UNIVERSITI PUTRA MALAYSIA

BIOCONVERSION OF PALM KERNEL CAKE AND ITS EVALUATION AS AN AQUAFEED INGREDIENT

ILUYEMI FLORENCE BUCHI

FP 2003 31
BIOCONVERSION OF PALM KERNEL CAKE AND ITS EVALUATION AS AN AQUAFEED INGREDIENT

By

ILUYEMI FLORENCE BUCHI

Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Agriculture Universiti Putra Malaysia

October 2003
DEDICATED TO
MY HUSBAND
AND
MY SONS
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy.

BIOCONVERSION OF PALM KERNEL CAKE AND ITS EVALUATION AS AN AQUAFEED INGREDIENT

By

ILUYEMI FLORENCE BUCHI

April 2003

Chairman: Associate Professor Mohamed Hanafi Musa, Ph.D

Faculty: Agriculture

Palm kernel cake (PKC) is one of the by-products of the oil palm industry. Malaysia being the world’s largest producer of oil palm produces over a million tones of PKC annually. Traditionally, PKC is used as an ingredient in ruminant feed and its use for non-ruminants is usually in low amounts due to problems of digestibility. In this study, an attempt was made to microbially enrich the PKC protein content using: Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Aspergillus niger and Sclerotium rolfsii fungi. In the solid-state fermentation (SSF), effects of inoculum concentrations (1, 2 and 3%), moisture levels (41, 44 and 47%) and pH levels (3.5, 4.0, 4.5, and 5.0) were evaluated. Protein content of PKC increased significantly (P<0.05) coupled with a significant reduction in cellulose and hemicellulose contents by all the fungi used. The highest protein increase of 33% was obtained using T. longibrachiatum fermented PKC compared with 18% in unfermented PKC. The effect of moisture content was more critical compared to pH. Fermentation increased the analysed total amino acids (14 to 25%) and mostly the unsaturated ones (oleic and linoleic acids). The extracellular enzymes activity
secreted, such as β-D-mannanase, β-mannosidase, α-galactosidase, endoglucanase, and filter paper cellulase (Fpase) by hydrolysing of PKC polysaccharides was evaluated by monitoring the amount of reducing sugar released the crude enzyme extracts. A wide range of enzyme activities was obtained from the various fungi, while the amount of reducing sugar released ranged from 0.05 g/ml for *S. rolfsii* to 1.05 g/ml for *A. niger*. The *S. rolfsii* and *A. niger* were good producers of mannan-degrading enzymes when cultured with enriched nutrient medium containing PKC as the carbon source. The scaled up protein enrichment of PKC using SSF was carried out using *T. longibrachiatum* in the plastic bag and in a rotating drum bioreactor made from transparent PVC at 47% moisture level and pH 4.5. The bioreactor fermented PKC gave a protein (31.78%) value higher than that of plastic bag fermentation due the difficulty in controlling temperature and insufficient of aeration of the latter. The formulation of test diets for fish using red tilapia was done by incorporation of 10 to 40% of fermented PKC in the diets. Feed digestibility as well as overall growth of fish was evaluated for eight-weeks. Digestibility of diets (53 to 74%) was lower in comparison with reference diet (81%). Fish on test diets also showed lower body weight gain (53 to 105%) compared to reference diet (114%) and inferior feed conversion ratio (3.0 to 5.3), compared to reference diet (2.9). However, carcass of fish on test diets had higher phosphorus and calcium content compared to those on reference diet. In conclusion, PKC is a good carbon source for the production of cellulose and hemicellulose degrading enzymes. Its protein content can be increased through fungal fermentation and fish feeds can contain this protein enriched PKC up to 10% of diet as a partial fish meal and binder replacement.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

