaysia</td>
</tr>
<tr>
<td>3.3</td>
<td>The occurrence of diseases on dragon fruit in different states in Peninsular Malaysia</td>
</tr>
<tr>
<td>3.4</td>
<td>The Pearson correlation among the occurrences of diseases</td>
</tr>
<tr>
<td>3.5</td>
<td>The Pearson correlation of the occurrences of diseases with weather and cultural factors</td>
</tr>
<tr>
<td>4.1</td>
<td>Categorization of disease symptoms</td>
</tr>
<tr>
<td>4.2</td>
<td>Fungi isolated from infected dragon fruit with fungal diseases symptoms</td>
</tr>
<tr>
<td>4.3</td>
<td>Bacteria species isolated from infected dragon fruit</td>
</tr>
<tr>
<td>4.4</td>
<td>Results of in vitro pathogenicity tests of isolated fungi and bacteria</td>
</tr>
<tr>
<td>A.1</td>
<td>Characteristics of surveyed dragon fruit-growing areas in Peninsular Malaysia</td>
</tr>
<tr>
<td>A.2</td>
<td>GPS degree of dragon fruit-growing areas surveyed in Peninsular Malaysia (December 2007 – August 2008)</td>
</tr>
<tr>
<td>A.3</td>
<td>Distribution of isolated bacteria and fungi from surveyed areas in Peninsular Malaysia</td>
</tr>
<tr>
<td>A.4</td>
<td>ANOVA of GLM procedure for incidence of anthracnose disease</td>
</tr>
<tr>
<td>A.5</td>
<td>ANOVA of GLM procedure for severity of anthracnose disease</td>
</tr>
<tr>
<td>A.6</td>
<td>ANOVA of GLM procedure for incidence of bacterial soft rot disease</td>
</tr>
<tr>
<td>A.7</td>
<td>ANOVA of GLM procedure for severity of bacterial soft rot disease</td>
</tr>
<tr>
<td>A.8</td>
<td>ANOVA of GLM procedure for incidence of brown spot disease</td>
</tr>
<tr>
<td>A.9</td>
<td>ANOVA of GLM procedure for severity of brown spot disease</td>
</tr>
<tr>
<td>A.10</td>
<td>ANOVA of GLM procedure for incidence of fruit brown rot disease</td>
</tr>
<tr>
<td>A.11</td>
<td>ANOVA of GLM procedure for severity of fruit brown rot disease</td>
</tr>
<tr>
<td>A.12</td>
<td>ANOVA of GLM procedure for incidence of fruit fungal soft rot disease</td>
</tr>
<tr>
<td>A.13</td>
<td>ANOVA of GLM procedure for severity of fruit fungal soft rot disease</td>
</tr>
<tr>
<td>A.14</td>
<td>ANOVA of GLM procedure for incidence of necrotic spot disease</td>
</tr>
<tr>
<td>A.15</td>
<td>ANOVA of GLM procedure for severity of necrotic spot disease</td>
</tr>
<tr>
<td>A.16</td>
<td>ANOVA of GLM procedure for incidence of stem end rot disease</td>
</tr>
<tr>
<td>A.17</td>
<td>ANOVA of GLM procedure for severity of stem end rot disease</td>
</tr>
<tr>
<td>B.1</td>
<td>Responses of isolated bacteria to carbon sources in GN2 Micoplate (BiOLOG, Hayward CA 94545; USA)</td>
</tr>
<tr>
<td>C.1</td>
<td>Effect of temperature on colony growth of pathogens</td>
</tr>
<tr>
<td>C.2</td>
<td>Effect of pH on colony growth of pathogens</td>
</tr>
<tr>
<td>C.3</td>
<td>Effect of salinity on colony growth of pathogens</td>
</tr>
<tr>
<td>C.4</td>
<td>Effect of antagonistic bacteria on colony growth of pathogens</td>
