

UNIVERSITI PUTRA MALAYSIA

DESIGN, CONSTRUCTION AND TESTING OF FREEZE CONCENTRATOR

ROSNAH BT HAJI SHAMSUDIN

FK 2000 46

DESIGN, CONSTRUCTION AND TESTING OF FREEZE CONCENTRATOR

ROSNAH BT HAJI SHAMSUDIN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA 2000

To the most beloved ones:

Mak, Abah dan adik

Thanks for your continuos support and encouragement

My husband Azmi bin Peryatin

For the aspiration and inspiration

My daughter Nurul Izzah

Ease my stress and tension

My parent in law and Brothers in law

Thanks for a great understanding

Syaiful, Yus, Mai, Azie, Das, Ros, Kak Zai and Aidy

Thanks for your helpful and comment

DESIGN, CONSTRUCTION AND TESTING OF FREEZE CONCENTRATOR

By

ROSNAH BT HAJI SHAMSUDIN

November 2000

Chairman: Hishamuddin bin Jamaludin, MSc

Faculty: Engineering

The main aspects of this study, were the design, construction and performance of a freeze concentrator. The design process consists of three main parts: a vertical tube heat exchanger, an auger to scrape the ice formed and a refrigeration unit to bring the temperature to below freezing.

Basically, the freeze concentration process used involves ice formation from a juice solution at the surface of a vertical tube heat exchanger. The ice will be scraped by a rotating auger, which pushes it out through a window and collected in a reservoir. This results in a product of higher solute concentration than its concentration in the feed.

The potential application of the freeze concentrator was experimented using sugar solutions at three different feed concentrations i.e. 7.5%, 10.3% and 12% brix, as well as pineapple juice at 11.4% brix. The freezing point depression for the

solutions were respectively -1.07° C, -1.15° C, -1.49° C and -1.49° C. The feed flow rates used for the solutions were respectively 0.65 l/min, 0.5 l/min, 0.43 l/min and 0.45 l/min. Using these process parameters, the total mass of ice after 180 min is 1.75kg for a feed of 7.5% brix and 1.46kg for a feed of 12% brix. From theoretical analysis, the expected total mass of ice produced is 2.6kg for the 7.5% brix and 1.97kg for the 12% brix solution. Therefore, the performance efficiency for the freeze concentrator is around 67% of theory for all three sugar solutions.

Base on the heat balance analysis, the overall thermal performance of this freeze concentration process for the three different feed concentrations shows that about 80% of the refrigeration load is loss. If these losses were not considered, about 87% of the cooling energy transferred is for sensible heat removal and 13% for ice formation.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

REKABENTUK, PEMBINAAN DAN UJIAN KEATAS ALAT PEMEKATAN JUS SECARA SEJUK BEKU

Oleh

ROSNAH BT HAJI SHAMSUDIN

November 2000

Pengerusi: Hishamuddin bin Jamaludin, MSc

Fakulti: Kejuruteraan

Perkara utama di dalam kajian ini merangkumi aspek rekabentuk, pembinaan dan prestasi alat pemekat sejuk beku. Proses merekabentuk pemekat sejuk beku ini terbahagi kepada tiga bahagian utama iaitu turus tegak penukar haba, *auger* untuk mengikis ais yang terbentuk dan unit penyejuk untuk menurunkan suhu bawah takat beku.

Pada asasnya, proses pemekat sejuk beku ini bermula dengan pembentukan ais di penukar haba. Ais akan dikikis oleh *auger* yang berpusing ke saluran keluar dan dikumpulkan ditakungan yang disediakan. Ini menghasilkan produk yang mempunyai kepekatan yang lebih tinggi dari kepekatan bahan suap.

Keupayaan pemekat sejuk beku ini diuji dengan menggunakan larutan gula pada tiga kepekatan yang berlainan iaitu 7.5%, 10.3% dan 12.0% brix disamping jus nenas (11.4% brix) juga digunakan. Titik penyejukbekuan pada 7.5%, 10.3% dan

12.0% brix serta jus nenas masing-masing ialah -1.07° C, -1.15° C, -1.49° C dan -1.49° C.

