

UNIVERSITI PUTRA MALAYSIA

EXPERIMENTAL AND COMPUTATIONAL CRUSHING BEHAVIOUR OF LAMINATED COMPOSITE SHELLS

ELSADIG MAHDI AHMED SAAD

FK 2000 52

EXPERIMENTAL AND COMPUTATIONAL CRUSHING BEHAVIOUR OF LAMINATED COMPOSITE SHELLS

By

ELSADIG MAHDI AHMED SAAD

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Engineering Universiti Putra Malaysia

December 2000

To My Exemplary Parents, Sisters and Brothers

To My Wonderful Brother's and Sister's Sons and Daughters, Especially Shahinaz and Selma, to Whom I am Very Proud.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

EXPERIMENTAL AND COMPUTATIONAL CRUSHING BEHAVIOUR OF LAMINATED COMPOSITE SHELLS

By

ELSADIG MAHDI AHMED SAAD

December 2000

Chairman: Associate Professor Barkawi Bin Sahari, Ir. Ph.D.

Faculty: Engineering

This thesis presents the effect of structural geometry, reinforcement type and hybridisation on the crushing behaviour, energy absorption, failure mechanism and failure mode of cylindrical, conical and compound composite shell. The static crushing behaviour of cylindrical, conical and compound composite shell under uniform axial load has been investigated, experimentally, analytically and numerically. Four types of composites were tested, namely, carbon fibre/epoxy, glass fibre/epoxy, oil palm frond fibre/epoxy and the carbon-glass hybrid. This work also examines the effect of the residual stresses built on the crushing behaviour; energy absorption, failure mechanism and mode of failure of the filament wound laminated circular conical composite shell.

For the circular cylindrical and conical shells, the cones vertex angles tested were 0, 6, 12, and 18^{0} . Results for the glass/epoxy circular cylindrical shell show that

the stress distribution is constant along the shell generator. On the other hand results for the glass/epoxy circular conical shells with vertex angles of 6, 12 and 18 degrees show that the stress distribution is sensitive along the shell generator. As the vertex angle increases, the average crushing load increases, while the initial failure load decreases.

The compound shells used in this investigation were the cone-cone and conecylinder-cone intersection composite shells. For the cone-cone intersection shells, the cone vertex angles were 10^{0} , 15^{0} , 20^{0} and 25^{0} . While for the cone-cylinder-cone, the cone vertex angles are 10^{0} and 15^{0} and the cylindrical part lengths were varied between 0 and 50 mm.

The results showed that the initial failure was dominated by interfacial and shear failure, while the delamination and eventually fibre fracture dominated the failure mechanism after the initial first failure. For the circular cylindrical and conical shells, the proposed analytical solution well predicts the initial failure load for the circular cylindrical and conical laminated composite shells. The failure criteria used to predict the initial failure show an excellent agreement. For the cone-cone intersection composite shell, the results showed that the structures with vertex angles 20⁰ and 25⁰ exhibited good energy absorption capability. For the cone-cylinder-cone, numerical results show that high-localised stress has been concentrated at the junctions between the cylinder and cones. Experimental results showed that structures of cylindrical part

length varies between 10 and 20 mm exhibited good energy absorption capability and stands a very high crushing load.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

EKSPERIMEN DAN KOMPUTATION PERTEMBUNGAN TINGKAHLAKU BERLAMINA KOMPOSIT RANGKA LUAR

Oleh

ELSADIG MAHDI AHMED SAAD

Oktober 2000

Pengerusi: Profesor Madya Barkawi Bin Sahari, Ph.D.

Fakulti: Kejuruteraan

Tesis ini memberi penjelasan tentang kesan geometri struktur, jenis perykukah dan hibridisasi lerada kelakuan hentakan dalam, penyerapan tenaga, mekanisma kegagalan dan mod kegagalan kon selinder dan rangka luar sebatian komposit. Kelakuan hentakan statik selinder, kon dan campuran komposit rangka luar dalam bebanan selanjar juga dikaji secara analisis, pengiraan, dan secara percubaan. Terdapat empat jenis komposit yang diuji iaiyu gentian karbon /epoksi, gentian kaca /epoksi, gentian tandan kelapa sawit /epoksi dan karbon gentian kaca /epoksi. Tesis ini juga mengkaji kesan tegasan baki dalam keadaan hentakan, penyerapan tenaga dan mekanisma kegagalan dan mod filamen berlamina rangka luar kon komposit.