BIOPENUKARAN HAMPAS ISIRONG SAWIT DAN PENILAIANNYA SEBAGAI BAHAN MAKANAN AKUAKULTUR

Oleh

ILUYEMI FLORENCE BUCHI

April 2003

Pengurusi: Profesor Madya Mohamed Hanafi Musa, Ph.D

Fakulti: Pertanian

Hampas isirong sawit adalah salah satu hasil sampinan industri kelapa sawit. Malaysia merupakan pengeluar kelapa sawit utama dunia dengan menghasilkan lebih satu juta ton isirong sawit setiap tahun. Secara tradisinya, hampas isirong sawit ini digunakan sebagai bahan dalam kandungan makanan ruminan dan dimakan dalam jumlah yang rendah untuk makanan bukan-ruminan kerana masalah penghadaman. Dalam kajian ini, usaha telah dilakukan bagi memperkayakan kandungan protein hampas isirong sawit secara mikrob dengan menggunakan: kulat Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Aspergillus niger and Sclerotium rolfsii. Dalam keadaan fermentasi pepejal (SSF), kesan kepekatan inoculum (1, 2 dan 3%) tahap kelembapan (41, 44 dan 47%) dan tahap pH (3.5, 4.0, 4.5, dan 5.0) telah dinilai. Kandungan protein hampas isirong sawit bertambah dengan ketaranya (P<0.05) diikuti dengan pengurangan yang serupa dalam kandungan selulosa dan hemiselulosa dengan menggunakan kesemua kulat tersebut. Pertambahan protein yang tertinggi sebanyak 33% telah diperolehi dengan
menggunakan hampas isirong sawit yang difermentasikan dengan *T. longibrachiatum* jika dibandingkan dengan 18% dalam isirong sawit yang tidak difermentasikan. Kesah kandungan kelembapan didapati lebih kritikal dibandingkan dengan pH. Fermentasi telah meninggikan jumlah asid amino (14 ke 25%) dan kebanyakannya yang tidak tepu (asid olik dan linolik). Aktiviti enzim ektraselular yang dikeluakan, seperti β-D mannanase, β-mannosidase, α-galactosidase, endoglucanase and Fpase melalui hidrolisis hampas isirong sawit telah dinilai dengan melihat jumlah gula terturun yang dikeluarkan dari ekstrak enzim mentah. Berbagai aktiviti enzim telah didapati daripada pelbagai kulat dengan jumlah gula terturun yang dikeluarkan dalam lingkungan 0.05 g/ml untuk *S. rolfsii* ke 1.05 g/ml untuk *A. niger*. *S. rolfsii* dan *A. niger* merupakan pengeluar terbaik bagi enzim mannan apabila dikultur dengan media yang diperkayakan dengan hampas isirong sawit sebagai sumber karbon. Peningkatan kandungan protein hampas isirong sawit dengan menggunakan SSF telah dijalankan dengan menggunakan *T. longibrachiatum* di dalam karung plastik dan dalam drum bioreaktor yang berputar yang diperbuat daripada PVC lutsinar pada tahap kelembapan 47% dan pH 4.5. Kandungan protein hampas isirong sawit yang difermentasi di dalam bioreaktor adalah lebih tinggi jika dibandingkan dengan fermentasi dalam karung plastik oleh kerana kesukaran untuk mengawal suhu dan kekurangan pengudaraan. Formula ujian pemakanan dengan menggunakan anak ikan tilapia merah dilakukan dengan memasukan 10 ke 40% isirong sawit difermentasi dalam pemakanan tersebut. Penghadaman makanan dan pertumbuhan ikan secara keseluruhannya telah dinilai selama lapan minggu. Penghadaman pemakanan (53 ke 74%) adalah rendah jika dibandingkan dengan bahan makanan rujukan (81%). Bahan makanan yang diuji juga menunjukkan kadar
pertambahan berat bedan yang rendah (53 ke 105%) berbanding dengan bahan makanan rujukan (114%) dan nisbah kadar perubahan pemakanan yang rendah (3.0 ke 5.3) berbanding dengan makanan rujukan (2.9). Walau bagaimanapun, karkas ikan yang diuji mengandungi unsur fosforus dan kalsium yang tinggi dibandingkan dengan yang berada dalam ikan yang dirawat dengan bahan makanan rujukan. Sebagai kesimpulannya, hampas isirong sawit adalah suatu sumber karbon yang baik untuk pengeluaran enzim penguraian selulosa dan hemiselulosa. Kandungan proteinnya boleh ditambah melalui fermentasi kulat dan pemakanan ikan boleh mengandunyi isirong yang diperkaya sehingga tahap 10% sebagai penggantian sebahagian daripada makanan ikan dan pengikat.
ACKNOWLEDGEMENTS

I would like to thank the Almighty God for the opportunity and grace to have accomplished this study.

