

UNIVERSITI PUTRA MALAYSIA

AN EFFICIENT ARCHITECTURE OF 8-BIT CMOS ANALOG-TO-DIGITAL CONVERTER

PHILIP TAN BEOW YEW

FK 2000 47

AN EFFICIENT ARCHITECTURE OF 8-BIT CMOS ANALOG-TO-DIGITAL CONVERTER

PHILIP TAN BEOW YEW

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2000

AN EFFICIENT ARCHITECTURE OF 8-BIT CMOS ANALOG-TO-DIGITAL CONVERTER

By

PHILIP TAN BEOW YEW

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Engineering Universiti Putra Malaysia

December 2000

DEDICATION

To my family,

Father (Edward), mother (Elaine), sister (Margaret),

and my wife,

Christine

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

AN EFFICIENT ARCHITECTURE OF 8-BIT CMOS ANALOG-TO-DIGITAL CONVERTER

By

PHILIP TAN BEOW YEW

November 2000

Chairman : Dr. Bambang Sunaryo Suparjo

Faculty : Engineering

An 8-bit CMOS analog-to-digital converter (ADC) has been designed by using a more efficient architecture, which is known as the simplified multistep flash architecture. This architecture can ultimately reduce the number of comparators needed in an ADC. For the same resolutions, the full-flash architecture requires 255 comparators; the half-flash architecture requires 30 comparators, but the new architecture needs only six comparators. For conversion speed, the half-flash architecture has about half the speed of the fullflash architecture, but the comparator counts for the half-flash architecture is greatly reduced compared to the full-flash architecture. While, for the simplified multistep flash architecture, even though the comparator counts is very much reduced compared to the half-flash architecture, but the conversion speed of the new architecture is still the same as that of the half-flash architecture.

In order to design this new ADC, the entire architecture is divided into six separate parts. The suitable computer aids for designing and doing simulation are

employed at the beginning of the design process. In this project, the integrated circuit design program from Tanner Research, Inc. is used for designing from the system level to the layout level. The simulation results show that the conversion rate of this new architecture is 111 kHz, while the differential non-linearity (DNL) and integral non-linearity (INL) of this architecture are both ± 1.19 LSB (least significant bit). This is due to the elimination of three digital codes of the conversion system. By ignoring these three missing codes, the new ADC is estimated to have not more than ± 1.00 LSB of DNL and INL values.

The mask layout diagram that is used for fabrication purpose is also successfully developed in this project. Although, the simulation results from the layout diagram indicate the system has lower accuracy compared to the expected results from the schematics, the conversion from an analog voltage to eight digital bits, is successfully achieved. The full-custom approach is chosen in designing the layouts because it provides complete design freedom to the designer.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SATU SENIBINA CEKAP BAGI PENUKAR ANALOG-KEPADA-DIGIT CMOS 8-BIT

Oleh

PHILIP TAN BEOW YEW

November 2000

Pengerusi : Dr. Bambang Sunaryo Suparjo

Fakulti : Kejuruteraan

Satu penukar analog-kepada-digit (ADC) CMOS 8-bit telah direkabentuk dengan menggunakan satu senibina yang cekap, yang dikenali sebagai senibina kilat pelbagai langkah teringkas. Senibina ini dapat mengurangkan bilangan pembanding yang diperlukan dalam satu ADC dengan sangat berjaya. Bagi resolusi yang sama, senibina kilat-penuh memerlukan 255 pembanding; senibina kilat-separuh memerlukan 30 pembilang, tetapi senibina baru ini hanya memerlukan enam pembanding. Bagi kelajuan penukaran, senibina kilat-separuh mempunyai hampir setengah daripada kelajuan senibina kilat-penuh, tetapi bilangan pembilang bagi senibina kilat-separuh telah banyak dikurangkan berbanding dengan senibina kilat-penuh. Manakala bagi senibina kilat pelbagailangkah dipermudah, walaupun bilangan pembilang telah banyak dikurangkan berbanding dengan senibina kilat-separuh, tetapi kelajuan penukaran bagi senibina baru masih sama dengan yang senibina kilat-separuh.

r

Bagi merekabentuk ADC yang baru ini, seluruh senibina dibahagikan kepada enam bahagian yang berasingan. Kemudahan komputer yang sesuai untuk merekabentuk dan melakukan simulasi didapatkan pada permulaan proses merekabentuk. Dalam projek ini, program merekabentuk litar terkamir daripada Tanner Research, Inc. digunakan untuk merekabentuk dari peringkat sistem hingga ke peringkat bentangan. Keputusan simulasi menunjukkan bahawa kadar penukaran bagi senibina baru ini ialah 111 kHz, manakala kedua-dua pembezaan tidak-seragam (DNL) dan pengkamilan tidak-seragam (INL) bagi senibina ini adalah ±1.19 LSB (bit paling tidak penting). Ini adalah disebabkan oleh penghapusan tiga kod digit pada sistem penukaran. Dengan mengabaikan ketiga-tiga kod yang hilang ini, ADC baru ini dijangkakan mempunyai nilai DNL dan INL yang tidak lebih daripada ±1.00 LSB.

