MODELLING OF SOLAR RADIATION INTERCEPTION AND BIOMASS PRODUCTION IN AN INTERCROPPING SYSTEM OF RUBBER WITH BANANA AND PINEAPPLE

MOHAMADU BOYIE JALLOH

FP 2003 20
MODELLING OF SOLAR RADIATION INTERCEPTION AND BIOMASS PRODUCTION IN AN INTERCROPPING SYSTEM OF RUBBER WITH BANANA AND PINEAPPLE

By

MOHAMADU BOYIE JALLOH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of Requirement for the Degree of Doctor of Philosophy

October 2003
This Thesis is dedicated to:

My Late
Guardian, Constance Agatha Cummings-John (Mammy)
Grandfather, Musa Jalloh (Grandpa)
Who were always hungry and enthusiastic in their desire and support to see me attain the highest of levels in the Academia.
May God Grant them Eternal Rest.

My Dear Parents
Chernor Jalloh and Fatmata Jalloh
The enduring parental and other support, love, encouragement patience and understanding toward me, and my siblings are priceless.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

MODELLING OF SOLAR RADIATION INTERCEPTION AND BIOMASS PRODUCTION IN AN INTERCROPPING SYSTEM OF RUBBER WITH BANANA AND PINEAPPLE

By

MOHAMADU BOYIE JALLOH

October 2003

Chairman : Associate Professor Jamal bin Talib, Ph.D.
Faculty : Agriculture

Simulation modelling is a powerful approach for studying complex intercropping systems in entirety and a complementary tool to conventional field experiments.

This study aimed to: 1) construct a dynamic model to simulate the biological productivity of an immature rubber (R), banana (B) and pineapple (P) intercropping system based on the interception and utilisation of incident solar radiation (SR), 2) evaluate growth and yield of the intercrop components using the model, 3) compare production for various cropping scenarios and 4) investigate the likelihood and effects of water stress on crop growth using a simple water budget.
A FORTRAN computer model, **SURHIS** (Sharing and Utilisation of Radiation intercepted in a Hedgerow-Intercropping System), was developed for simulating daily SR interception and growth of R-B-P intercropping system. SR interception was modelled using a modified Monsi-Saeki equation by including a clump factor to account for the loss in intercepted SR resulting from the wide row spacing between the crops. Crop growth was modelled based on the net biomass resulting from the difference between crop photosynthesis and respiration.

Simulation results showed that increments in the leaf area index (LAI) had a greater effect on SR interception by component crops compared to height increments. Changes in height affected only fractional interception, whereas LAI increments affected both fractional and total interception.

The crop growth modules were sufficiently accurate in estimating LAI and dry matter yield (DMY) but less precise for crop height. The girth of rubber was estimated with good accuracy. The general trend in overestimation for later part of the simulation period can be attributed to model assumptions for potential production conditions.

The intercropping system showed a DMY productivity advantage of 81% over the component monocrops grown at optimum population densities (PD). Higher PD resulted in greater DMY but fruit weight per plant of B and P in the
monocrop systems reduced with increased PD. There was no deleterious effect from resource competition between R, B and P on the growth of rubber.

The model estimated 24 t ha\(^{-1}\) of carbon sequestration by the three crops over 265 days after planting, with R, B and P, contributing 10, 13 and 1 t ha\(^{-1}\), respectively.

The water budget analysis for the field plot in Taiping, showed that soil moisture storage resulting from normal rainfall was sufficient to supply the water requirements of all crops. Cumulative water requirements of R, B and P, 280 days after planting were 364, 920 and 494 mm, respectively.

The model has immediate applications in prioritising research in R-B-P, intercropping systems. With appropriate modifications, the model can be readily adopted for productivity analysis of similar cropping systems involving other crops.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PERMODELAN PINTASAN RADIASI SOLAR DAN PENGHASILAN BIOMASS DALAM SISTEM TANAMAN SELANG ANTARA GETAH DENGAN PISANG DAN NENAS

Oleh

MOHAMADU BOYIE JALLOH

Oktober 2003

Pengerusi : Profesor Madya Jamal bin Talib, Ph.D.
Fakulti : Pertanian

Model simulasi merupakan satu pendekatan yang berkesan untuk mengkaji sistem tanaman selang yang kompleks secara menyeluruh dan menjadi alat pelengkap kepada kajian ladang yang konvensional.