Bagi kepekatan bahan suap 7.5%, 10.3% dan 12% brix dan jus nenas masingmasing kadar alir yang digunakan adalah 0.65 l/min, 0.5 l/min, 0.43 l/min dan 0.45 l/min.

Dengan parameter proses tersebut dan masa operasi 180 min jumlah berat ais yang diperolehi ialah 1.75kg dengan suapan 7.5% brix manakala 1.46kg dengan suapan 12% brix. Manakala secara pengiraan pula berat ais yang patut diperolehi ialah 2.6kg di 7.5% brix dan 1.97kg di 12% brix. Maka pada keseluruhannya keputusan menunjukan keupayaan kecekapan alat pemekat sejuk beku ini adalah lebih kurang 67% berbanding teori bagi ketiga-tiga kepekatan yang berlainan.

Berdasarkan analisis keseimbangan haba, prestasi terma menunjukan alat pemekat sejuk beku tersebut mengalami kehilangan haba sebanyak 80%. Jika kehilangan ini diabaikan, didapati 87% haba efektif digunakan bagi pemindahan haba pelakuran manakala selebihnya digunakan bagi pembentukan ais.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful, I would like to express my gratitude and appreciation to my supervisor, Mr. Hishamuddin bin Jamaludin, for his invaluable guidance, advice, constructive and suggestions throughout the period of my project.

I would like to make special mention of help from Mr. Dzulkifli bin Mat Hashim of Faculty Food Science and Biotecknology, for his information's, assistance and for allowing me to use the relevant apparatus in carrying out the tests.

My appreciation to all Faculty of Engineering staff, especially to Mr. Nasharudin Mohamad and Mr. Anuar Ariffin for their assistance's in my work. Special recognition is also extended to Mr. Soib, Mr. Azman and Mr. Amran from Faculty Food Science and Biotechnology for their comment, helpful hands and encouragement during my project.

Last but not least, I would like to express my utmost appreciation and love to my family especially my parent and my husband Azmi bin Peryatin for their cares, encouragement and understanding during my studies.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	viii
LIST OF FIGURES	xiii
LIST OF TABLES	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER

Ι	INSTRODUCTION	1
	The Advantages of Freeze Concentration	1
	The Disadvantages of Freeze Concentration	2
	The Objectives	4
II	LITERATURE REVIEW	
	Definitions	5
	Freeze Concentration of Foods	6
	The Freezing Point	6
	The Freezing Times of Food	9
	Ice Crystallization	10
	Nucleation of Crystal Formation	10
	Crystal Growth	11
	Types of Freeze Concentration	12
	Crystallization Unit	12
	Separation Unit	16
	Refrigeration Requirements in Freezing Foods	18
	Mechanical Refrigeration Principles	18
III	METHODOLOGY	
ш	DESIGN and CONSTRUCTION	21
	General	21
	Design and Fabrication of Freeze Concentrator	21
	The Vertical Tube Heat Exchanger	22
	The Construction of the Column	22
	The Construction of the Auger	22
	The Cooling Unit System	27
	A Split-System Air-Conditioning	28
	A Coolant Tank	28