</tr>
<tr>
<td>C.5</td>
<td>ANOVA for effect of temperature on colony growth of Bipolaris sp. at 2 DAI</td>
</tr>
<tr>
<td>C.6</td>
<td>ANOVA for effect of temperature on colony growth of Bipolaris sp. at 4 DAI</td>
</tr>
<tr>
<td>C.7</td>
<td>ANOVA for effect of temperature on colony growth of Bipolaris sp. at 6 DAI</td>
</tr>
<tr>
<td>C.8</td>
<td>ANOVA for effect of temperature on colony growth of Bipolaris sp. at 8 DAI</td>
</tr>
<tr>
<td>C.9</td>
<td>ANOVA for effect of temperature on colony growth of Bipolaris sp. at 10 DAI</td>
</tr>
<tr>
<td>C.10</td>
<td>ANOVA for effect of temperature on colony growth of Colletotrichum gloeosporioides condition at 2 DAI</td>
</tr>
<tr>
<td>C.11</td>
<td>ANOVA for effect of temperature on colony growth of Colletotrichum gloeosporioides at 4 DAI</td>
</tr>
<tr>
<td>C.12</td>
<td>ANOVA for effect of temperature on colony growth of Colletotrichum gloeosporioides at 6 DAI</td>
</tr>
<tr>
<td>C.13</td>
<td>ANOVA for effect of temperature on colony growth of Colletotrichum gloeosporioides at 8 DAI</td>
</tr>
<tr>
<td>C.14</td>
<td>ANOVA for effect of temperature on colony growth of Colletotrichum gloeosporioides 10 DAI</td>
</tr>
<tr>
<td>C.15</td>
<td>ANOVA for effect of temperature on colony growth of Fusarium sp. at 2 DAI</td>
</tr>
<tr>
<td>C.16</td>
<td>ANOVA for effect of temperature on colony growth of Fusarium sp. at 4 DAI</td>
</tr>
<tr>
<td>C.17</td>
<td>ANOVA for effect of temperature on colony growth of Fusarium sp. at 6 DAI</td>
</tr>
<tr>
<td>C.18</td>
<td>ANOVA for effect of temperature on colony growth of Fusarium sp. at 8 DAI</td>
</tr>
<tr>
<td>C.19</td>
<td>ANOVA for effect of temperature on colony growth of Fusarium sp. at 10 DAI</td>
</tr>
<tr>
<td>C.20</td>
<td>ANOVA for effect of temperature on colony growth of Monilinia sp. at 2 DAI</td>
</tr>
<tr>
<td>C.21</td>
<td>ANOVA for effect of temperature on colony growth of Monilinia sp. at 4 DAI</td>
</tr>
<tr>
<td>C.22</td>
<td>ANOVA for effect of temperature on colony growth of Monilinia sp. at 6 DAI</td>
</tr>
<tr>
<td>C.23</td>
<td>ANOVA for effect of temperature on colony growth of Monilinia sp. at 8 DAI</td>
</tr>
<tr>
<td>C.24</td>
<td>ANOVA for effect of temperature on colony growth of Monilinia sp. at 10 DAI</td>
</tr>
<tr>
<td>C.25</td>
<td>ANOVA for effect of temperature on colony growth of Pestalotiopsis sp. at 2 DAI</td>
</tr>
<tr>
<td>C.26</td>
<td>ANOVA for effect of temperature on colony growth of Pestalotiopsis sp. at 4 DAI</td>
</tr>
<tr>
<td>C.27</td>
<td>ANOVA for effect of temperature on colony growth of Pestalotiopsis sp. at 6 DAI</td>
</tr>
<tr>
<td>C.28</td>
<td>ANOVA for effect of temperature on colony growth of Pestalotiopsis sp. at 8 DAI</td>
</tr>
</tbody>
</table>
ANOVA for effect of temperature on colony growth of *Pestalotiopsis* sp. at 10 DAI

