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An 8-bit CMOS analog-to-digital converter (ADC) has been designed by 

using a more efficient architecture, which is known as the simplified multistep 

flash architecture. This architecture can ultimately reduce the number of 

comparators needed in an ADC. For the same resolutions, the full-flash 

architecture requires 255 comparators; the half-flash architecture requires 30 

comparators, but the new architecture needs only six comparators. For 

conversion speed, the half-flash architecture has about half the speed of the full-

flash architecture, but the comparator counts for the half-flash architecture is 

greatly reduced compared to the full-flash architecture. While, for the simplified 

multistep flash architecture, even though the comparator counts is very much 

reduced compared to the half-flash architecture, but the conversion speed of the 

new architecture is still the same as that of the half-flash architecture. 

In order to design this new ADC, the entire architecture is divided into six 

separate parts. The suitable computer aids for designing and doing simulation are 
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employed at the beginning of the design process. In this project, the integrated 

circuit design program from Tanner Research, Inc. is used for designing from the 

system level to the layout level . The simulation results show that the conversion 

rate of this new architecture is 111  kHz, while the differential non-linearity 

(DNL) and integral non-linearity (INL) of this architecture are both ± 1. 19 LSB 

(least significant bit). This is due to the elimination of three digital codes of the 

conversion system. By ignoring these three missing codes, the new ADC IS 

estimated to have not more than ±1.00 LSB of DNL and INL values .  

The mask layout diagram that i s  used for fabrication purpose is also 

successfully developed in this project. Although, the simulation results from the 

layout diagram indicate the system has lower accuracy compared to the expected 

results from the schematics, the conversion from an analog voltage to eight 

digital bits, is successfully achieved. The full-custom approach is chosen in 

designing the layouts because it provides complete design freedom to the 

designer. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

SATU SENIBINA CEKAP BAGI PENUKAR ANALOG-KEPADA-DIGIT 
CMOS 8-BIT 

Oleh 

PHILIP TAN BEOW YEW 

November 2000 

Pengerusi : Dr. Bambang Sunaryo Suparjo 

Fakulti : Kejuruteraan 

Satu penukar analog-kepada-digit (ADC) CMOS 8-bit telah direkabentuk 

dengan rnenggunakan satu senibina yang cekap, yang dikenali sebagai senibina 

kilat pelbagai langkah teringkas. Senibina ini dapat rnengurangkan bilangan 

pernbanding yang diperlukan dalam satu ADC dengan sangat berjaya. Bagi 

resolusi yang sarna, senibina kilat-penuh rnernerlukan 255 pernbanding; senibina 

kilat-separuh rnernerlukan 30 pernbilang, tetapi senibina baru ini hanya 

rnernerlukan enarn pernbanding. Bagi kelajuan penukaran, senibina kilat-separuh 

rnernpunyai harnpir setengah daripada kelajuan senibina kilat-penuh, tetapi 

bilangan pernbilang bagi senibina kilat-separuh telah banyak dikurangkan 

berbanding dengan senibina kilat-penuh. Manakala bagi senibina kilat pelbagai-

langkah dipermudah, walaupun bilangan pernbilang telah ban yak dikurangkan 

berbanding dengan senibina kilat-separuh, tetapi kelajuan penukaran bagi 

senibina baru rnasih sarna dengan yang senibina kilat-separuh. 

\ 



Bagi merekabentuk ADC yang barn ini, seluruh senibina dibahagikan 

kepada enam bahagian yang berasingan. Kemudahan komputer yang sesuai 

untuk merekabentuk dan melakukan simulasi didapatkan pada permulaan proses 

merekabentuk. Dalam projek ini, program merekabentuk litar terkamir daripada 

Tanner Research, Inc. digunakan untuk merekabentuk dari peringkat sistem 

hingga ke peringkat bentangan. Keputusan simulasi menunjukkan bahawa kadar 

penukaran bagi senibina barn ini ialah 1 1 1  kHz, manakala kedua-dua pembezaan 

tidak-seragam (DNL) dan pengkamilan tidak-seragam (INL) bagi senibina ini 

adalah ± 1 . 1 9 LSB (bit paling tidak penting). Ini adalah disebabkan oleh 

penghapusan tiga kod digit pada sistem penukaran. Dengan mengabaikan ketiga­

tiga kod yang hilang ini, ADC barn ini dijangkakan mempunyai nilai DNL dan 

INL yang tidak lebih daripada ± 1 .  00 LSB. 