My sincere thanks and appreciation goes to the Chairman of my supervisory committee, Associate Professor Dr. Mohamed Hanafi Musa for his patience and knowledgeable supervision throughout the course of this programme. I also wish to extend my gratitude to Associate Professor Dr. Mohd. Salleh Kamarudin and Dr. Radziah Othman for their guidance and invaluable suggestion throughout the study period.

I wish to also acknowledge the help from some of my colleagues, Mohammed Jalloh, Osman Haruna, Abdul Samad, Ladan as well as the technical staff of the Faculty of Agriculture, especially Mrs. Fouzaiah Sulaiman.

My deepest gratitude goes to my husband for his support and understanding, without which I would not have been able to carry out this study. To Dashe and Chukwuma, thank you. I would like to thank my Mother, Cecelia Nweke for her spiritual support and sacrifices without which I would not have been able to attain this academic degree.

I acknowledge the Faculty of Agriculture, University Putra Malaysia for the premises and facilities used in this study.

Serdang, Malaysia, April 2003.
I certify that an Examination Committee met on the 6th of August 2003 to conduct the final examination of Iluyemi Florence Buchi on her Doctor of Philosophy thesis entitled “Bioconversion of Palm Kernel Cake and its Evaluation as an Aquafeed Ingredient” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Azizah Hashim, Ph.D.
Professor
Department of Land Management
Faculty of Agriculture
Universiti Putra Malaysia

Mohamed Hanafi Musa, Ph.D.
Associate Professor
Department of Land Management
Faculty of Agriculture
Universiti Putra Malaysia

Radziah Othman, Ph.D.
Department of Land Management
Faculty of Agriculture
Universiti Putra Malaysia

Mohd. Saleh Kamarudin, Ph.D.
Associate Professor
Department of Agricultural Technology
Faculty of Agriculture
Universiti Putra Malaysia

Mohd. Jaafar Daud, Ph.D.
Pusat Penyelidikan Terkan
Institute Penyelidikan dan Kemajuan Pertanian Malaysia (Mardi)

GULAM RUSUL/RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 6th August 2003
This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee are as follows:

Mohamed Hanafi Musa, Ph.D.
Associate Professor
Department of Land Management
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Radziah Othman, Ph.D.
Department of Land Management
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Mohd. Saleh Kamarudin, Ph.D.
Associate Professor
Department of Agricultural Technology
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 6th August 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for the quotations and the citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ILUYEMI FLORENCE BUCHI

Date: 6th August 2003
TABLE OF CONTENTS

Page

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

II LITERATURE REVIEW

2.1 Palm kernel cake
 2.1.1 Source
 2.1.2 Chemical composition
 2.1.3 Uses

2.2 Solid state fermentation
 2.2.1 History
 2.2.2 Important procedures in SSF
 2.2.3 Moisture and water activity
 2.2.4 Temperature and heat exchange
 2.2.5 pH
 2.2.6 Mass transfer
 2.2.7 Aeration
 2.2.8 Control of contaminants
 2.2.9 Substrate concentration and availability
 2.2.10 Bioreactor selection

2.3 Pretreatments
 2.3.1 Mild alkali treatment
 2.3.2 Strong alkali without heat
 2.3.3 Hot alkali treatment
 2.3.4 Peracetic acid delignification
 2.3.5 Dilute acids
 2.3.6 Concentrated acids
 2.3.7 Use of oxidizing agents
2.3.8 Autoclaving 32
2.3.9 Steam explosion 32
2.3.10 Acid steam pretreatment 33
2.3.11 Water 33