Kajian ini bertujuan untuk: 1) membina model dinamik yang boleh mensimulasikan potensi pengeluaran biologi sistem tanaman selang getah belum matang (R), pisang (B) dan nenas (P) berasaskan kepada pintasan dan penggunaan radiasi solar (SR) insiden, 2) menilai tumbesaran dan hasil komponen tanaman selang dengan menggunakan model, 3) membandingkan hasil pengeluaran akibat senario penanaman yang berbagai dan 4) menyiasat kemungkinan kejadian tegasan air dan kesannya terhadap tumbesaran tanaman-tanaman dengan menggunakan bajet air yang mudah.
Satu model komputer FORTRAN, SURHIS (Sharing and Utilisation of Radiation intercepted in a Hedgerow-Intercropping System atau Perkongsian dan Penggunaan Pintasan Radiasi dalam Sistem Tanaman Selang Berpagar) dibena untuk mensimulasikan pintasan SR dan tumbesaran tanaman harian bagi sistem tanaman selang R-B-P. Pintasan SR dimodelkan dengan menggunakan persamaan Monsi-Saeki dengan memasukan factor clump untuk mengambil kira kehilangan pintasan SR akibat dari jarak baris antara tanaman yang lebar. Tumbesaran tanaman dimodelkan berdasarkan kepada net biomass yang dihasilkan akibat dari perbezaan antara fotosintesis dan respirasi tanaman.

Keputusan simulasi menunjukkan bahawa penambahan dalam indeks luas daun (LAI) membawa kesan yang lebih besar keatas pintasan SR berbanding dengan kesan akibat penambahan ketinggian tanaman-tanaman komponen. Perubahan ketinggian tanaman memberi kesan kepada hanya pintasan fractional, sementara penambahan LAI memberi kesan kepada kedua-dua pintasan fractional dan jumlah.

Modul tumbesaran tanaman adalah mencukupi dan segi ketepatannya bagi menganggarkan LAI dan hasil bahan kering (DMY) tetapi kurang tepat untuk ketinggian tanaman. Anggaran ukuran lilitan batang getah diperolehi dengan ketepatan yang baik. Kecenderungan terlebih anggaran (overestimation) pada bahagian masa simulasi yang terkemudian mungkin disebabkan oleh andaian yang dibuat untuk pengeluaran hasil potensi.
Sistem tanaman selang ini menunjukkan pengeluaran DMY 81% lebih baik dari sistem tanaman tunggal (monocrop) apabila ditanam pada kepadatan populasi (PD) tanaman optimum. Lebih tinggi PD, mengakibatkan lebih tinggi DMY, tetapi berat buah per tanaman B dan P berkurangan dengan penambahan PD. Tiada terdapat kesan buruk dari persaingan SR antara R, B dan P terhadap tumbesaran getah.

Model menganggarkan 24 t ha\(^{-1}\) karbon yang telah digunakan oleh ketiga-tiga tanaman 265 hari selepas ditanam di mana R, B dan P menyumbang 10, 13 dan 1 t ha\(^{-1}\) masing-masingnya.

Analisis bajet air bagi plot tanah di Taiping menunjukkan bahawa simpanan kelembapan tanah yang diperolehi dari hujan adalah mencukupi untuk memenuhi keperluan air tanaman-tanaman tersebut. Keperluan air kumulatif untuk tanaman R, B dan P, 280 hari selepas ditanam adalah 364, 920 dan 494 mm masing-masingnya.

Model ini boleh digunakan untuk menentukan keutamaan bagi penyelidikan sistem tanaman selang R-B-P. Dengan modifikasi tertentu, model ini juga sesuai digunakan untuk membuat analisis pengeluaran sistem penanaman selang yang melibatkan tanaman yang lain.
ACKNOWLEDGEMENTS

This thesis is the culmination of my Doctoral studies in the Faculty of Agriculture and as such I would like to take this opportunity to thank all staff members and my fellow students for making my studies so stimulating and rewarding.

