UNIVERSITI PUTRA MALAYSIA

SELECTED HERBAL PLANTS AS GROWTH AND HEALTH PROMOTERS IN BROILER CHICKENS

SEYED REZA HASHEMI
FP 2009 33
SELECTED HERBAL PLANTS AS GROWTH AND HEALTH PROMOTERS IN BROILER CHICKENS

By
SEYED REZA HASHEMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2009
THIS THESIS IS DEDICATED TO

MY WIFE, MY PARENTS

WITH

LOVE AND GRATITUDE

AND ALSO TO

THE KIDS WHO HAVE THE ABILITY

BUT

DON’T HAVE FACILITIES AND EDUCATION
SELECTED HERBAL PLANTS AS GROWTH AND HEALTH PROMOTERS IN BROILER CHICKENS

By
SEYED REZA HASHEMI
December 2009

Chairman: Zulkifli B Idrus, PhD
Faculty: Agriculture

A series of experiments were conducted to examine the effect of herbal supplementation as a growth and health promoters. An *in vitro* procedure was used to determine the antibacterial activity of the fruit of *Solanum torvum*, whole plant of *Euphorbia hirta*, and rhizomes of *Zingiber officinale*, *Curcuma longa* and *Zingiber zerumbet*. Among the five herbal plants studied only the aqueous extract of *Euphorbia hirta* showed considerable growth-inhibiting activity against *Staphylococcus aureus*.

Phytochemical screening and a toxicity evaluation of the selected plants was carried out in experiment II. Phytochemical screening study showed that selected plants contained volatile oils, tannins, alkaloids, saponins, flavonoids. Alkaloids and steroids were only detected in the aqueous extract of *Euphorbia hirta*. Toxicity evaluation also showed that based on liver enzyme and histopathology the herbal aqueous extracts were not toxic when administered 2,000 mg/kg body weight by the oral route.
Experiment III was conducted to examine the effects of dietary *Euphorbia hirta* supplementation on growth performance, nutrient digestibilities, digesta pH and ileal microbial population. 600 one-day-old broilers (Cobb-500) were housed in 30 pens of 20 birds each until day 42. The dietary treatments were: (1) basal diet (control), (2) basal diet + 0.02 g/kg virginiamycin (VM), (3) basal diet + 1.5 g/kg acidifier (Orgacids™) (OA), (4) basal diet + 2.5 g/kg *E. hirta* (EH2.5), (5) basal diet + 5 g/kg *E. hirta* (EH5.0) and (6) basal diet + 7.5 g/kg *E. hirta* (EH7.5). The higher levels of *E. hirta* inclusion (7.5 g/kg) improved FCR of broiler chickens at 42 days of age. The highest AMEn and protein digestibility were observed in EH7.5 group. On day 21, the total aerobic bacteria counts in the ileum content of the EH2.5, VM and control groups were significantly higher (P<0.05) than the other groups. OA and VM supplementation significantly increased (P<0.05) *Lactobacillus* count at day 21 and the lowest *Lactobacillus* count was noted in the EH7.5 birds. At 42 days, feeding of EH2.5 promoted greater numbers of *lactobacillus*, to compare with other groups and the lowest *Lactobacillus* count was enumerated in the control birds. On day 21, except for ileum and cecum, OA significantly reduced (P<0.05) pH value. The trend in pH value of the gastrointestinal tract on day 42 and 21 was similar.

In experiment IV the effect of *E. hirta* and acidifier supplementation on gut colonization and organ invasion by *Salmonella enteritidis* was carried out. 120 day-old chicks were assigned to one of the three treatments: (1) basal diet (control), (2) basal diet + 7.5 g/kg *E. hirta* (EH), and (3) basal diet + 2 g/kg acidifier (Orgacids™) (OA). On day 3, each chick was inoculated orally with 1 mL of *S. enteritidis*.

iv
(1.5×10^8 cfu/bird). The control birds had significantly higher (P<0.05) caecal *S. enteritidis* number than other groups following 7 and 14 days of challenge. Incidence of *S. enteritidis* colonization on the liver and spleen was significantly lower (P<0.05) in OA birds following 7 days of challenge. The average of shedding time was longer in the control group than in the OA and EH7.5 treatments throughout the duration of the experiment.