Gambarajah topeng bentangan yang digunakan untuk tujuan fabrikasi juga berjaya dihasilkan dalam projek ini. Walaupun keputusan simulasi daripada gambarajah bentangan menunjukkan sistem mempunyai ketepatan yang lebih rendah berbanding dengan keputusan jangkaan daripada skematik, tetapi penukaran daripada satu voltan analog kepada lapan bit digit dapat dicapai dengan jayanya. Kaedah "full-custom" dipilih dalam merekabentuk lapisanlapisan bentangan ini kerana ia memberikan kebebasan merekabentuk yang menyeluruh kepada perekabentuk.

ACKNOWLEDGEMENTS

Firstly, I would like to express my utmost gratitude to my project supervisor, Dr. Bambang Sunaryo Suparjo (Head, Department of Electrical and Electronic Engineering, Universiti Putra Malaysia) and my supervisory committee, Dr. Roslina Sidek and Mr. Rahman Wagiran for their invaluable advice, guidance, constructive suggestions and encouragement throughout the duration of this project.

A sincere thanks goes to Prof. Dr. Dipankar Nagchoudhuri (Head, Department of Electrical Engineering, Indian Institute of Technology, Delhi) for his unconditional guidance, which enable me to solve most of the obstacles in both my studies and my research project. I am extremely grateful to my supportive group of friends, Puah Wei Boo, Lini Lee, Tan Gim Heng and Lee Chu Liang, who have help me a lot to complete my project successfully. Special thanks goes to Mr. Nasri Sulaiman and all the staff of the Electrical and Electronic Department, Universiti Putra Malaysia for their sincere help and cooperation. Not forgetting also, to all my lecturers, thanks for everything.

Finally, I would like to express my sincere thanks to my beloved family, my wife (Christine), my course mates and all my friends for their undying love and support that had enable me to deal with hard work and difficulties patiently.

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of requirement for the degree of Master of Science.

MOHD. GHAZALI MOHAYIDIN, Ph.D.Professor>l,Deputy Dean of Graduate SchoolUniversiti Putra MalaysiaDate:>l

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	viii
DECLARATION FORM	х
TABLE OF CONTENTS	xi
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xviii

CHAPTER

1
3
4
5
6

2. LITERATURE REVIEW

History of Integrated Circuits	8
Background of Analog-to-digital Converter	10
Serial ADC	12
Successive Approximation ADC	14
Parallel ADC	17
Researches on Analog-to-digital Converter	18
Introduction to New Flash Architecture	21
Introduction	21
Previous Flash Architecture	22
New Simplified Multistep Architecture	23
IC Design Process	25

3. METHODOLOGY

Simplified Multistep Flash Analog-to-digital Converter	28
Voltage Estimator	29
Modified 4-bit Full-flash Analog-to-digital Converter	31
R-2R Digital-to-analog Converter	33
Subtractor	34

Latches	35
Digital Switch Control	36
Design of CMOS Logic Gates	40
CMOS Inverter	40
CMOS Two-input NAND Gate	41
CMOS Three-input NAND Gate	43
CMOS Four-input NAND Gate	44
CMOS Two-input NOR Gate	45
Design of Encoder and Decoder	47
Thermometer Encoder	47
Address Decoder	48
Design of Flip-flop	50
Delay Flip-flop	50
Toggle Flip-flop	51
Design of CMOS Analog Switch	53
Design of CMOS Analog 2-to-1 Multiplexer	55
Design of CMOS Two-stage Operational Amplifier	57
DC Analysis of CMOS Two-stage Operational Amplifier	57
The Design	62
Design of CMOS Two-stage Comparator	65
Design Process of Simplified 8-bit Multistep Flash ADC	66

4. **RESULTS AND DISCUSSION**

Results of CMOS Op-amp and CMOS Comparator	69
Results of Voltage Estimator	74
Results of Modified 4-bit Full-flash ADC	76
Results of R-2R Digital-to-analog Converter	78
Results of Simplified 8-bit Multistep Flash ADC	80
Results of Simplified Multistep Architecture	80
Comparison with Half flash Architecture	87
Mask Layout for Fabrication	90
Layout of Operational Amplifier and Comparator	90
Layout of CMOS Logic Gate	93
Layout of Encoder and Decoder	98
Layout of Flip-flop	100
Layout of CMOS Analog Switch	102
Layout of Analog 2-to-1 Multiplexer	103
Layout of Complete ADC Architecture	105
Pattern Scheme of Mask Layers	112
Results of Complete Layout Architecture	113