	The Copper Coil	29
	31	
Selection of Construction Materials		32
	Process Support Equipment	33
	Thermostat	33
	Temperature Scanner	33
	The Storage Tank	34
	Circulating Pump	34
	Flow Meter	35
	Electrical Power Supply Circuit Box	36
	Auxiliary Cooling Unit	37
	Platform	41
	Test Method	41
	Preliminary Tests	41
	PROPERTIES OF PINEAPPLE JUICE	45
	Preparation of Samples (Pineapple Juice)	45
	Proximate Analysis	45
	Thermal Properties	45
	Specific Heat of Juice (C _p)	45
	Thermal Conductivity of Juice (k)	46
	Density of Juice (ρ)	47
	Freezing Point	49
	Viscosity	50
	Determination of Sugar	50
	Determination of pH	51
	Total Soluble Solid	51
IV	RESULTS AND DISCUSSION	50
	General	52
	Properties of Pineapple Juice	52
	Proximate Analysis	52
	Freezing Point	54 57
	Other Properties	58
	Test run with pineapple Juice Material balances analysis	58 64
	Heat balances analysis	68
	ricat balances analysis	00
V	CONCLUSION	81
REF	ERENCES	83
	ENDICES	86
BIOD	DATA OF THE AUTHOR	148

ţ

LIST OF FIGURES

Figure		Page
2.1	Diagram of a basic freeze concentration process	6
2.2	Comparison of freezing curves for pure water and an aqueous solution containing one solute	7
2.3	Typical phase diagram showing eutectic point for sugar-water system	9
2.4	Schematic diagram of a simple refrigeration system	20
3.1	Schematic diagram of Freeze Concentrator	23
3.2	Top End Cap and Bottom End cap	24
3.3	The Auger Drive Assembly	25
3.4	Drive Pulley	25
3.5	Shaping the Washer to Form the Auger	26
3.6	Completed Auger with Three Solid Stainless Steel as a Support	26
3.7	Finished Components of the Heat Exchanger	27
3.8	Split-System Air Conditioning	28
3.9	Evaporator Coil Arrangement (Type A)	29
3.10	Position a Evaporator Coil and Thermostat in the Coolant Tank	31
3.11	A Evaporator Coil Arrangement (Type B)	32
3.12	Temperature Scanner and Digital Thermometer	35
3.13	Placement of Pump & Flow Meter	36
3.14	Auxiliary Cooling Unit	37
3.15	The circuit diagram of single-phase power supply	38
3.16	Electrical Power Supply Circuit Box	39
3.17	Views of the Freeze Concentrator	40
3.19	Design of Auger	44
3.20	The cooling coil in the feed tank	44
3.21	Position of temperature sensors from the temperature logger at point 1, 2 and 3	49
3.22	Schematic illustration of temperature versus time for the determination of initial freezing point	50
4.1	Freezing point vs concentration of sugar solution	56
4.2	Feed flow rate of sugar solution	59
4.3	The area of ice formation	60
4.4	Water content in concentrate for different initial feed concentration	61
4.5	Changes in feed concentration for sugar solution and pineapple juice	62
4.6	Changes of sugar concentration in ice at different concentration of sugar solution	63
4.7	Changes in sugar concentration in ice with respect to changes of inlet feed concentration	64
4.8(a)	Mass of ice at 7.5% brix (Experimental and theoretical)	65
4.8(b)	Mass of ice at 10.3% brix (Experimental and theoretical)	66
4.8(c)	Mass of ice at 12.0% brix (Experimental and theoretical)	66
4.9	Percentage error mass of ice between experiment and theory result	67
4.10(a)	Changes in inlet and outlet temperature of coolant at 7.5% brix	69
4.10(b)	Changes in inlet and outlet temperature of coolant at 10.3% brix	69
		xiii

4.10(c)	Changes in inlet and outlet temperature of coolant at 12.0% brix	7 0
4.10(d)	Rate of heat transfer from coolant to solution at different	70
	concentration of sugar solution	
4.11(a)	Changes in inlet and outlet temperature of feed at 7.5% brix	72
4.11(b)	Changes in inlet and outlet temperature of feed at 10.3% brix	72
4.11(c)	Changes in inlet and outlet temperature of feed at 12.0% brix	73
4.11(d)	Rate of sensible heat transfer to solution at different concentration	73
	of sugar solution	
4.12	Rate of heat transfer in the formation of ice at different	74
	concentration of sugar solution	
4.13	Rate of heat loss at different concentration of sugar solution	75
4.14	Overall thermal performance of freeze concentrator	76
4.15	The log mean temperature difference at different concentration of	78
	sugar solution	
4.16(a)	Changes in overall heat transfer coefficient during cooling at	79
	different feed concentration	
4.16(b)	Changes in overall heat transfer coefficient during freezing at	80
-	different feed concentration	