Response of heat-stressed broiler chickens to *Zingiber zerumbet* and *Zingiber officinale* supplementation were investigated in the fifth experiment. A total of 300 male broiler chicks were randomly assigned to one of the following treatment. 1) Basal diet (control), 2) Basal diet +1% *Zingiber zerumbet* (ZZ1%), 3) Basal diet +2% *Zingiber zerumbet* (ZZ2%), 4) Basal diet +1% *Zingiber officinale* (ZO1%) and 5) Basal diet +2% *Zingiber officinale* (ZO2%). Diets were fed to the birds from day 28-42. At 35 days of age, half of the chickens were exposed to 38±1°C for 2 h/d to another environmentally controlled chamber. Following 2 days of heat treatment the heterophile/lymphocyte ratio and corticosterone were significantly elevated (P<0.05). Significant feeding regimes × heat treatment interaction was noted for serum glucose and potassium level (P<0.05). Except for serum level of albumin, chloride, heterophile/lymphocyte ratio and plasma corticosterone seven days of heat treatment had no significant effect on blood parameters. Heat treatment markedly increases Hsp70 expression on day 42. Birds fed ZO2%, ZZ1% and ZZ2% had significantly greater (P<0.05) Hsp70 response.
TUMBUHAN HERBA YANG TERPILIH SEBAGAI PROMOTER PERTUMBUHAN DAN KESIHATAN DALAM AYAM PEDAGING

Oleh
SEYED REZA HASHEMI
Disember 2009

Pengerusi : Zulkifli B Idrus, PhD

Fakulti : Pertanian

Semakan fitokimia dan suatu penilaian ketoksidan terhadap tumbuh-tumbuhan yang terpilih telah dijalankan dalam eksperimen II. Kajian semakan fitokimia telah menunjukkan bahawa tumbuh-tumbuhan yang terpilih mengandungi minyak-minyak teruap, tannin, alkaloid, saponin dan flavonoid. Hanya alkaloid dan steroid didapati dalam cecair ekstrak daripada Euphorbia hirta. Penilaian ketoksidan telah menunjukkan
bahawa estrak herba adalah tidak toksik semasa diberi melalui mulut pada 2,000 mg/kg berat badan berdasarkan kajian pada enzim hati dan histopatologi.

Eksperimen III telah dijalankan untuk memeriksa kesan-kesan penambahan *Euphorbia hirta* dalam diet terhadap prestasi pertumbuhan, pencernaan nutrien, pH hasil pencernaan dan populasi mikrobia dalam usus ileum. 600 ekor ayam pedaging jenis Cobb 500 telah dikaji selama 42 hari di dalam 30 sangkar di mana setiap sangkar sebanyak 20 ekor ayam. Enam rawatan diet adalah: satu kawalan dan lima diet yang mengandungi: (1) diet basal (kawalan), (2) diet basal + 0.02 g/kg virginiamycin (VM), (3) diet basal + 1.5 g/kg asid organik (Orgacids™) (OA), (4) diet basal + 2.5 g/kg *E. hirta* (EH2.5), (5) diet basal + 5 g/kg *E. hirta* (EH5.0) dan (6) diet basal + 7.5 g/kg *E. hirta* (EH7.5). Asid organik tersebut mengandungi asid-asid formik, fosforik, laktik, tartarik, sitrik, dan malik yang dihasilkan oleh Sunzen Corporation Sdn. Bhd. Malaysia. Kandungan *E. hirta* yang tertinggi (7.5 g/kg) dapat memperbaikkan nisbah penukaran makanan dalam ayam-ayam pedaging pada umur 42 hari. AMEn dan pencernaan protein yang tertinggi dapat diperhatikan dalam kumpulan EH7.5. Pada umur 21 hari, jumlah bilangan bakteria aerobik dalam usus ileum yang terdapat dalam kumpulan EH2.5, VM dan kumpulan kawalan adalah signifikasinya lebih tinggi daripada kumpulan lain. Penambahan OA dan VM telah meningkatkan bilangan *Laktobasillus* dengan signifikan pada hari ke-21 dan bilangan *Lactobasillus* yang terendah adalah dicatatkan pada ayam EH7.5. Pada hari ke-42, pemberian kandungan makanan dengan EH2.5 telah menggalakkan penambahan bilangan *Laktobasillus* berbanding dengan kumpulan lain dan didapati bilangan *Laktobasillus* terlalu sedikit dalam ayam kawalan.
Pada hari ke-21, selain usus ileum dan sekum, OA dengan signifikan menurunkan nilai pH. Perubahan nilai pH dalam salur perceraaan adalah sama pada hari 42 dan 21. Dalam eksperimen IV kesan penambahan E. hirta dan asid organik terhadap pembentukan koloni dalam usus dan serangan organ oleh Salmonella enteritidis telah dijalankan. Anak-anak ayam telah dibahagikan kepada salah satu daripada tiga kumpulan: (1) diet basal (kawalan), (2) diet basal + 7.5 g/kg E. hirta (EH), dan (3) diet basal + 2 g/kg asik organik (Orgacids™) (OA). Asid organik mengandungi asid-asid formik, fosforus, laktik, tartarik, sitrik, dan malik yang dihasilkan oleh Sunzen Corporation Sdn. Bhd. Malaysia. Pada hari ke-3, setiap anak ayam telah diberi 1 mL Salmonella enteritidis (1.5×10^8 cfu/ekor) secara oral. Ayam-ayam kawalan mempunyai nombor SE dalam sekum yang signifikasinya lebih tinggi daripada kumpulan lain selepas 7 dan 14 hari dikaji. Keadaan pembentukan koloni SE dalam hati dan limpa adalah signifikasinya lebih rendah dalam ayam OA selepas 7 hari dikaji. Masa purata pembebasan adalah lebih lama dalam kumpulan kawalan berbanding kumpulan rawatan OA dan EH7.5 di sepanjang tempoh eksperimen.