Untuk kon dan silinder, sudut puncak kon diuji pada 0, 6, 12, 18 darjah. Kajian dan perkiraan secara pengiraan menunjukkan tegasan baki tertumpu pada hujung kecil kon. Jika tegasan baki merupakan permasalahan utama maka struktur yang terbaik

adalah rangka luar selinder yang menpunyai sudut 0. Bila sudut puncak meningkat, bebanan tekanan hentakan meningkat manakala kadar bebanan permulaan gagal menurun.

Sebatian rangka luar yang digunakan untuk kajian adalah kon-kon dan konkon dan kon-selinder-kon yang terpotong pada komposit rangka luar. Bahagian konikal dalam sebatian terpotong adalah simetri. Untuk rangka luar kon-kon terpotong, sudut puncak adalah 10, 15, 20 dan 25. Bagi kon-silinder-kon, sudutnya adalah 10 dan 15 darjah. Jarak antara silinder adalah diubah diantara 0 dan 50mm.

Mod kegagalan telah dikaji dengan gambar diambil semasa hentakan spesimen dilakukan. Hasilnya kegagalan awal di dominasi oleh antaramuka dan kegagalan tegasan, manakala delaminasi dan kegagalan gentian mendominasi mekanisma kegagalan selepas kegagalan awal. Untuk selinder dan kon rangka luar, seperti yang ditunjukkan oleh kajian analitik mentafsirkan kegagalan awal untuk selinder dan kon berlamina rangka luar komposit. Dengan ini kriteria kegagalan yang digunakan menunjukkan korelasi yang tinggi.

Dari pandangan geometri dan bahan, yang telah dianalisis secara analitik, eksperimen dan pengiraan menunjukkan rangka luar selinder diperbuat daripada karbon/epoksi meramalkan beban berpusat sebagai sebab utama kegagalan awal. Boleh ditunjukkan juga bahawa bila sudut puncak meningkat kadar kegagalan awal menurun. Untuk potongan kon-kon komposit rangka luar, hasil menunjukkan bahawa

dengan sudut puncak 20 dan 25 mempamerkan sifat penyerap tenaga yang tinggi. Hasil pengiraan menunjukkan tegasan tetempat banyak ditemui pada pertemuan antara dua kon. Untuk kon-selinder-kon, hasil pengiraan mununjukkan bahawa tegasan tetempat tertumpu pada tempat pertemuan antara selinder dan kon. Hasil Eksperimen juga menunjukan panjang bahagian selinder adalah diantara 10 hingga 20mm mempamerkan suatu keadaan yang boleh menyerap tenaga yang optimum dan dapat menahan bebanan hentakan yang tinggi.

ACKNOWLEDGEMENTS

First I would like to thank my supervisor Associate Prof. Dr. Barkawi Bin Sahari. Many ideas originate in our frequent discussion and his constant support and patience over the years have been of invaluable help.

My deep thanks to my co-supervisors Dr. Yousif A. Khalid and Dr A. M. S. Hamouda for their always helpful advise and for many discussions.

I am very grateful to Hj Md Sharaani for helping out in designing and setting up of the experiments. I also, acknowledge the help from Mr. Ahmed Shaifuldeen.

The period from October 1998 to May 1999 was spent at the Institute of Solid Mechanics, Denmark Technical University at Lyngby. I am indebted to Professor Pauli Pedersen for making this visit possible, and thus giving me a great opportunity to spend some productive and quality time in his institute and also letting me communicate with great scientists.

Special thanks go to my family and colleagues, Hisham and Rasha, who have helped and supported me beyond description.