2.4 Microbial basis of process 33
2.4.1 Aspergillus 35
2.4.2 Trichoderma 36
2.4.3 Scelrotium rolfsii 37

2.5 Tilapia 38
2.5.1 Biology 38
2.5.2 Cultivation 40
2.5.3 Dietary requirements 41
2.5.4 Outlook of fish feed production in Malaysia 42

2.6 Summary 43

III GENERAL MATERIALS AND METHODS
3.1 Chemical analysis 46
3.1.1 Determination of moisture and dry matter 46
3.1.2 Determination of ash 46
3.1.3 Crude protein 47
3.1.4 Ether extract 48
3.1.5 Determination of crude fibre 49
3.1.6 Determination of acid detergent fibre 50
3.1.7 Determination of acid detergent lignin 51
3.1.8 Determination of neutral detergent fibre 52
3.1.9 Determination of mineral 53
3.1.10 Determination of gross energy 54
3.1.11 Determination of amino acids 55
3.1.11.1 Acid hydrolysis 55
3.1.11.2 Drying 56
3.1.11.3 Re-drying 56
3.1.11.4 Derivatization 56
3.1.11.5 Standard preparation 57
3.1.11.6 HPLC analysis 57
3.1.11.7 Calculation of amino acids 58
3.1.12 Feed digestibility 58

IV FUNGAL PROTEIN ENRICHMENT OF PALM KERNEL CAKE UNDER SOLID STATE CONDITIONS: EFFECTS ON DEGRADATION OF CELLULOSE AND HEMICELLULOSE
4.1 Introduction 60
4.2 Materials and methods 62
4.2.1 Fungal strains 62
4.2.2 Effect of inoculum concentration on fungal protein enrichment of palm kernel cake 63
4.2.3 Effect of moisture level 64
4.2.4 Effect of using palm kernel cake as the carbon source 64
4.2.5 Effect of initial pH 65
4.2.6 Statistical analysis 65

4.3 Results
4.3.1 Composition of palm kernel cake

4.3.2 Effect of inoculum concentration on fungal protein enrichment of palm kernel cake 66
4.3.3 Effect of moisture content 68
4.3.4 Effect of palm kernel cake as carbon source 71
4.3.5 Effect of pH on extracellular protein production 72
4.3.6 Effect of optimum pH and moisture on protein content of fermented palm kernel cake 74
4.3.7 Changes in hemicellulose and cellulose content of fermented palm kernel cake 75

4.4 Discussion 76
4.5 Conclusion 79

V EFFECT OF FUNGAL FERMENTATION ON THE FATTY ACID AND AMINO ACID CONTENT OF PALM KERNEL CAKE
5.1 Introduction 80
5.2 Materials and methods
5.2.1 Preparation of fatty acid methyl esters 82
5.2.2 Statistical analysis 83
5.3 Results
5.3.1 Fatty acids content of fermented palm kernel cake 84
5.3.2 Amino acids content of fermented palm kernel cake 87
5.4 Discussion 87
5.5 Conclusion 91

VI ENZYMATIC RELEASE OF REDUCING SUGARS FROM PALM KERNEL CAKE USING FIVE FUNGAL SPP.
6.1 Introduction 92
6.2 Materials and methods
6.2.1 Crude enzyme preparation and enzyme activity assay 94
6.2.2 Enzyme activity assay 94
6.2.3 Saccharification of palm kernel cake 95
6.2.4 Statistical analysis 96
6.3 Results
6.3.1 Enzyme activity 96
6.3.2 Saccharification of palm kernel cake 100
6.4 Discussion 101
6.5 Conclusion 102
VII MANNAN DEGRADING ENZYME PRODUCTION BY FUNGI GROWN ON PALM KERNEL CAKE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>104</td>
</tr>
<tr>
<td>7.2 Materials and methods</td>
<td></td>
</tr>
<tr>
<td>7.2.1 Liquid solid cultivation of palm kernel cake</td>
<td>106</td>
</tr>
<tr>
<td>7.2.2 Solid state cultivation condition of palm kernel cake</td>
<td>106</td>
</tr>
<tr>
<td>7.2.3 Enzyme activity assay</td>
<td>107</td>
</tr>
<tr>
<td>7.2.4 Statistical analysis</td>
<td>107</td>
</tr>
<tr>
<td>7.3 Results</td>
<td></td>
</tr>
<tr>
<td>7.3.1 Liquid solid cultivation of fungi using palm kernel cake</td>
<td>108</td>
</tr>
<tr>
<td>7.3.2 Time course of mannanase production</td>
<td>111</td>
</tr>
<tr>
<td>7.3.3 Solid state cultivation of fungi on palm kernel cake</td>
<td>113</td>
</tr>
<tr>
<td>7.4 Discussion</td>
<td>115</td>
</tr>
<tr>
<td>7.5 Conclusion</td>
<td>118</td>
</tr>
</tbody>
</table>