Tindakbalas tekanan haba oleh ayam-ayam pedaging dengan penambahan Zingiber zerumbet dan Zingiber officinale telah dikaji dalam eksperimen kelima. Sebanyak 300 ekor ayam pedaging telah dikaji dengan diet-diet eksperimen telah diberi kepada ayam dari umur 28-42 hari. Lima rawatan diet adalah: 1) diet basal (kawalan), 2) diet basal + 1% Zingiber zerumbet (ZZ1%), 3) diet basal + 2% Zingiber zerumbet (ZZ2%), 4) diet basal + 1% Zingiber officinale (ZO1%), 5) diet basal + 2% Zingiber officinale (ZO2%). Pada umur 35 hari, separuh daripada ayam-ayam tersebut telah dikekalkan pada suhu
23°C manakala yang selebihnya telah didedahkan dengan suhu 38±1°C selama 2 jam/hari di tempat lain yang persekitarannya terkawal. Cara-cara pemakanan dan rawatan haba tidak mempunyai kesan yang signifikan pada kadar kematian di sepanjang tempoh kajian. Rawatan haba selama dua hari dengan signifikan telah meningkatkan nilai albumin, jumlah protein, kolesterol, glukose, sodium dan klorida dalam serum. Selepas 2 hari rawatan haba, nisbah H/L dan CS didapati meningkat dengan signifikan. Interaksi di antara cara-cara pemakanan x rawatan haba yang dicatatkan adalah signifikan bagi tahap glukosa dan potasium dalam serum. Selain nilai albumin dalam serum, klorida, nisbah H/L, dan kortikosteron dalam plasma, tujuh hari rawatan haba tidak memberikan kesan yang signifikan kepada parameter-parameter dalam darah. Rawatan haba telah meningkatkan pendedahan Hsp70 pada 42 hari. Ayam-ayam yang diberi ZO2%, ZZ1% dan ZZ2% mempunyai tindakbalas Hsp70 yang lebih banyak secara signifikan.
ACKNOWLEDGEMENTS

An effort such as this dissertation is only made possible through the immeasurable support, mentorship, time and patience of many individuals. I am indebted to all who have helped along the way and made the current work a reality. This work was made possible by a grant (05-01-04-SF0182) from the Ministry of Science, Technology and Innovation, Malaysia.

First and foremost, the author would like to thank Our God for teaching him the way of life. I would like to thank my family for their love and support given to me and most of all their trust and open door policy that kept me inspired through my program in oversea.

I wish to convey my heartfelt gratitude to the Malaysian government, University Putra Malaysia and my supervisor Professor Dr. Zulkifli for financial support.

My thanks and appreciations are expressed to my committee members, especially with patience, encouragement and instruction from Professor Dr. Zulkifli, I have enhanced my knowledge in both my class work and research.

Additionally, my thanks also are expressed to Ponnusamy Muniandy, our farm technician and Mr. Yap lab technician in hormonology lab, have given me lots of help in my research and farm work.
The work would not have been made possible without the efforts of Iranian students in Malaysia. My graduate fellows have given lots of help in my research, Abdul Reza Soleimani, Saeed Navid, Meisam Tabatabaei, Mehdi Ebrahimi and specially Tang Siew Ching gave great help for data collection and thankful to Tang Siew Ching and Nor Azwati for thesis abstract translation to Bahasa Melayu.