TABLE OF CONTENTS

	rage
DEDICATION	ii
ABSTRACT	iii
ABSRTAK	vi
ACKNOWLEDGEMENTS	ix
ABROVAL SHEETS	х
DECLARATION FORM	xii
LIST OF TABLES	xviii
LIST OF FIGURES	xix
NOTATION AND ABBREVIATIONS	XXV

CHAPTER

1	INTRODUC	TION		1
2	LITERATU	RE REV	IEW	8
	2.1	Backg	round Review	8
		2.1.1	Constituent Materials of Composite	8
		2.1.2	Reinforcement	8
		2.1.3	Matrix	9
		2.1.4	Epoxy Resin	9
	2.2	Types	of Fibres	10
		2.2.1	Oil Palm Frond Fibre	10
		2.2.2	Carbon Fibre	15
		2.2.3	Glass Fibre	19
	2.3	Micro	mechanics of Composite Materials	22
	2.4	Engine	eering Properties in Global Coordinate Systems	27
	2.5	Failure	e Criteria	32
	2.6	Compo	osite Shells	34
		2.6.1	Fabrication Process of Composite	34
			2.6.1.1 Background Review	34
			2.6.1.2 Hand Lay-up	35
			2.6.1.3 Filament Wound	35
		2.6.2	Work On Composite Shells	38
			2.6.2.1 Development Of Shell Theory	38
			2.6.2.2 Circular Cylindrical Composite Shells	39
			2.6.2.3 Circular Conical Composite Shells	47
			2.6.2.4 Compound Shells	49
	2.7	Finite I	Element Analysis Work	50
	2.8	Conclu	sion	53

D

3	METHODO	LOGY	54
	3.1	Analytical Work	57
	3.2	Finite Element Simulation Work	58
	3.3	Experimental Work	59
	3.4	Discussion	61
4	ANALYTIC	AL WORK	62
	4.1	Introduction	62
	4.2	Assumptions	62
	4.3	Shell Coordinates and Infinitesimal Distance in Shell	
	•••	Lavers	63
	4.4	Basic Equation	65
	4.5	Equilibrium	66
		4.5.1 Stress Resultants and Couples	66
		4.5.2 Strain-Displacement Relationship	67
		4.5.3 Transformation Relations	71
	46	Failure Criteria	72
	47	Numerical Examples	75
	•••	4.7.1 Circular Cylindrical Shell	75
		472 Circular Conical Shell	76
	48	Results	78
	4.0	Discussion	79
	4.10	Conclusion	80
5	FINITE ELE	MENT WORK	82
	5.1	Element Description	83
	5.2	Nodal Systems	84
	5.3	Composite Models	85
		5.3.1 Local Coordinate System	85
		5.3.2 Composite Constitutive Model	86
		5.3.3 Integration of Element Matrices	88
	5.4	Effect of Fabrication Residual Stresses on FWL	
		Composite Shells	91
	5.5	FWL Cylindrical and Conical Composite Shells Under	
		Axial Compression	95
	5.6	FWL Hybrid Cylindrical Composite Shells Under	
		Axial Compression	95
	5.7	FWL Cone-Cone Composite Shells Under Axial	
		Compression	98
	5.8	FWL Cone-Cylinder-Cone Composite Shells Under	
		Axial Compression	101
	5.9	Numerical Example	104
		5.9.1 Residual Stresses in FWL Circular Shells	104
		5.9.2 Crushing Behaviour of FWL Cylindrical and	
		Conical Composite Shells	114

		5.9.3	FWL Cone-Cone Intersection (C-C) Composite	
			Shell	118
		5.9.4	FWL Cone-Cylinder-Cone Intersection (C-T-C)	
			Composite Shell	125
	5.10	Summ	nary and Conclusion	
				127
6	EXPERIMEN	NTAL V	WORK	
	6.1	Fabri	cation Method	128
		6.1.1	Fabrication Process of FWL Composite Shells	128
		6.1.2	Fabrication Process of OPFFRP Cylinder and	128
			Cones	
	6.2	Geom	netry and Material	133
	6.3	Test p	procedure	134
	6.4	Resul	ts	139
		6.4.1	Circular Conical Shells	
			6.4.1.1 Crushing Behaviour	139
			6.4.1.2 Crushing Energy Absorption	143
			6.4.1.3 Structural Volume Reduction	145
			6.4.1.4 Discussion	164
		6.4.2	FWL G/C Hybrid Circular Cylindrical Shells	164
			6.4.2.1 Crushing Behaviour	164
			6.4.2.2 Crushing Energy Absorption	167
			6.4.2.3 Structural Volume Reduction	167
			6.4.2.4 Discussion	174
		6.4.3	FWL Cone-Cone Intersection (C-C) Composite	
			Shells	175
			6.4.3.1 Crushing Behaviour	175
			6.4.3.2 Crushing Energy Absorption	177
			6.4.3.3 Structural Volume Reduction	178
			6.4.3.4 Discussion	178
		6.4.4	FWL Cone-Cylinder-Cone Intersection (C-T-C)	
			Composite Shells	189
			6.4.4.1 Crushing Behaviour	189
			6.4.4.2 Crushing Energy Absorption	191
			6.4.4.3 Structural Volume Reduction	192
			6.4.4.4 Effect of I Length on the Initial Failure	100
			of C-1-C Intersection Shell	193
			6.4.4.5 Cylindrical Part length Consideration	193
			6.4.4.6 Discussion	206
		0.4.3	Effect of Material and Geometry	200
			0.4.5.1 Energy Adsorption	207
		6 4 6	0.4.3.2 Initial Failure Load	207
		0.4.0	Comparison between Experimental and	014
			I NEORENCEI KESUITS	214
			0.4.0.1 FWL CIrcular Cylindrical and Conical	014
			Composite Shells	214