Very special thanks and appreciation go to both Prof. Dr. Wan Sulaiman Wan Harun and Associate Prof. Dr. Jamal Talib for financially-enabling me pursue this PhD program under their projects funded by the Malaysian Government through the IRPA scheme. I would also like to thank them both for chairing my supervisory committee, though at different times, as the former gracefully handed over to the latter due to retirement from active service with UPM. They availed themselves at all times for guidance and advice that were very valuable in making this thesis a reality. They have both been very great captains, inspiring, supportive and very fatherly during the course of this program.

Sincere appreciation also goes to the other members of my Supervisory Committee; Associate Professor Dr Mohd. Fauzi Ramlan, Associate Professor Dr Rajan Amartalingam and Dr Christopher Teh Boon Sung for their constructive and valuable suggestions and guidance which contributed greatly in shaping this
thesis. I am grateful for the particular contribution from Dr Christopher to the development of RADINT.

Special thanks to the Malaysian Rubber Board (MRB) and the Rubber Industry Smallholder Development Authority (RISDA) for allowing data to be collected from their plots located in Taiping, Perak.

It would be a remiss if I do not thank Faculty of Agriculture staff, colleagues and friends, and especially my Medical Doctors and Supervisory committee; all of whom were very caring, supportive and understanding when I was temporarily indisposed due to health reasons. They contributed immeasurably to enable me continue my PhD program to completion.

Special thanks go to Dr Abdul R Bah, Dr Moses Lahai and all my fellow compatriots in Malaysia, for all the support and for being there always especially at times when it mattered most. Thanks also to the Soil Physics Unit staff; Haj. Mohktar, Haj. Aziz, Mr Haniff and Mr Ariffin and the Plant Physiology laboratory staff; Messrs Mazlan and Azhar for all their valuable assistance during field and laboratory work. Thanks to Mr Ramli Yusof for always helping when I had maintenance problems with my computer. Thanks to Zainuddin Mohd Ali for being very helpful on many occasions. Thanks to Dr Anuar Rahim for letting me know a lot about the SAS statistical software package.
Thanks to Wageningen Agricultural University, for providing me, free of charge, the FSE software and thanks also to Gon van Laar and Bas Bouman for technical support in using FSE and I wish to acknowledge the use of SUCROS1, which is the framework of the crop modules.

Sincere appreciation and thanks to Dr J Jones, Prof J D H Keatinge and Dr Julian Park for recommending me to pursue my PhD in UPM. Special thanks to Dr Mohd Imran Khan, Dr Mary Huang, Hazel Roy and particularly Madhumathi Pillai for their friendship and support.

Last, but by no means least, I would like to thank my parents, younger siblings, (Alpha Momodu, Kadijatu, Lamarana, Salamatu and Musa), the entire Cummings-John Family, other relations and friends, who have persevered and endured my absence from home and all those who in diverse ways assisted me during my stay in Malaysia.
I certify that an Examination Committee has met on October 8th 2003 to conduct the final examination of Mohamadu Boyie Jalloh on his Doctor of Philosophy thesis entitled “Modelling of Solar Radiation Interception and Biomass Production in an Intercropping System of Rubber with Banana and Pineapple” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MOHITARUDDIN BIN ABDUL MANAN, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

JAMAL BIN TALIB, Ph.D.
Associate Professor/Director
University Agriculture Park
Universiti Putra Malaysia
(Member)

WAN SULAIMAN WAN HARUN, Ph.D.
Professor
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
(Member)

MOHD. FAUZI BIN RAMLAN, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

RAJAN AMARTALINGAM, Ph.D.
Associate Professor
Faculty of Agricultural Science and Food
Universiti Putra Malaysia, Bintulu Campus
(Member)

CHRISTOPHER TEH BOON SUNG, Ph.D.
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

KRIRK PANANGPETCH, Ph.D.
Assistant Professor
Faculty of Agriculture
Khon Kaen University
(Independent Examiner)

GULAM RUBUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 Jan 2004
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee are as follows:

JAMAL BIN TALIB, Ph.D.
Associate Professor/ Director
University Agriculture Park
Universiti Putra Malaysia
(Chairman)

WAN SULAIMAN WAN HARUN, Ph.D.
Professor
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
(Member)

MOHD. FAUZI BIN RAMLAN, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

RAJAN AMARTALINGAM, Ph.D.
Associate Professor
Faculty of Agricultural Science and Food
Universiti Putra Malaysia, Bintulu Campus
(Member)

CHRISTOPHER TEH BOON SUNG, Ph.D.
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 JAN 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOHAMADU BOYIE JALLOH

Date: 6th Jan 2004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Problem Statement and Rationale of the Study</td>
<td>3</td>
</tr>
<tr>
<td>Objectives of the Study</td>
<td>8</td>
</tr>
<tr>
<td>General Hypothesis</td>
<td>9</td>
</tr>
<tr>
<td>II LITERATURE REVIEW</td>
<td>10</td>
</tr>
<tr>
<td>Introduction</td>
<td>10</td>
</tr>
<tr>
<td>Crop Production</td>
<td>10</td>
</tr>
<tr>
<td>The Crop</td>
<td>11</td>
</tr>
<tr>
<td>The Environment</td>
<td>12</td>
</tr>
<tr>
<td>Intercropping Systems</td>
<td>13</td>
</tr>
<tr>
<td>Advantages of Intercropping</td>
<td>14</td>
</tr>
<tr>
<td>Competition for Resources</td>
<td>16</td>
</tr>
<tr>
<td>Competition for Radiation</td>
<td>17</td>
</tr>
<tr>
<td>Mechanisms of Radiation Competition</td>
<td>18</td>
</tr>
<tr>
<td>The Tree-Crop Interface</td>
<td>19</td>
</tr>
<tr>
<td>Modelling as a Tool in Crop Production Systems Studies</td>
<td>20</td>
</tr>
<tr>
<td>Crop Production Levels</td>
<td>22</td>
</tr>
<tr>
<td>Types of Models</td>
<td>23</td>
</tr>
<tr>
<td>Radiation Interception Models</td>
<td>24</td>
</tr>
<tr>
<td>Crop Growth Models</td>
<td>27</td>
</tr>
<tr>
<td>Carbon Sequestration</td>
<td>29</td>
</tr>
<tr>
<td>III MATERIALS AND METHODS</td>
<td>31</td>
</tr>
<tr>
<td>Description of the Model</td>
<td>31</td>
</tr>
<tr>
<td>Underlying Model Assumptions</td>
<td>33</td>
</tr>
<tr>
<td>The Radiation Interception and Sharing Module</td>
<td>33</td>
</tr>
<tr>
<td>Theoretical Framework of RADINT</td>
<td>35</td>
</tr>
</tbody>
</table>
Available Water Storage 78
Statistical Analyses and Graphical representations 79

IV RESULTS AND DISCUSSION 80
Introduction 80
Environmental Variables 80
Radiation Interception and Radiation Use Efficiency (RUE) 82
Effect of LAI Increment on Radiation Interception 83
Effect of Crop Height Increment on Radiation Interception 85
Fractional Interception Dynamics of the Whole System 87
RUE of Banana and Pineapple 95
Simulation of Growth and Development of the Crops 99
Crop Phenology 99
Dynamics of Crop Dry Matter Yield (DMY) 101
Total Dry Matter (TDM) 102
Evaluation of Simulation Model Results 103
Partitioning of Dry Matter 105
Dynamics of Crop Leaf Area Index (LAI) 108
Evaluation of the Model Simulation Results 108
Comparison between Observed and Simulated LAI 112
Relationship between Green Leaf Weight and LAI 115
Dynamics of Crop Height 118
Evaluation of the Model Simulation Results 119
Comparison between Observed and Simulated Height 123
Dynamics of Rubber Girth 126
Evaluation of the Model Simulation Results 126
Comparison between Observed and Simulated Girth 128
Model Performance Comparisons for Simulated Crop Variables 129
Sensitivity Analysis 130
Radiation Interception Module Sensitivity Analysis 130
Crop Modules Sensitivity Analysis 131
Empirical Regression Models 133
LAI 134
Height 137
Girth 139
Comprehensive Mathematical Relationships for Dry Matter Yield 140
Quantifying the Intercropping Advantage 142
LER in terms of Dry Matter Yield 143
Carbon Sequestration 144
Plant Density Effects on Dry Matter Yield and Harvest Index 146
Soil Water Budget and the Likelihood of Water Stress to Crops 147