I would like to extend my gratitude to all the teachers from Iran who provided us the indispensable theoretical knowledge especially my former supervisor Dr. Behroz Dastar and Mr. Foladian from high school.

Finally, I am grateful to have found someone to stand beside me and continually remind me not to take life so seriously, especially when an experiment fails. So my final thanks go to my wife Homa Davoodi. The only way to thank you properly would be to promise to always give you the level of love and support that you’ve given me.
I certify that a Thesis Examination Committee has met on 21 December 2009 to conduct the final examination of Seyed Reza Hashemi on his thesis entitled "Selected Herbal Plants as Growth and Health Promoters in Broiler Chickens" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy (Phd).

Members of the Thesis Examination Committee were as follows:

Ismail Idris, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Norhani binti Abdullah, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Abdul Razak Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

D. Michael Denbow, PhD
Professor
Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University
USA
(Independent Examiner)

--

BUJANG BIN KIM HuAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zulkifli B Idrus, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Hair B Bejo, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Muhammad Nazrul Hakim Bin Abdullah, PhD
Associate Professor
Faculty of Medicine And health Sciences
Universiti Putra Malaysia
(Member)

Loh, Teck Chwen, , PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Zunita Binti Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate studies
Universiti Putra Malaysia

Date: 11 February 2010
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and it is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

SEYED REZA HASHEMI
Date: 11 February 2010
TABLE OF CONTENTS

DEDICATION
- ii

ABSTRACT
- iii

ABSTRAK
- vi

ACKNOWLEDGEMENTS
- x

APPROVAL
- xii

DECLARATION
- xiv

LIST OF TABLE
- xix

LIST OF FIGURES
- xxii

LIST OF ABBRIVATION
- xxiii

1 INTRODUCTION
- 1
 1.1 General introduction
 - 1
 1.2 General objectives
 - 7
 1.3 Specific objectives
 - 7

2 LITERATURE AND REVIEW
- 9
 2.1 The Important of Herbal Plants
 - 9
 2.2 *Curcuma longa*
 - 11
 2.2.1. Botanical characteristics of *Curcuma longa* plant
 - 11
 2.2.2. The use of *Curcuma longa* as a traditional medicinal plant
 - 11
 2.2.3. Chemical compound of *Curcuma longa*
 - 12
 2.2.4. Previous Studies
 - 13
 2.3 *Zingiber officinale*
 - 17
 2.3.1. Botanical characteristics of *Zingiber officinale* plant
 - 17
 2.3.2. The use of *Zingiber officinale* as a traditional medicinal plant
 - 17
 2.3.3. Chemical compound of *Zingiber officinale*
 - 18
 2.3.4. Previous Studies
 - 19
 2.4 *Zingiber zerumbet*
 - 23
 2.4.1. Botanical characteristics of *Zingiber zerumbet* plant
 - 23
 2.4.2. The use of *Zingiber zerumbet* as a traditional medicinal plant
 - 23
 2.4.3. Chemical compound of *Zingiber zerumbet*
 - 24
 2.4.4. Previous Studies
 - 25
 2.5 *Euphorbia hirta*
 - 28
 2.5.1. Botanical characteristics of *Euphorbia hirta* plant
 - 28
 2.5.2. The use of *Euphorbia hirta* as a traditional medicinal plant
 - 29
 2.5.3. Chemical compound of *Euphorbia hirta*
 - 30
 2.5.4. Previous Studies
 - 31
 2.6 *Solanum torvum sw.*
 - 42
 2.6.1. Botanical characteristics of *Solanum torvum* plant
 - 42
 2.6.2. The use of *Solanum torvum* as a traditional medicinal plant
 - 42
3 MATERIALS AND METHODS
CHAPTER 3: ANTIMICROBIAL ACTIVITY OF AQUEOUS EXTRACT OF HERBAL PLANTS

3.1 Introduction

3.2 Materials and Methods
 3.2.1 Plant materials
 3.2.2 Preparation of extract
 3.2.3 Test Microorganism
 3.2.4 Antimicrobial sensitivity test