VIII SCALE-UP SOLID STATE FERMENTATION OF PALM KERNEL CAKE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>119</td>
</tr>
<tr>
<td>8.2 Materials and methods</td>
<td></td>
</tr>
<tr>
<td>8.2.1 Cultivation in plastic bags</td>
<td>120</td>
</tr>
<tr>
<td>8.2.2 Bioreactor design and cultivation</td>
<td>122</td>
</tr>
<tr>
<td>8.2.3 Analytical determinations</td>
<td>122</td>
</tr>
<tr>
<td>8.3 Results</td>
<td></td>
</tr>
<tr>
<td>8.3.1 Proximate analysis</td>
<td>123</td>
</tr>
<tr>
<td>8.4 Discussion</td>
<td>124</td>
</tr>
<tr>
<td>8.5 Conclusion</td>
<td>127</td>
</tr>
</tbody>
</table>

IX PERFORMANCE OF RED TILAPIA FED WITH FERMENTED PALM KERNEL CAKE: A SHORT-TERM FEEDING TRIAL

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>128</td>
</tr>
<tr>
<td>9.2 Materials and methods</td>
<td></td>
</tr>
<tr>
<td>9.2.1 Preparation of experimental diets</td>
<td>129</td>
</tr>
<tr>
<td>9.2.2 Feeding trial</td>
<td>130</td>
</tr>
<tr>
<td>9.2.3 Carcass analysis</td>
<td>133</td>
</tr>
<tr>
<td>9.2.4 Digestibility studies</td>
<td>133</td>
</tr>
<tr>
<td>9.2.5 Statistical analysis</td>
<td>134</td>
</tr>
<tr>
<td>9.3 Results</td>
<td></td>
</tr>
<tr>
<td>9.3.1 Growth trial</td>
<td>134</td>
</tr>
<tr>
<td>9.3.2 Carcass analysis</td>
<td>135</td>
</tr>
<tr>
<td>9.3.3 Protein and dry matter digestibility</td>
<td>135</td>
</tr>
<tr>
<td>9.4 Discussion</td>
<td>137</td>
</tr>
<tr>
<td>9.5 Conclusion</td>
<td>140</td>
</tr>
</tbody>
</table>
X GENERAL DISCUSSION 142