ANOVA for effect of temperature on colony growth of *Botryosphaeria* sp. at 2 DAI

ANOVA for effect of temperature on colony growth of *Botryosphaeria* sp. at 4 DAI

ANOVA for effect of temperature on colony growth of *Botryosphaeria* sp. at 6 DAI

ANOVA for effect of temperature on colony growth of *Botryosphaeria* sp. at 8 DAI

ANOVA for effect of temperature on colony growth of *Botryosphaeria* sp. at 10 DAI

ANOVA for effect of pH on colony growth of *Bipolaris* sp. at 2 DAI

ANOVA for effect of pH on colony growth of *Bipolaris* sp. at 4 DAI

ANOVA for effect of pH on colony growth of *Bipolaris* sp. at 6 DAI

ANOVA for effect of pH on colony growth of *Bipolaris* sp. at 8 DAI

ANOVA for effect of pH on colony growth of *Bipolaris* sp. at 10 DAI

ANOVA for effect of pH on colony growth of *Colletotrichum gloeosporioides* at 2 DAI

ANOVA for effect of pH on colony growth of *Colletotrichum gloeosporioides* at 4 DAI

ANOVA for effect of pH on colony growth of *Colletotrichum gloeosporioides* at 6 DAI

ANOVA for effect of pH on colony growth of *Colletotrichum gloeosporioides* at 8 DAI

ANOVA for effect of pH on colony growth of *Colletotrichum gloeosporioides* at 10 DAI

ANOVA for effect of pH on colony growth of *Fusarium* sp. at 2 DAI

ANOVA for effect of pH on colony growth of *Fusarium* sp. at 4 DAI

ANOVA for effect of pH on colony growth of *Fusarium* sp. at 6 DAI

ANOVA for effect of pH on colony growth of *Fusarium* sp. at 8 DAI

ANOVA for effect of pH on colony growth of *Fusarium* sp. at 10 DAI

ANOVA for effect of pH on colony growth of *Monilinia* sp. at 2 DAI

ANOVA for effect of pH on colony growth of *Monilinia* sp. at 4 DAI

ANOVA for effect of pH on colony growth of *Monilinia* sp. at 6 DAI

ANOVA for effect of pH on colony growth of *Monilinia* sp. at 8 DAI

ANOVA for effect of pH on colony growth of *Monilinia* sp. at 10 DAI

ANOVA for effect of pH on colony growth of *Pestalotiopsis* sp. at 2 DAI

ANOVA for effect of pH on colony growth of *Pestalotiopsis* sp. at 4 DAI

ANOVA for effect of pH on colony growth of *Pestalotiopsis* sp. at 6 DAI

ANOVA for effect of pH on colony growth of *Pestalotiopsis* sp. at 8 DAI

ANOVA for effect of pH on colony growth of *Pestalotiopsis* sp. at 10 DAI
C.60 ANOVA for effect of pH on colony growth of *Botryosphaeria* sp. at 2 DAI
C.61 ANOVA for effect of pH on colony growth of *Botryosphaeria* sp. at 4 DAI
C.62 ANOVA for effect of pH on colony growth of *Botryosphaeria* sp. at 6 DAI
C.63 ANOVA for effect of pH on colony growth of *Botryosphaeria* sp. at 8 DAI
C.64 ANOVA for effect of pH on colony growth of *Botryosphaeria* sp. at 10 DAI
C.65 ANOVA for effect of salinity on colony growth of *Bipolaris* sp. at 2 DAI
C.66 ANOVA for effect of salinity on colony growth of *Bipolaris* sp. at 4 DAI
C.67 ANOVA for effect of salinity on colony growth of *Bipolaris* sp. at 6 DAI
C.68 ANOVA for effect of salinity on colony growth of *Bipolaris* sp. at 8 DAI
C.69 ANOVA for effect of salinity on colony growth of *Bipolaris* sp. at 10 DAI
C.70 ANOVA for effect of salinity on colony growth of *Colletotrichum gloeosporioides* at 2 DAI
C.71 ANOVA for effect of salinity on colony growth of *Colletotrichum gloeosporioides* at 4 DAI
C.72 ANOVA for effect of salinity on colony growth of *Colletotrichum gloeosporioides* at 6 DAI
C.73 ANOVA for effect of salinity on colony growth of *Colletotrichum gloeosporioides* at 8 DAI
C.74 ANOVA for effect of salinity on colony growth of *Colletotrichum gloeosporioides* at 10 DAI
C.75 ANOVA for effect of salinity on colony growth of *Fusarium* sp. at 2 DAI
C.76 ANOVA for effect of salinity on colony growth of *Fusarium* sp. at 4 DAI
C.77 ANOVA for effect of salinity on colony growth of *Fusarium* sp. at 6 DAI
C.78 ANOVA for effect of salinity on colony growth of *Fusarium* sp. at 8 DAI
C.79 ANOVA for effect of salinity on colony growth of *Fusarium* sp. at 10 DAI
C.80 ANOVA for effect of salinity on colony growth of *Monilinia* sp. at 2 DAI
C.81 ANOVA for effect of salinity on colony growth of *Monilinia* sp. at 4 DAI
C.82 ANOVA for effect of salinity on colony growth of *Monilinia* sp. at 6 DAI
C.83 ANOVA for effect of salinity on colony growth of *Monilinia* sp. at 8 DAI
C.84 ANOVA for effect of salinity on colony growth of *Monilinia* sp. at 10 DAI