3.3 Results

3.4 Discussion

3.5 Conclusion

CHAPTER 4: PHYTOCHEMICAL SCREENING AND ACUTE TOXICITY STUDY OF SELECTED HERBAL AQUEOUS EXTRACT IN BROILER CHICKENS

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Plant materials
 4.2.2 Preparation of extract
 4.2.3 Preliminary phytochemical analysis
 4.2.4 Acute toxicity study
 4.2.5 Experimental design
 4.2.6 Behavioral study
 4.2.7 Histopathological studies
 4.2.8 Blood sample collection
 4.2.9 Statistical analysis

4.3 Results
 4.3.1 Phytochemical screening
 4.3.2 Behavioral study
 4.3.3 Effect of extract on tissue morphology of chickens
 4.3.4 Serum metabolites and liver function test (LFT)
 4.3.5 Growth performance

4.4 Discussion

4.5 Conclusion

CHAPTER 5: EFFECTS OF EUPHORBIA HIRTA SUPPLEMENTATION ON GUT MICROFLORA, ILEAL DIGESTIBILITY AND GROWTH PERFORMANCE OF BROILER
CHAPTER 6: EFFECTS OF EUPHORBIA HIRTA SUPPLEMENT ON RESISTANCE OF BROILER CHICKENS AGAINST SALMONELLA ENTERITIDIS INFECTION

6.1 Introduction

6.2 Materials and Methods
 6.2.1 Chickens
 6.2.2 Experimental Design
 6.2.3 Salmonella Source for Challenge and Inoculation Procedure
 6.2.4 SE shedding
 6.2.5 Sampling Protocol for SE organ invasion and SE Concentration in Cecal Content
 6.2.6 Statistical analysis

6.3 Results
 6.3.1 Cecal colonization by SE
 6.3.2 Organ Colonization by SE
 6.3.3 Cloacal swabs SE enumeration

6.4 Discussion

6.5 Conclusion

CHAPTER 7: CHANGE IN GROWTH, BLOOD PARAMETERS AND HEAT SHOCK PROTEIN 70 EXPRESSION IN HEAT STRESSED BROILER CHICKENS IN RESPONSE TO DIETARY
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Antibacterial activity of various concentrations of aqueous extracts of Zinziber officinale, Curcuma long, Zinziber zerumbet, Euphorbia hirta and Solanum torvum.</td>
<td>55</td>
</tr>
<tr>
<td>3.2. Mean inhibition zones of Euphorbia hirta aqueous extracts in comparison with standard antibiotics.</td>
<td>56</td>
</tr>
<tr>
<td>4.1. Phytochemical screening of selected herbal plants.</td>
<td>73</td>
</tr>
<tr>
<td>4.2. Toxicity signs observed in broiler (first 24h) that received oral single dose (2000 mg/kg BW) of the aqueous extract of herbal plants.</td>
<td>75</td>
</tr>
<tr>
<td>4.3. Clinical blood chemistry values of female broilers administered with aqueous extract of herbal plants (mean ± SEM).</td>
<td>79</td>
</tr>
<tr>
<td>4.4. The effect of high dose aqueous extract of selected herbal plants on body weight gain, feed intake and feed conversion in broilers.</td>
<td>81</td>
</tr>
<tr>
<td>5.1. Ingredients and nutrient composition of diets.</td>
<td>93</td>
</tr>
<tr>
<td>5.2. The effect of Euphorbia hirta, acidifier and virginiamycin supplementation on body weight, body weight gain, feed intake, feed conversion ratio (FCR) and mortality rate in broilers (mean±SEM).</td>
<td>100</td>
</tr>
</tbody>
</table>
5.3. The effect of *Euphorbia hirta*, acidifier and virginiamycin supplementation on viable cell counts of microflora in ileum of broiler chickens (mean±SEM).

5.4. The effect of *Euphorbia hirta*, acidifier and virginiamycin supplementation on apparent metabolizable energy (AME), apparent metabolizable energy nitrogen-corrected (AMEn), protein and energy digestibility in broiler chickens (mean ± SEM).

5.5. The effect of *Euphorbia hirta*, acidifier and virginiamycin on pH in gastrointestinal contents at 21 and 42 d (mean ± SEM).

5.6. The effect of *Euphorbia hirta*, acidifier and virginiamycin supplementation on liver function enzymes values of broiler chickens (mean ± SEM).

6.1. The effect of *Euphorbia hirta* (EH) and acidifier (OA) supplementation on *Salmonella enterica* serovar Enteritidis cecal colonization of broiler (mean±SEM).

6.2. The effect of *Euphorbia hirta* (EH) and acidifier (OA) supplementation on *Salmonella enterica* serovar Enteritidis (SE) colonization of the crop, liver, spleen, bile bladder and apex of broiler.