5. CONCLUSION AND FURTHER DEVELOPMENT
Conclusion116Further Development119Contribution to Microelectronic Industries121

REFERENCES

APPENDICES

Α	MOSIS/Orbit 2 µm Simulation Model File	124
B	T-SPICE Simulation File of ADC Schematic	125
С	Papers Published in ICSE2000 Proceedings	131

BIODATA OF THE AUTHOR

140

122

LIST OF TABLES

Table		Page
1	Levels of Integration	9
2	Operation of 2-to-1 Multiplexer for VE	31
3	Truth Table of Inverter	40
4	Truth Table of Two-input NAND Gate	42
5	Truth Table of Three-input NAND Gate	43
6	Truth Table of Four-input NAND Gate	44
7	Truth Table of Two-input NOR Gate	46
8	Truth Table of Thermometer Encoder	47
9	Truth Table of Address Decoder	48
10	VE Transfer Characteristics	74
11	Modified 4-bit ADC Transfer Characteristics for MSB Cycle	76
12	Modified 4-bit ADC Transfer Characteristics for LSB Cycle	77
13	R-2R Transfer Characteristics	78
14	Transfer Characteristics of Simplified 8-bit Multistep Flash ADC	80
15	Simulation Results for Layout of Simplified Multistep Flash ADC	113
16	Die Area Consumption	115
17	Specifications of Simplified Multistep Flash ADC	118

LIST OF FIGURES

Figure		Page
1	Dual-slope Ramp ADC	12
2	Timing Diagram of Dual-slope Ramp ADC	14
3	Successive Approximation ADC	15
4	Flash ADC	17
5	Simplified Multistep Flash Analog-to-digital Converter	28
6	Voltage Estimator	30
7	Modified 4-bit Full-flash Architecture	32
8	Digital-to-analog Converter	34
9	Differential Amplifier	34
10	Configuration of Latches	36
11	Architecture of Digital Switch Control	37
12	Expected Inputs and Outputs of Digital Switch Control	39
13	Schematic of CMOS Inverter	40
14	Schematic of CMOS Two-input NAND Gate	42
15	Schematic of CMOS Three-input NAND Gate	43
16	Schematic of CMOS Four-input NAND Gate	45
17	Schematic of CMOS Two-input NOR Gate	46
18	Schematic of Thermometer Encoder	47
19	Schematic of Address Decoder	49
20	Positive Edge-triggered DFF	50
21	Positive Edge-triggered DFF in Gate Level	50

22	TFF Design	52
23	Architecture of TFF with Preset and Clear	52
24	Schematic of CMOS Analog Switch	53
25	Schematic of CMOS Analog 2-to-1 Multiplexer	55
26	Unity-gain Feedback Configuration of an Op-amp	57
27	Architecture of CMOS Two-stage Op-amp	58
28	Architecture of CMOS Two-stage Op-amp with (W/L) ratios	62
29	Architecture of CMOS Two-stage Comparator	65
30	Environment of S-Edit	66
31	Environment of W-Edit	67
32	Environment of L-Edit	67
33	Half-flash Analog-to-digital Converter	88
34	Layout of CMOS Two-stage Op-amp	90
35	Layout of CMOS Two-stage Comparator	92
36	Layout of CMOS Inverter	93
37	Layout of CMOS Two-input NAND Gate	94
38	Layout of CMOS Three-input NAND Gate	95
39	Layout of CMOS Four-input NAND Gate	96
40	Layout of CMOS Two-input NOR Gate	97
41	Layout of Thermometer Encoder	98
42	Layout of Address Decoder	99
43	Layout of Delay Flip-flop	100
44	Layout of Toggle Flip-flop	101

45 46	Layout of CMOS Analog Switch Layout of CMOS Analog 2-to-1 Multiplexer	102 103
47	Layout of Multiplexer for DAC	104
48	Layout of Voltage Estimator	105
49	Layout of Modified 4-bit Full-flash ADC	106
50	Layout of Digital-to-analog Converter	107
51	Layout of Subtractor	108
52	Layout of Latches	109
53	Layout of Digital Switch Control	110
54	Layout of Simplified 8-bit Multistep Flash ADC	111
55	Pattern Scheme for Mask Lavers	112