		6.4.6.2 FWL Compound Composite Shells	216
	6.5	Discussion	218
	6.6	Conclusion	219
7	OVERALL I	DISCUSSION	221
8	CONCLUSIO	ONS AND RECOMMENDATIONS	228
REFE	RENCES		236
APPEN	NDICES		245
VITA			254

LIST OF TABLES

Table		Page
2.1	Typical mechanical properties of some of epoxy resins.	10
2.2	Yield of fresh fruit bunches crude palm oil and palm.	13
2.3	Oil palm planted area: 1975 - 1999 (Hectares).	14
2.4	Typical composition of glass fibre (in weight percent).	21
4.1	Typical engineering properties of CFRP and GFRP.	77
4.2	Maximum stresses (MPa) in principal material system stress space CFRP and GFRP.	78
4.3	Axial load (kN) cause initial failure in filament wound laminated circular cylindrical and conical shells.	79
5.1	Finite element predicted axial load (kN) causes failure in filament wound laminated circular cylindrical and conical shells.	115
5.2	Finite element predicted axial load (kN) causes failure in filament wound laminated cone-cone intersection composite	
	shells.	119
6.1	Typical engineering properties of constituent materials.	137
6.2	Description of FWL carbon, glass and oil palm frond fibre	
<i>(</i>)	cylindrical and conical composite shell.	138
6.3	Description of FWL carbon/glass/epoxy hybrid cylinder.	138
6.4	shell.	138
6.5	Description of filament wound cone-cylinder-cone intersection composite shell.	139
6.6	Crush loads specific energy absorption and structural volume reduction of FWL glass fibre/epoxy, carbon fibre/epoxy and HLU oil palm frond fibre/epoxy circular cylindrical and conical shells	163
6.7	Crush loads specific energy absorption and structural volume reduction of FWL glass/Carbon hybrid composite circular	105
6.0	cylindrical shells.	174
6.8	reduction of FWL GFRP and CFRP C-C intersection shell.	188
6.9	crush loads specific energy absorption and structural volume reduction of FWL GFRP and CFRP C-T-C intersection shell.	205
6.10	Comparison between the experiment, theoretical results.	214
6.11	Comparison between the experiment and the finite element prediction of axial load (kN) causes initial failure in filament	
	wound laminated cone-cone intersection GFRP composite shells.	216
6.12	Comparison between the experiment and the finite element prediction of axial load (kN) causes initial failure in filament wound laminated cone-cylinder-cone intersection GFRP	
	composite shells.	216