LIST OF TABLES

Table		Page
2.1	Classification of crystallizers used in Freeze Concentration	9
3.1	The specific heat of pure components as a function of Temperature	46
3.2	The thermal conductivity of pure components as a function of temperature	47
3.3	The density of pure components as a function of temperature	48
4.1	Proximate content of pineapple juice	53
4.2	The thermal properties of pineapple juice	54
4.3	The thermal properties of sugar solution	54
4.4	The initial freezing point based on concentration and position of temperature probe	55
4.5(a)	Energy analysis included losses	77
4.5(b)	Energy analysis excluded losses	77

LISTS OF ABBREVIATIONS

2	_	Latent heat of fusion 1/1/1/2
λ	=	Latent heat of fusion, kJ/kg
ρι	=	Density of ice, kg/m ³
ρ_{s}	=	Density of the solution, kg/m^3
ρ	=	Density, kg/m ³
ρ _a	=	Density of ash, kg/m ³
ρ_{c}	=	Density of carbohydrate, kg/m ³
$\rho_{\rm F}$	=	Density of fat, kg/m ³
ρ _p	=	Density of protein, kg/m ³
ρ_{w}	=	Density of water, kg/m ³
ρc	=	Density of coolant, kg/m ³
ρ	=	Density of juice, kg/m ³
μ_{c}	=	Viscosity of coolant, kg/ms
μ _j	=	Viscosity of juice, kg/ms
ΔT_{m}	=	logarithmic mean temperature difference, °C
Α	=	logarithmic mean area heat transferring wall, m ²
Ac	=	cross - sectional area of tube heat exchanger, m2
Aj	=	cross – sectional area of product, m ²
A _j C	=	Concentrate, % brix
Cp	=	Specific heat, kJ/kg K
Cnc	=	Specific heat of coolant, kJ/kg K
C _{p,j}	=	Specific heat of juice, kJ/kg K
C _{p,a}	=	Specific heat of ash, kJ/kg K
$C_{p,i}$ $C_{p,a}$ $C_{p,c}$	=	Specific heat of carbohydrate, kJ/kg K
$C_{p,F}$ $C_{p,p}$	=	Specific heat of fat, kJ/kg K
$C_{\mathbf{p},\mathbf{p}}$	=	Specific heat of protein, kJ/kg K
$C_{p,\mathbf{w}}$	=	Specific heat of water, kJ/kg K
Cb	=	Bulk solute concentration
Ci	=	Interfacial concentration of solute
$(dC/dT)_{eq}$	=	Freezing point depression constant
d _c	=	diameter of the tube heat exchanger, m
ds	=	shaft diameter, m
d _t	=	inside diameter product cylinder, m
F _c	=	Flow rate of coolant, l/min
F _j	=	Flow rate of juice, 1/min
h h	=	Heat transfer coefficient, W/m ² K Heat transfer coefficient of coolant, W/m ² K
h _c	=	, , , , , , , , , , , , , , , , , , ,
h _j I	=	Heat transfer coefficient at product (juice) side, W/m ² K Ice, % brix
I	=	Current flow, A
k _c	=	Mass transfer coefficients
k k	=	Thermal conductivity, W/mK
k _c	=	Thermal conductivity of coolant, W/mK
k_{i}	=	Thermal conductivity of juice, W/mK
k_{a}	=	Thermal conductivity of ash, W/mK
k _a	=	Thermal conductivity of carbohydrate, W/mK
k _c k _F	=	Thermal conductivity of fat, W/mK
k _p	=	Thermal conductivity of protein, W/mK
мр		mermai conductivity of protoni, w/mix