REFERENCES 146
APPENDIX 161
VITA 163
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Recommended amount of protein, lipids and fibre in percent on as fed basis.</td>
</tr>
<tr>
<td>4.1</td>
<td>Composition of PKC</td>
</tr>
<tr>
<td>4.2</td>
<td>The effects of sucrose and PKC as the carbon sources for inoculum preparation on the CP content of fermented PKC using SSF</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of initial medium pH of 4.5, and PKC as the carbon source on protein content using SSF technique</td>
</tr>
<tr>
<td>5.1</td>
<td>The gas chromatograph parameters used for fatty acid analysis</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of fermentation on the fatty acids content of PKC</td>
</tr>
<tr>
<td>5.3</td>
<td>Fatty acid composition of palm kernel oil</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of fermentation on the amino acids content of PKC</td>
</tr>
<tr>
<td>8.1</td>
<td>Comparison of analysis results obtained from SSF of PKC in plastic bag and bioreactor with aeration.</td>
</tr>
<tr>
<td>9.1</td>
<td>Feed Ingredients and Levels of Incorporation</td>
</tr>
<tr>
<td>9.2</td>
<td>Proximate analysis of feeds</td>
</tr>
<tr>
<td>9.3</td>
<td>Mean weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio and survival</td>
</tr>
<tr>
<td>9.4</td>
<td>Mean percent protein, lipids, ash, phosphorus, calcium, copper and moisture of whole fish.</td>
</tr>
<tr>
<td>9.5</td>
<td>Percentage protein digestibility of test diets.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cross section of the oil palm fruit</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>The external appearance and internal structure of the oil palm</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Scanning electron photomicrographs of the filtering apparatus of Tilapia galilae; G = gill rakers, M = microbranchiopines</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Alimentary tracts of Tilapia heudelotii</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of inoculum level on the CP content of solid state fermented PKC</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of moisture level on the CP content of solid state fermented PKC</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Interaction of moisture levels and inoculum concentrations on the protein content of solid state fermented PKC</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of pH on the extracellular protein content of liquid inoculum medium</td>
<td>73</td>
</tr>
<tr>
<td>4.5</td>
<td>Hemicellulose and cellulose content following treatment with fungi in SSF of PKC</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage composition of (a) Saturated fatty acids (b) Unsaturated fatty acids of fermented PKC using several fungi in SSF technique</td>
<td>86</td>
</tr>
<tr>
<td>6.1</td>
<td>Activities of (a) β-D-mannanase, (b) endoglucanase, (c) Fpase, (d) β-mannosidase and α-galactosidase obtained under the conditions used for medium preparation for protein enrichment</td>
<td>100</td>
</tr>
<tr>
<td>6.2</td>
<td>Effect of crude enzyme extracts on the concentration of reducing sugars released during LSF of PKC</td>
<td>101</td>
</tr>
<tr>
<td>7.1</td>
<td>Activities of (a) β-D-mannanase, (b) β-mannosidase and (c) α-galactosidase produced by different fungi after 13 days of growth on PKC using LSF</td>
<td>111</td>
</tr>
</tbody>
</table>
7.2 Effect of incubation time on mannanase activity produced by different fungi grown on PKC using LSF

7.3 Mannan-degrading enzymes activities produced by (a) *A. niger* and (b) *S. rolfsii* using SSF

7.4 Comparison of mannanase activity under LSF and SSF for *A. niger* and *S. rolfsii*

8.1 The SSF of PKC with *T. logibrachiatum* in autoclavable plastic bags (a) without aeration, and (b) aeration.

8.2 Setup for SSF of PKC in a rotating drum-type bioreactor.
LIST OF ABBREVIATIONS

ADF : Acid detergent Fibre
ADL : Acid detergent Lignin
ANOVA : Analysis of variance
BW : Body weight
CF : Crude Fibre
CP : Crude Protein
D : Diet
DE : Digestible Energy
DM : Dry matter
EE : Ether Extract
FAO : Food and Agricultural Organization of the United Nations
FCR : Feed conversion ratio
GC : Gas Chromatography
HPLC : High Pressure Liquid Chromatography
LSD : Least Significant Difference
LSF : Liquid solid fermentation
NDF : Neutral detergent Fibre
NSP : Non-starch polysaccharides
PER : Protein efficiency ratio
PKC : Palm kernel cake
PITC : Phenyl-isothiocyanate
PORLA : Palm Oil Registration and Licensing Authority
PTC : Phenyl-thiocarbamine
PUFA : Polyunsaturated fatty acid
SGR : Specific growth rate
SSF : Solid state fermentation
TL-PKC : *Trichoderma longibrachiatum* fermented palm kernel cake
UPM : Universiti Putra Malaysia
CHAPTER I