LIST OF FIGURES

Figure		Page
2.1	Weight Loss and Shrinkage vs. Temperature during Stabilisation	
	process	16
2.2	Unidirectional fibre square packing geometry	22
2.3	Variation of engineering properties with fibre orientation angle	
	for carbon fibre/epoxy	30
2.4	Variation of engineering properties with fibre orientation angle	
	for E-glass fibre/epoxy	31
2.5	Shells of Revolution of constant meridional curvature	38
2.6	Compound shells composed of cone-cone and cone-cylinder-	
	cone in different arrangements	39
3.1	Flow chart describes the plan to carry out the work.	56
3.2	Flow chart describes analytical work	57
3.3	Flow chart describes the finite element simulation work	58
3.4	Flow chart describes the fabrication process of the specimens	59
3.5	Flow chart describes the specimen preparation and the testing	
	criteria	60
4.1	Position vector to a point on the middle surface	64
4.2	Conical shell	65
4.3	Force equilibrium on shell element	66
4.4	Maximum stresses in principal material system stress space	73
4.5	Circular cylindrical shell model for axial compression	75
4.6	Circular conical shell model for axial compression	77
5.1	Quadratic thick shell elements (QTS8)	84
5.2	Definition of an orthotropic material in 2-D using an angle of	
	orthotropy	87
5.3	Definition of an orthotropic material in 3-D using a Cartesian set	87
5.4	Typical tow-step cure cycle	92
5.5	Circular conical shell with vertex angle of 0 degree subjected to	
	a uniform temperature	93
5.6	Circular conical shell with vertex angle of 6 degree subjected to	
	a uniform temperature	93
5.7	Circular conical shell with vertex angle of 12 degree subjected to	
	a uniform temperature	94
5.8	Circular conical shell with vertex angle of 18 degree subjected to	
5.0	a uniform temperature	94
5.9	Model of circular conical shell with vertex angle of 0 degree for	06
	axial compression	96
5.10	Model of circular conical shell with vertex angle of 6 degree for	26
	axial compression	96
5.11	Model of circular conical shell with vertex angle of 12 degree	05
	tor axial compression	97

5.12	Model of circular conical shell with vertex angle of 18 degree	07
5 13	Circular cone-cone intersection shell model with vertex angle of	71
5.15	10 degrees for axial compression	99
5.14	Circular cone-cone intersection shell model with vertex angle of	
	15 degrees for axial compression	99
5.15	Circular cone-cone intersection shell model with vertex angle of	
	20 degrees for axial compression	100
5.16	Circular cone-cone intersection shell model with vertex angle of	
	25 degrees for axial compression	100
5.17	Circular cone-cylinder-cone intersection shell model with vertex	
	angle of 10 degrees and cylindrical part length of 10 mm for	100
C 10	axial compression	102
5.18	Circular cone-cylinder-cone intersection shell model with vertex	
	angle of 10 degrees and cylindrical part length of 20 min 10	102
5 10	Circular cone-cylinder-cone intersection shell model with vertex	102
5.19	angle of 10 degrees and cylindrical part length of 30 mm for	
	axial compression	103
5.20	Circular cone-cylinder-cone intersection shell model with vertex	105
0.20	angle of 10 degrees and cylindrical part length of 40 mm for	
	axial compression	103
5.21	Circular cone-cylinder-cone intersection shell model with vertex	
	angle of 10 degrees and cylindrical part length of 50 mm for	
	axial compression	104
5.22	Axial residual stresses at the top surface of cured FWL circular	
	conical shells	106
5.23	Axial residual stresses at the middle surface of cured FWL	107
5.24	circular conical shells	107
5.24	Axial residual stresses at the bottom surface of cured FWL	100
5 25	Hoon residual stresses at the ton surface of cured FWI circular	108
5.25	conical shells	110
5.26	Hoop residual stresses at the top surface of cured FWL circular	110
	conical shells	111
5.27	Hoop residual stresses at the bottom surface of cured FWL	
	circular conical shells	112
5.28	Deformed structure of circular cone with vertex angle of 0^0 at	
	initial failure	116
5.29	Deformed structure of circular cone with vertex angle of 6° at	
	initial failure	117
5.30	Deformed structure of circular cone with vertex angle of 12° at	117
5 21	initial failure	117
5.51	Deformed structure of circular cone with vertex angle of 18° at	110
	initial failure	118