k _w	=	Thermal conductivity of water, W/mK
l	=	Length of heat transfer, m
m _A	=	Fraction of product moisture content
ms	=	Fraction of products solids
ma	=	
mc	=	Mass fraction of carbohydrate
m _F	=	Mass fraction of fat
mp	=	Mass fraction of protein
m _w	=	Mass fraction of water
.m _c	=	Mass flow rate of coolant, kg/sec
.m _i	=	Mass flow rate of juice, kg/sec
.mice	=	Mass flow rate of ice, kg/sec
MA	=	Molecular weight of water
Ms	=	Molecular weight of product solids
n	=	number of rows of scraper blades
Ν	=	Shaft speed, rev/sec
Nu	=	Nusselt – number
Р	=	Power required to rotate blade, W
Pr	=	Prandtl – number
Qc	=	Total heat transfer from coolant to solution, W
Q _{sol}	=	Rate of sensible heat transfer to solution, W
Qice	=	
Qloss	=	Rate of heat loss, W
Re	=	Reynolds – number
Rg	=	Universal gas constant
Re	=	External radius heat transferring wall, m
Ri	=	Internal radius heat transferring wall, m
T _A	=	Actual freezing point, °C
T _{Ao}	=	Freezing point of pure water, ° C
Ть	=	Bulk temperature, ° C
T ₁	=	Outlet temperature of ice, ° C
$T_{2}, T_{c,out}$	=	Surface temperature of coolant out, ° C
T ₃ , T _{j,in}	=	Inlet temperature of feed/juice, °C
$T_{4,}T_{c,in}$	=	Surface temperature of coolant in, ° C
T ₅	=	Inlet temperature of coolant tank, °C
$T_{6,} T_{j,out}$	=	Outlet temperature of feed/juice, ° C
T	=	Average temperature of coolant, $^{\circ}$ C
U	=	Overall heat transfer coefficient, W/m ² K
Uc	=	Velocity of coolant, m/sec
Uj V	=	Average flow velocity, m/sec
V	=	Voltage flow, V
x _B V	=	Mole fraction of water
X _A	=	Mole fraction of water within the product

xvii

CHAPTER I

INTRODUCTION

Water is removed from foods to provide microbiological stability, to reduce deteriorative chemical reactions and to reduce storage and transportation costs. This water can be removed by heating and cooling. Distillation or evaporation by addition of heat is not the only method of removing water from fruit juices. Water may also be removed from juices by freezing out as crystals of solid ice. This process is called **Freeze Concentration**. In freeze concentration water is partly separated from the aqueous solution by crystallization and the ice is then separated from the concentrated liquid phase (Maguer et al, 1986).

Freeze concentration has been used to concentrate fruit juices, coffee extract, vinegar, beer, wine, pickling brines and liquid smoke, to recover potable water from brackish water and sea water and to concentrate toxic wastes and papermill black liquor.

1.1 The Advantages of Freeze Concentration

Conventional method of concentration processes such as evaporation or distillation has some disadvantages. During evaporation of water from aqueous solutions the volatile responsible for aroma and fragrance are also driven off. While equipment to condense and return this desirable volatile has been developed, the recombined end product is inferior to the starting material. Distillation requires the addition of heat This heat brings about a breakdown in the chemical structure of the food liquid causing a change in flavour, a diminution of vitamin contents and other nutritive property Even when essence recovery systems are employed and all volatile condensed and added back to the concentrate, the original flavor is not restored (Norman et al, 1977) Other methods for the removal of water are reverse osmosis (hyper filtration) and ultra filtration In these methods water and some solutes in a solution are selectively removed through a semi permeable membrane (Fellows, 1988)

Freeze concentration involves the concentration of an aqueous solution by partial freezing and subsequent separation of the resulting ice crystals It is considered to be one of the most advantageous concentration processes because of the many positive characteristics related with its application. It is capable of concentrating various comestible liquids without appreciable change in flavor, aroma, color or nutritive value. The concentrate contains almost all the original amounts of solutes present in the liquid food (Tasoula et al, 1990). These low temperatures are needed to preserve texture of the food by retarding chemical changes, by retarding the action of food enzymes and by eliminating the growth of microorganisms capable of growth near or below 0 °C.