6.3. The effect of *Euphorbia hirta* (EH) and acidifier (OA) supplementation on *Salmonella enterica* serovar Enteritidis (SE) cloacal swab in broiler.

7.1. Ingredients and nutrient composition of basal diets.
7.2. The effects of feeding regimes and heat treatment on body weight (BW), body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) of broiler chickens from d 35-42 (mean±SEM).

7.3. The effects of feeding regimes and heat treatment on blood parameters and body temperature value of broiler chickens on d 37 (mean±SEM).

7.4. Blood parameter values of broiler chickens where feeding regimes × heat treatment interaction were significant on d 37 (means ±SEM).

7.5. The effects of feeding regimes and heat treatment on blood parameters and body temperature value of broiler chickens on d 42 (mean±SEM).

7.6. Blood parameter values and body temperature of broiler chickens where feeding regimes × heat treatment interaction were significant on d 42 (means±SEM).

7.7. The effect of feeding regimes and heat treatment on HSP70 density value of broiler chickens on d 42 (mean±SEM).
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>Antibacterial inhibition zone by E.hita.</td>
<td>57</td>
</tr>
<tr>
<td>3.2.</td>
<td>Significant increase in the inhibitory zone with increasing the concentration of the E. hita against S. aureus at 50, 100 and 200 mg/mL concentration.</td>
<td>57</td>
</tr>
<tr>
<td>4.1.</td>
<td>Liver histology of untreated and treated chicks with aqueous extract of selected herbal plants (2000mg/kg bw) at 35 days of age.</td>
<td>76</td>
</tr>
<tr>
<td>4.2.</td>
<td>Kidney histology of untreated and treated chicks with aqueous extract of selected herbal plants (2000mg/kg bw) at 35 days of age.</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs</td>
<td>Antibodies</td>
</tr>
<tr>
<td>Ag</td>
<td>Antigens</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>AME</td>
<td>Apparent metabolizable energy</td>
</tr>
<tr>
<td>AMEn</td>
<td>Apparent metabolizable energy nitrogen corrected</td>
</tr>
<tr>
<td>AP</td>
<td>Andrographis paniculata</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>ATCC</td>
<td>Americian Type Culture Collection</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>B. cereus</td>
<td>Bacillus cereus</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>Caco-2</td>
<td>Human colon carcinoma epithelial cell line</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control and Prevention</td>
</tr>
<tr>
<td>C. longa</td>
<td>Curcuma longa</td>
</tr>
<tr>
<td>CORT</td>
<td>Corticosterone</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase -2 (an enzyme responsible for inflammation)</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic</td>
</tr>
<tr>
<td>E. hirta</td>
<td>Euphorbia hirta</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked ImmunoSorbent Assay</td>
</tr>
<tr>
<td>EPEC</td>
<td>Enteropathogenic E. coli</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FDA</td>
<td>United States Food and Drug Administration</td>
</tr>
<tr>
<td>FEDESA</td>
<td>Fédération Européenne de la Santé Animale (European Federation of Animal Health)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>FCR</td>
<td>Feed conversion ratio</td>
</tr>
<tr>
<td>FR</td>
<td>Feed Restriction</td>
</tr>
<tr>
<td>GE</td>
<td>Gross energy</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GLC</td>
<td>Gas Liquid Chromatography</td>
</tr>
<tr>
<td>GOT</td>
<td>Glutamine oxaloacetic transaminase</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamine pyruvic transaminase</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>Haemophilus influenzae</td>
</tr>
<tr>
<td>H/L ratio</td>
<td>Heterophile/Lymphocyte Ratio</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Median Inhibition Concentration (the concentration of substance that provides 50% inhibition to certain reaction)</td>
</tr>
<tr>
<td>IBS</td>
<td>Institute of Biosciences</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunoglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukins</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible Nitric oxide synthases</td>
</tr>
<tr>
<td>LC<sub>50</sub></td>
<td>Lethal Concentration 50 (concentration in water having 50% chance of causing death to aquatic life)</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LD50</td>
<td>lethal dose of 50% of treated target animals</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>MAP kinase</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolisable energy</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimal inhibitory concentration</td>
</tr>
<tr>
<td>MR</td>
<td>Mortality rate</td>
</tr>
<tr>
<td>MRLs</td>
<td>Maximum residue limits</td>
</tr>
<tr>
<td>n</td>
<td>Number</td>
</tr>
</tbody>
</table>