INTRODUCTION

The concept of bioconversion of organic solid substrates into useful products is not new. It has been used for many centuries, long before the underlying microbiological, biochemical and bioengineering principles were understood. Thus, the early developments were based on local traditional practices, rather than on accurate scientific basis. Recently, a lot of scientific research and developments are being carried out either to upgrade or optimise traditional technologies or to develop new ones for maximum utilization of organic solid substrates for the production of feed, food, fuels and fertilizers. At present, many types of processes are being carried out on large scale. Examples are indigenous fermented foods (Steinkraus, 1983), mushroom production (Hatch and Finger, 1979), composting (Diaz et al., 1982), production of fuels, such as methane and ethanol (NRC, 1981), and the production of certain enzymes (Kim et al., 1985). Production of microbial biomass for animal feed has been carried out mainly on pilot scale (Durand and Chereau, 1988).

Lignocellulosic materials are the main organic substrates that are being used for the production of microbial biomass. This is because most of the organic carbon that is produced as plant biomass is accumulated in lignocelluloses, which is the main structural component of plant cell wall. Chemically, lignocelluloses materials are
composed of three major components, i.e. extraneous substances, polysaccharides and lignin (Janes, 1969). Extraneous substances are made up of ash, terpenes, resins and phenols (Rydholm, 1965; Janes, 1969). The polysaccharide component is comprised of mainly cellulose, some hemicellulose together with small quantities of starch, pectin and water-soluble polysaccharides, such as arabinogalactans. Lignin is essentially a 3-dimensional phenylpropane polymer with phenylpropane units held together by ether and carbon-carbon bonds. In lignocelluloses materials, the percentage of lignin can be as high as 29% in conifers and 26% in broad-leaved species on a dry matter basis (Leonowicz et al., 1988).

Palm kernel cake (PKC) which is a residue obtained from the extraction of palm kernel oil is an abundant and low-cost organic raw material in Malaysia as well as other countries where oil palm is cultivated and processed in large scale. Presently, Malaysia is the largest producer of oil palm. The cultivated area is estimated at about 2.3 million hectares with production of oil registering 8 million tonnes in 2000 (PORLA, 2001). The PKC production has been increasing correspondingly. For example, in 1999, 1.2 million tonnes of PKC was produced. This value however has increased to 1.6 million in the year 2000. The PKC therefore represents an under-utilized residue in Malaysia. The polysaccharides of most lignocelluloses, which are composed of predominantly cellulose, produce glucose as the major monomer upon complete hydrolysis. In contrast, polysaccharides of PKC produced mainly mannose and some quantities of glucose and galactose upon complete hydrolysis. This is because PKC polysaccharides are composed mainly of hemicelluloses, which are
essentially linear mannan, closely bound to small quantities of galactomannan (Daud and Jarvis 1992).

The complexity of lignocelluloses reduces their nutritional quality for animal consumption (Kim, 1981). Microbiological technologies can help upgrade such lignocelluloses substrates to increase their biological value in animal feeding. In nature, microorganisms, mainly bacteria and fungi live on lignocelluloses. Therefore, upgrading usually involves the conversion of these lignocelluloses to microbial biomass by cultivating fungi, yeasts or bacteria on them with or without pre-treatment of the lignocelluloses substrate (Zadrazil, 1980; Taniguchi et al., 1982). Solid-state cultivation of microorganisms is the preferred method since it mimics the conditions that are prevalent under natural conditions. During solid-state fermentation, microbial growth is carried out on water insoluble substrates in the absence of free water. This process offers some advantages, such as simpler technology, use of a more concentrated substrate, low waste water output and improved product recovery since the solid mass coming out of the bioreactor would be the final product.

Bacteria and yeasts grow on the surface film of these solid substrates much like in free liquid. Filamentous fungi, however, can grow in the absence of free water, utilizing the bound water of the substrate (Tengerdy, 1985). Therefore, fungi are the most efficient decomposers of lignocelluloses. Various species belonging to the genera Aspergillus, Penicillium, Trichoderma and Fusarium are commonly used. The fungi most investigated for animal feed are Trichoderma spp. (Tengerdy, 1985),