5.32	Deformed mesh of FWL cone-cone composite shell intersected	120
5.33	Deformed mesh of FWL cone-cone composite shell intersected	120
	at vertex angle of 15 ⁰ .	120
5.34	Deformed mesh of FWL cone-cone composite shell intersected	
	at vertex angle of 20 ⁰ .	121
5.35	Deformed mesh of FWL cone-cone composite shell intersected	
	at vertex angle of 25°.	121
5.36	Axial stress distribution at portion along shell generator for the	
5.05	FWL cone-cone intersection glass/epoxy composite shells	122
5.37	Hoop stress distribution at portion along shell generator for the	100
5 20	F w L cone-cone intersection glass/epoxy composite snells	123
5.38	In-plane Shear stress distribution at portion along shell generator	
	shells	124
5 30	Stress Distribution of FWI GERP C-T-C with vertex angle of	124
5.59	10 ⁰	126
61	Stages of fabrication process of FWL composite shell specimen	130
62	Curing assembly Diagram of FWL composite shell	130
63	Typical FWL cylinder and cone under investigation	131
6.4	Material sequence of carbon/glass hybrid cylinder	131
6.5	Typical sketch of FWL cone-cone composite shell specimen.	132
6.6	Typical sketch of FWL cone-cylinder-cone composite shell	
	specimen	132
6.7	Curing assembly Diagram of OPFFRP composite shell.	133
6.8	Load-displacement curve for the FWL glass/epoxy circular	
	conical shells.	146
6.9	Load-displacement curve for the FWL carbon/epoxy circular	
	conical shells.	147
6.10	Load-displacement curve for the hand laid up oil palm frond	
	fibre reinforced epoxy composite circular conical shells.	148
6.11	Macroscopic view of the various failure modes for the circular	1.40
(10)	cylindrical composite shells under axial compressive load	149
0.12	Crushing history of FWL glass/epoxy circular cylindrical shell	150
6 13	Under axial compressive load	150
0.15	under axial compressive load	151
6 14	Crushing history of hand laid up oil nalm fibre/enoxy circular	151
0.11	cylinder shell under axial compressive load	152
6.15	Crushing history of FWL glass/epoxy circular conical shell with	102
	vertex angle of 18 degrees under axial compressive load	153
6.16	Crushing history of FWL carbon/epoxy circular conical shell	
	with vertex angle of 18 degrees under axial compressive load	154
6.17	Crushing history of hand laid up oil palm fibre/epoxy circular	
	conical shell with vertex angle of 18 degrees under axial	
	compressive load	155

6.18	Optical micrograph of a FWL glass/epoxy section through the	
6 10	Crush zone at initial crushing failure Optical micrograph of a FWL class/epoxy section through the	156
0.19	crush zone at complete crushing failure	156
6.20	Optical micrograph of a FWL carbon/epoxy section through the	150
	crush zone at initial crushing failure	157
6.21	Optical micrograph of a FWL carbon/epoxy section through the	
	crush zone at complete crushing failure.	157
6.22	Optical micrograph of a HLU oil palm frond fibre section	
	through the crush zone at initial crushing failure.	158
6.23	Optical micrograph of a HLU oil palm frond fibre section	1.50
6.24	through the crush zone at complete crushing failure.	158
0.24	Load-Displacement curve and average load of composite	150
6 25	Initial average failure load specific crushing energy and	139
0.25	structural volume reduction of the FWI glass/enoxy circular	
	conical shells with different vertex angles	160
6.26	Initial, average failure load, specific crushing energy and	100
	structural volume reduction of the FWL carbon/epoxy circular	
	conical shells with different vertex angles	161
6.27	Initial, average failure load, specific crushing energy and	
	structural volume reduction of the hand laid up oil palm frond	
	fibre reinforced epoxy composite circular conical shells with	1.00
6 20	different vertex angles.	162
0.28	with different meterial sequence	169
6 29	Load-displacement curve for the hand laid up oil palm frond	100
0.27	fibre reinforced epoxy composite circular conical shells	169
6.30	Total crushing failure history of FWL CGG hybrid cylinder	107
	under uniaxial compressive load	170
6.31	Total crushing failure history of FWL GGC hybrid cylinder	
	under uniaxial compressive load	170
6.32	Total crushing failure history of FWL GCG hybrid cylinder	
6 2 2	under uniaxial compressive load	170
0.33	crush zone at initial crushing failure	171
6.34	Optical micrograph of a FWL GCG section through the crush	1/1
0.0 .	zone at initial crushing failure.	171
6.35	Optical micrograph of a FWL GGC section through the crush	
	zone at complete crushing failure	172
6.36	Initial, average failure load, specific crushing energy and	
	structural volume reduction of the FWL C/G hybrid composite	1.70
6 27	CIRCULAR CYLINDER.	173
0.37	shells	170
	5110113.	1/7