V SUMMARY AND CONCLUSIONS 153
Objective 1 – Model Development 153

xvii
Objective 2 – Model Evaluation
 Radiation Interception Module 154
 Crop Growth Modules 155
 Sensitivity Analysis 156
 Empirical Regression Models 157
Objective 3 – Cropping Scenario Comparisons
 Dry Matter Comparisons 158
 Fruit Weight 158
Objective 4 – Water Stress Likelihood and its Effects
 Recommendations for Future Research 161

REFERENCES 164
APPENDICES 180
VITA 195
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Some of the parameters and coefficients used in SURHIS</td>
<td>71-72</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of Comparisons of Model Performance for Simulated Variables for the Three Different Evaluation Methods</td>
<td>129</td>
</tr>
<tr>
<td>4.2</td>
<td>The simulated potential dry matter yield (DMY) for up to 265 days after planting and fresh fruit weight at harvest of banana for the UPM field plot for three cropping scenarios</td>
<td>143</td>
</tr>
<tr>
<td>4.3</td>
<td>The simulated potential dry matter yield (DMY) for up to 265 days after planting and fresh fruit weight at harvest of pineapple for the UPM field plot for three cropping scenarios</td>
<td>143</td>
</tr>
<tr>
<td>4.4</td>
<td>The simulated potential dry matter yield for up to 265 days after planting of rubber for the UPM field plot for two cropping scenarios</td>
<td>144</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>(a) Total annual production of rubber in the World and Malaysia and (b) Percentage of World total rubber and oil palm production and area harvested by Malaysia</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>(a) Total annual production of banana in the World and Malaysia and (b) Percentage of World total production and area harvested by Malaysia</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>(a) Total annual production of pineapple in the World and Malaysia and (b) Percentage of World total production and area harvested by Malaysia</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Types of crop models and some of their capabilities</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of the model components showing their inter-relationships</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Diagrammatic representation of a vertical canopy-overlap scenario in the intercropping system</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Relational diagram of the conceptual model of the crop growth modules for production level 1</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Field layout showing planting arrangement of the double-hedgerows intercropping system</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Steps used in the development of the model</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Flow Chart of SURHIS</td>
<td>68-69</td>
</tr>
<tr>
<td>3.7</td>
<td>Flow Chart of Subroutine RADINT</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>The daily mean temperature and monthly standard deviation for the periods of study for the field plots in (a) UPM, and (b) Taiping</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>The daily total solar radiation and monthly standard deviation for the periods of study for the field plots in (a) UPM and (b), Taiping</td>
<td>82</td>
</tr>
</tbody>
</table>
4.3 The influence of increment in the LAI on radiation interception by (a) rubber, (b) banana and (c) pineapple

4.4 The effect of LAI of component crops on the quantum of total incident radiation flux (TIRFLX) intercepted by all three crops

4.5 The influence of increment in height on radiation interception by (a) rubber, (b) banana and (c) pineapple

4.6 The effect of height of component crops on the quantum of total incident radiation flux (TIRFLX) intercepted by all three crops

4.7 The (a) Percentage fractional interception with corresponding (b) leaf area indices and (c) heights, of component crops for the Taiping field plot

4.8 The (a) Percentage fractional interception, with corresponding (b) leaf area indices and (c) heights, of component crops for the UPM field plot

4.8.1 The (a) Percentage fractional interception, with corresponding (b) leaf area indices and (c) heights, of component monocrops for the UPM field plot

4.9 The relationship between simulated banana dry matter yield and cumulative intercepted PAR for the Taiping and UPM field plots

4.10 The relationship between measured banana dry matter yield and cumulative intercepted PAR for the UPM field plot

4.11 The relationship between simulated pineapple dry matter yield and cumulative intercepted PAR for the Taiping and UPM field plots