xxii
ANOVA for effect of salinity on colony growth of *Pestalotiopsis* sp. at 2 DAI

ANOVA for effect of salinity on colony growth of *Pestalotiopsis* sp. at 4 DAI

ANOVA for effect of salinity on colony growth of *Pestalotiopsis* sp. at 6 DAI

ANOVA for effect of salinity on colony growth of *Pestalotiopsis* sp. at 8 DAI

ANOVA for effect of salinity on colony growth of *Pestalotiopsis* sp. at 10 DAI

ANOVA for effect of salinity on colony growth of *Botryosphaeria* sp. at 2 DAI

ANOVA for effect of salinity on colony growth of *Botryosphaeria* sp. at 4 DAI

ANOVA for effect of salinity on colony growth of *Botryosphaeria* sp. at 6 DAI

ANOVA for effect of salinity on colony growth of *Botryosphaeria* sp. at 8 DAI

ANOVA for effect of salinity on colony growth of *Botryosphaeria* sp. at 10 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Bipolaris* sp. at 2 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Bipolaris* sp. at 4 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Bipolaris* sp. at 6 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Bipolaris* sp. at 8 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Bipolaris* sp. at 10 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Colletotrichum gloeosporioides* at 2 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Colletotrichum gloeosporioides* at 4 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Colletotrichum gloeosporioides* at 6 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Colletotrichum gloeosporioides* at 8 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Colletotrichum gloeosporioides* at 10 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Fusarium* sp. at 2 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Fusarium* sp. at 4 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Fusarium* sp. at 6 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Fusarium* sp. at 8 DAI

ANOVA for effect of antagonistic bacteria on colony growth of *Fusarium* sp. at 10 DAI
C.110 ANOVA for effect of antagonistic bacteria on colony growth of *Monilinia* sp. at 2 DAI

C.111 ANOVA for effect of antagonistic bacteria on colony growth of *Monilinia* sp. at 4 DAI

C.112 ANOVA for effect of antagonistic bacteria on colony growth of *Monilinia* sp. at 6 DAI

C.113 ANOVA for effect of antagonistic bacteria on colony growth of *Monilinia* sp. at 8 DAI

C.114 ANOVA for effect of antagonistic bacteria on colony growth of *Monilinia* sp. at 10 DAI

C.115 ANOVA for effect of antagonistic bacteria on colony growth of *Pestalotiopsis* sp. at 2 DAI

C.116 ANOVA for effect of antagonistic bacteria on colony growth of *Pestalotiopsis* sp. at 4 DAI

C.117 ANOVA for effect of antagonistic bacteria on colony growth of *Pestalotiopsis* sp. at 6 DAI

C.118 ANOVA for effect of antagonistic bacteria on colony growth of *Pestalotiopsis* sp. at 8 DAI

C.119 ANOVA for effect of antagonistic bacteria on colony growth of *Pestalotiopsis* sp. at 10 DAI

C.120 ANOVA for effect of antagonistic bacteria on colony growth of *Boytrosphaeria* sp. at 2 DAI

C.121 ANOVA for effect of antagonistic bacteria on colony growth of *Boytrosphaeria* sp. at 4 DAI

C.122 ANOVA for effect of antagonistic bacteria on colony growth of *Boytrosphaeria* sp. at 6 DAI

C.123 ANOVA for effect of antagonistic bacteria on colony growth of *Boytrosphaeria* sp. at 8 DAI

C.124 ANOVA for effect of antagonistic bacteria on colony growth of *Boytrosphaeria* sp. at 10 DAI