6.3	8 Load-displacement curve for the FWL CFRP C-C intersection	n 180
6.3	9 Optical micrograph of a FWL GFRP section through the crush	h
6.4	zone at initial crushing failure	181
0.4	zone at total crushing failure.	181
6.4	1 Optical micrograph of a FWL CFRP section through the crush rough at initial graphing failure	1 102
6.42	2 Optical micrograph of a FWL CFRP section through the crush	102
6 12	zone at total crushing failure	182
0.43	load	183
6.44	Crushing history of FWL CFRP C-C15 ⁰ under axial compressive	104
6.45	Load-displacement curves for the FWL GFRP and CFRP C-C15	184
	intersection shells.	185
0.40	structural volume reduction of the FWL GFRP C-C intersection	
<i>.</i>	shells with different vertex angles.	186
6.47	structural volume reduction of the FWL CFRP C-C intersection	
	shells with different vertex angles.	187
6.48	Load-displacement curve for the FWL GFRP C-T-C intersection shells with vertex angle of 10 degrees	194
6.49	Load-displacement curve for the FWL GFRP C-T-C intersection	
6.50	shells with vertex angle of 15 degrees. Crushing history of FWL GFRP T10 with vertex angle of 10°	195
	under axial compressive load	196
6.51	Crushing history of FWL CFRP T10 with vertex angle of 10° under axial compressive load	197
6.52	Crushing history of FWL GFRP T20 with vertex angle of 15 [°]	
6.53	under axial compressive load Crushing history of FWL CFRP T20 with vertex angle of 15 ⁰	198
	under axial compressive load	199
0.54	intersection shells with vertex angle of 10 and 15 degrees and	
6 5 5	cylindrical part length of 10mm.	200
0.33	intersection shells with vertex angle of 10 and 15 degrees and	
656	cylindrical part length of 10mm	201
0.50	structural volume reduction of the FWL GFRP C-T-C	
	intersection shells with vertex angle of 10 degrees and different	202
	cymunical part ienguis.	202

6.57	Initial, average failure load, specific crushing energy and	
	structural volume reduction of the FWL GFRP C-T-C	
	intersection shells with vertex angle of 15 degrees and different	
	cylindrical part lengths	203
6.58	Effect of reinforcement on energy absorption characteristics of	
	circular conical and cylindrical composite shells.	208
6.59	Effect of reinforcement on energy absorption characteristics of	
	cone-cone intersection composite shells	209
6.60	Effect of reinforcement on energy absorption characteristics of	
	cone-cylinder-cone intersection composite shells	210
6.61	Effect of reinforcement type on the load-displacement curves of	
	circular cylindrical shells	211
6 62	Non-dimensional plot of the average crush loads relative to the	
	instantaneous failure crush loads	212
6 63	Initial failure load of the filament wound laminated circular	
0.05	cylindrical and conical composite shells	214
6 64	Initial failure load of the filament wound laminated cone-cone	211
0.04	intersection composite shells	216
6.65	Intersection composite sheris	210
0.03	initial failure load of the filament wound faminated cone-cone	017
	intersection composite shells	217

NOTATIONS AND ABREVIATIONS

ρ	is the mass density of the structure
Α	is the average cross-section area of the structure
Μ	is the mass of the structure
V _i ,V _f	is the initial and final space volume occupied by the structure respectively.
Es	is the specific crushing energy
H _{z1}	is the length of cone
H _{z2}	is the length of cylinder
Hz	is the total length of the structure.
E _m	is the matrix modulus
Ef	is the fibre modulus
G _m	is the matrix shear modulus
Vm	is the matrix poison's ratio
$\nu_{\rm f}$	is the fibre poison's ratio
ξ	is the fibre packing geometry factor
E ₁₁	is the longitudinal modulus
E ₂₂	is the transverse modulus
G12	is the in-plane shear modulus
G13	is the transverse shear modulus in 1-3 plane
V ₁₂	is the major poison's ratio
V ₂₁	is the minor poison's ratio
β	is the semi vertex angle of the cone.