4.12 The relationship between measured pineapple dry matter yield and cumulative intercepted PAR for the UPM field plot

4.13 The (a) phenological or development stages, of the crops and (b) the corresponding cumulative temperature during their growth cycles
4.14 The simulated Total Dry matter weight for Banana parent crop and two ratoons for the Taiping field plot

4.15 The simulated Total Dry matter weight for Banana parent crop and two ratoons for the UPM field plot

4.16 The observed and simulated dry matter yield of banana parent plants for the UPM field plot

4.17 The observed and simulated dry matter yield of pineapple plants for the UPM field plot

4.18 The dynamics of percent dry matter content of component plant parts of banana parent-plants for the UPM field plot

4.19 The dynamics of percent dry matter content of component plant parts of pineapple plants for the UPM field plot

4.20 The observed and simulated LAI of rubber plants for the Taiping field plot

4.21 The observed and simulated LAI of rubber plants for the UPM field plot

4.22 The observed and simulated LAI of banana parent-plants for the UPM field plot

4.23 The observed and simulated LAI of banana ratoon-1 plants for the UPM field plot

4.24 The observed and simulated LAI of banana ratoon-2 plants for the UPM field plot

4.25 The observed and simulated LAI of pineapple plants for the UPM field plot

4.26 Comparison between observed and simulated LAI for rubber plants for the Taiping field plot

4.27 Comparison between observed and simulated LAI for rubber plants for the UPM field plot

4.28 Comparison between observed and simulated LAI for banana parent-plants for the UPM field plot
4.29 Comparison between observed and simulated LAI for banana ratoon-1 plants for the UPM field plot starting at harvest of parent plants

4.30 Comparison between observed and simulated LAI for banana ratoon-2 plants for the UPM field plot starting at harvest of ratoon-1 plants

4.31 Comparison between observed and simulated LAI for pineapple plants for the UPM field plot

4.32 The relationship between LAI and simulated green leaf weight (WLG) for rubber from planting to 4yrs old for the Taiping field plot

4.33 The relationship between LAI and simulated green leaf weight of rubber for the UPM field plot

4.34 The relationship between LAI and measured green leaf weight (WLG) for the parent-crop cycle of banana for the UPM field plot

4.35 The relationship between LAI and measured green leaf weight (WLG) of the parent-crop cycle of pineapple for the UPM field plot

4.36 The observed and simulated height of rubber plants for the Taiping field plot

4.37 The observed and simulated height of rubber plants for the UPM field plot

4.38 The observed and simulated height of banana parent-plants for the UPM field plot

4.39 The observed and simulated height of banana ratoon-1 plants for the UPM field plot

4.40 The observed and simulated height of banana ratoon-2 plants for the UPM field plot

4.41 The observed and simulated height of pineapple plants for the UPM field plot
4.42 Comparison between observed and simulated height for immature rubber plants for the Taiping field plot

4.43 Comparison between observed and simulated height for immature rubber plants for the UPM field plot

4.44 Comparison between observed and simulated height for banana parent-plants for the UPM field plot

4.45 Comparison between observed and simulated height for banana ratoon-1 plants for the UPM field plot starting at harvest of the parent-plants

4.46 Comparison between observed and simulated height for banana ratoon-2 plants for the UPM field plot starting at harvest of the ratoon-1 plants

4.47 Comparison between observed and simulated height for pineapple plants for the UPM field plot

4.48 The observed and simulated girth growth for rubber plants for the Taiping field plot

4.49 The observed and simulated girth of rubber plants for the UPM field plot

4.50 Comparison between observed and simulated girth for rubber plants for the Taiping field plot

4.51 Comparison between observed and simulated girth for rubber plants for the UPM field plot

4.52 Sensitivity of simulated radiation interception by rubber, banana and pineapple to changes in canopy radiation extinction coefficients (k)

4.53 Sensitivity of simulated dry matter yield of rubber, banana and pineapple to changes in maximum leaf photosynthesis rate (Pmax)

4.54 Sensitivity of simulated dry matter yield of rubber, banana and pineapple to changes in initial efficiency of leaf photosynthesis (Eff)