LIST OF ABBREVIATIONS

ADC	Analog-to-digital Converter
С	Capacitance
C _c	Compensation Capacitance
Clk	Clock
clr	Clear
CMOS	Complementary Metal Oxide Semiconductor
Cox	Oxide Capacitance
DAC	Digital-to-analog Converter
DC	Direct Current
DFF	Delay Flip-flop
DFT	Design for Testability
DNL	Differential Non-Linearity
DSC	Digital Switch Control
Gnd	Ground
IC	Integrated Circuit
I _D	Drain Current
INL	Integral Non-Linearity
INT	Integer
L	Length
L-Edit	Layout Editor
LSB	Least Significant Bit
LSI	Large Scale Integration
LVS	Layout versus Schematic
Μ	MOS Transistor
MOSFET	Metal Oxide Field Effect Transistor
MSB	Most Significant Bit
MSI	Medium Scale Integration
Mux	Multiplexer

N _c	Comparator Count
NMOS	N-type MOS
Op-amp	Operational Amplifier
PC	Preset and Clear
РСМ	Pulse Code Modulation
PMOS	P-type MOS
pre	Preset
Q	Output of the Latch
QBar	Complement of Q
Q _M	Output of the master-latch
R	Resistance
R _S	Sheet Resistance
S-Edit	Schematic Editor
SPICE	Simulation Program with Integrated Circuit Emphasis
SSI	Small Scale Integration
TFF	Toggle Flip-flop
TSPICE	Tanner SPICE
ULSI	Ultra Large Scale Integration
V^+	Positive voltage source
V^{-}	Negative voltage source
V _D	Drain Voltage
Vdd	Operating voltage source
V _{DS}	Drain-source Voltage
VE	Voltage Estimator
V _F	Feedback Voltage
V _G	Gate Voltage
V _{GS}	Gate-source Voltage
V_{in}	Analog input voltage
VLSI	Very Large Scale Integration
V _R	Reference voltage
V _{R(LSB)}	Reference voltage for second conversion cycle
V _{R(MSB)}	Reference voltage for first conversion cycle

Vs	Source Voltage
V _{SG}	Source-gate Voltage
V _{tap}	Voltage tap from the resistors ladder
V _{Tn}	Threshold Voltage for NMOS transistor
V_{Tp}	Threshold Voltage for PMOS transistor
W	Width
W-Edit	Waveform Editor
3	Permittivity of dielectric material
μΝ	Mobility of electron in NMOS transistor
μP	Mobility of holes in PMOS transistor

CHAPTER 1

INTRODUCTION

What is Integrated Circuit?

Integrated circuit (IC) is the enabling technology for a whole host of innovative devices and system that have changed the way we live. Integrated circuits are much smaller and consume less power than the discrete components used to build electronic systems before the 1960s. Integration allows us to build systems with many transistors that allow more computing power to be applied for problem solving. Integrated circuits are also easier to design and manufacture and are more reliable than discrete system.

The growing sophistication of applications continually pushes the design and manufacturing of integrated circuits and electronic systems to new levels of complexity. The number of transistors per chip increases exponentially with time due to the minimum dimension of transistor has dropped from about 25 μ m in year 1960 to about 0.18 μ m in year 2000, resulting in a tremendous improvement in the speed of integrated circuits [1]. Analog, digital or mixed signal integrated circuits containing tens of thousands of devices, now routinely appear in consumer products. Integrated circuits have three key advantages over digital circuits built from discrete components [2]:

- 1. Size. Integrated circuits are much smaller, that is both transistors and wires are shrunk to micrometer sizes, compared to the millimetre or centimetre scales of discrete components. Small size leads to advantages in speed and power consumption, since smaller components have smaller parasitic resistances, capacitances and inductances.
- 2. Speed. Signals can be switched between logic 0 and logic 1 much quicker within a chip than between chips. Communication within a chip can occur hundreds of times faster than communication between chips on a printed circuit board. The high speed of circuits on-chip is due to their small size, that is smaller components and wires have smaller parasitic capacitances to slow down the signal.
- 3. **Power consumption.** Logic operations within a chip also take much less power. Once again, lower power consumption is largely due to the small size of circuits on the chip, that is smaller parasitic capacitances and resistances require less power to drive them.

Why Focus on CMOS Technology?

In early 1960s, only n-type transistors were being produced. It was in the mid-1960 that Complementary Metal Oxide Semiconductor (CMOS) device, which is the combination of both n-type and p-type transistors, was introduced [1].

CMOS technology rapidly captured the digital market. This is because the CMOS gates only dissipated power during switching. It was soon discovered that the dimensions of Metal Oxide Semiconductor (MOS) devices could be scaled down more easily than other types of transistors.

The next obvious step was to apply CMOS technology to analog design. The low cost of fabrication and the possibility of placing both analog and digital circuits on the same chip have made CMOS technology an attractive technology. Although CMOS technology was slower than bipolar technology, the analog market is dominated by CMOS technology. This is due to device scaling that has improved the speed of MOS transistors by more than three orders of magnitude in the past 30 years, becoming comparable with that of bipolar devices, even though the latter have also been scaled down but not as fast as the MOS devices.