Gambarajah top eng bentangan yang digunakan untuk tujuan fabrikasi 

juga berjaya dihasilkan dalam projek ini. Walaupun keputusan simulasi daripada 

gambarajah bentangan menunjukkan sistem mempunyai ketepatan yang lebih 

rendah berbanding dengan keputusan jangkaan daripada skematik, tetapi 

penukaran daripada satu voltan analog kepada lapan bit digit dapat dicapai 

dengan jayanya. Kaedah "full-custom" dipilih dalam merekabentuk lapisan­

lapisan bentangan ini kerana ia memberikan kebebasan merekabentuk yang 

menyelurnh kepada perekabentuk. 
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CHAPTER! 

INTRODUCTION 

What is Integrated Circuit? 

Integrated circuit (Ie) is the enabling technology for a whole host of 

innovative devices and system that have changed the way we live. Integrated 

circuits are much smaller and consume less power than the discrete components 

used to build electronic systems before the 1 960s. Integration allows us to build 

systems with many transistors that allow more computing power to be applied for 

problem solving. Integrated circuits are also easier to design and manufacture 

and are more reliable than discrete system. 

The growing sophistication of applications continually pushes the design 

and manufacturing of integrated circuits and electronic systems to new levels of 

complexity. The number of transistors per chip increases exponentially with time 

due to the minimum dimension of transistor has dropped from about 25 11m in 

year 1 960 to about 0. 1 8  llm in year 2000, resulting in a tremendous improvement 

in the speed of integrated circuits [ 1 ]. Analog, digital or mixed signal integrated 

circuits containing tens of thousands of devices, now routinely appear in 

consumer products. 
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Integrated circuits have three key advantages over digital circuits built 

from discrete components [2]: 

1 .  Size. Integrated circuits are much smaller, that is both transistors and wires 

are shrunk to micrometer sizes, compared to the millimetre or centimetre 

scales of discrete components. Small size leads to advantages in speed and 

power consumption, since smaller components have smaller parasitic 

resistances, capacitances and inductances. 

2. Speed. Signals can be switched between logic 0 and logic 1 much quicker 

within a chip than between chips. Communication within a chip can occur 

hundreds of times faster than communication between chips on a printed 

circuit board. The high speed of circuits on-chip is due to their small size, 

that is smaller components and wires have smaller parasitic capacitances to 

slow down the signal. 

3. Power consumption. Logic operations within a chip also take much less 

power. Once again, lower power consumption is largely due to the small size 

of circuits on the chip, that is smaller parasitic capacitances and resistances 

require less power to drive them. 
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Why Focus on CMOS Technology? 

In early 1 960s, only n-type transistors were being produced. It was in the 

mid-1 960 that Complementary Metal Oxide Semiconductor (CMOS) device, 

which is the combination of both n-type and p-type transistors, was introduced 

[ 1 ] .  

CMOS technology rapidly captured the digital market. This is because 

the CMOS gates only dissipated power during switching. It was soon discovered 

that the dimensions of Metal Oxide Semiconductor (MOS) devices could be 

scaled down more easily than other types of transistors. 

The next obvious step was to apply CMOS technology to analog design. 

The low cost of fabrication and the possibility of placing both analog and digital 

circuits on the same chip have made CMOS technology an attractive technology. 

Although CMOS technology was slower than bipolar technology, the analog 

market is dominated by CMOS technology. This is due to device scaling that has 

improved the speed of MOS transistors by more than three orders of  magnitude in 

the past 30 years, becoming comparable with that of bipolar devices, even though 

the latter have also been scaled down but not as fast as the MOS devices. 
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