1.2 The Disadvantages of Freeze Concentration

Freeze concentration process involves the fractional crystallization of ice from liquid foods Although this process is traditional (it has long been used

to enhance the alcoholic content of cider) it has found only limited and spasmodic use in the food industry (Brennan et al, 1990).

Freeze concentration disadvantages are threefold. Firstly, the degree of concentration achievable is limited. Secondly, suspended matter in the feed can serve as heterogeneous nuclei. This can lead to concentrates, which are pale in colour and lacking in flavour since pigmented particles, and suspended essential oils are removed from the system at the center of ice crystals. Thirdly, the process has proven to be more expensive than evaporation. The capital cost of the plant is not the only feature contributing to the economics of the process, since the fraction of the soluble solids of the feed material discharged with the ice crystals or the melted water rather than with the concentrate is highly important (Brennan et al, 1990).

Process improvements over the years have been directed to cost-effective reduction of this loss. The problem to be solved is the generation of ice crystals substantially free of inclusions of mother liquor and the separation of these from the system clean of any adhering concentrate (Brennan et al, 1990).

1.3 Objective

The objectives of this project are:

- 1. To design and construct a Freeze Concentrator for the concentration of sugar solution.
- 2. To test and evaluate the performance of the Freeze Concentrator in freezing sugar solution at various feed concentrations.
- 3. To determine the rate of ice formation with a shell in tube heat exchanger that is provided with an auger scraper at various feed concentrations.

CHAPTER II

LITERATURE REVIEW

2.1 Definitions

In freeze concentration water is first partly segregated from the aqueous solution by crystallization and thereupon the ice is separated from the concentrated liquid phase. The crystallization and separation operations can be performed in the same apparatus. In actual practice, however, these operations are performed in two separate apparatus (Thijssen, 1974b). These are the crystallizer and separator.

Schwartzberg (1972), described freeze concentration as a process in which: a) cooling is used to selectively freeze solvent from solutions; b) solute concentrations in residual solution consequently increase; and c) concentrated solution and solidified solvent are separated when desired concentrations are reached.

Freeze concentration involves partial freezing of the product and removal of the pure ice crystals, thus leaving behind all of the non aqueous constituents in diminished quantity of water The major limitations of the process include relatively high cost, difficulties in effective separation of ice crystals without loss of food solids and a relatively low upper limit on total solid concentration in the product (Fennema, 1975).

2.2 Freeze Concentration of Foods

The basic components of a freeze concentration system is as shown in figure 2.1. A refrigeration unit is required to provide the driving force for ice crystallization.

Figure 2.1: Diagram of a basic freeze concentration process

2.2.1 The Freezing Point

The *freezing point* of a liquid is that temperature at which the liquid is in equilibrium with the solid. The freezing point of a solution is lower than that of a pure solvent. The freezing point of food is lower than that of pure water. The addition of a nonvolatile solute (sugar) to water lowers the vapor pressure of the

water solution of sugar and the freezing point of the water solution will be lower than that of pure water. Because of the high content of water in most foods, most of them freezes solidly at temperatures between 0° and -3° C (Norman et al, 1978).

The actual freezing process in food products is somewhat more complex than freezing of pure water. Figure 2.2 compares the freezing curves of water with aqueous solution containing a solute. In water, the temperature decreases as heat is removed from the system until the freezing point is reached. After a small amount of supercooling, the temperature remains constant as the latent heat is removed from the water system. Following this latent heat removal, the temperature decreases again as energy is removed (Heldman, 1979).

Figure 2.2: Comparison of freezing curves for pure water and an aqueous solution containing one solute

