

UNIVERSITI PUTRA MALAYSIA

UTILIZATION OF PALM KERNEL CAKE IN MUSCOVY DUCKS

MUSTAFA FADIL MOHAMMED

FP 2003 19

UTILIZATION OF PALM KERNEL CAKE IN MUSCOVY DUCKS

By

MUSTAFA FADIL MOHAMMED

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

~

August 2003

DEDICATION

TO MY LATE FATHER AND MY DAUGHTER MARYAM

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

UTILIZATION OF PALM KERNEL CAKE IN MUSCOVY DUCKS

By

MUSTAFA FADIL MOHAMMED

August 2003

Chairman: Associate Professor Abd Razak Alimon, Ph.D.

Faculty: Agriculture

Four experiments were conducted on Muscovy ducks to evaluate their utilization, performance and nutrient digestibility when offered diets containing different levels of palm kernel cake (PKC). In the first experiment, two types of PKC (solvent and expeller extracted) were force-fed to male and female ducks 7 weeks of age and the nutrient digestibility, true metabolizable energy and true amino acid digestibility were determined. There was no significant (p>0.05) effect on the type of PKC used on crude protein (CP), ether extract (EE), metabolizable energy (ME) and amino acid (AA) digestibility, except for those of dry matter (DM) and neutral detergent fibre (NDF) which was higher in solvent extracted compared to expeller extracted PKC. It was found that the ducks utilized about 47% of the gross energy in PKC. The average apparent metabolizable energy value of PKC for Muscovy ducks was obtained to be 1870 kcal/kg, which was rather higher than those reported in broiler chickens.

The performance of male and female Muscovy ducks when fed diets containing 15% and 35% levels of PKC were investigated. The results indicated that inclusion of up to 15% of PKC in growing diet for ducks did not depress growth nor feed conversion ratio (FCR) at any significant degree. Given the low cost of PKC, such usage is likely to be economic, depending, to some extent, on cost of added oil. At this level no negative effect in faecal consistency nor carcass fatness were observed. As PKC level increased up to 35%, the ducks ate more feed and as a result had poorer FCR. The explanation for the poorer FCR could be related to the decline in the energy and protein digestibility when ducks were fed at higher PKC level as compared to the control diet. It could be suggested that addition of oil to PKC based diet may improve the palatability and thus the feed intake and the performance of the ducks.

Differences in the feed efficiency and nutrient digestibility between Muscovy ducks and broiler chickens were found when PKC was included up to 25% in the diet. Feeding up to 25% level of PKC to ducks was not associated in any detrimental effects on the performance and FCR. However, FCR was depressed when PKC was added at 25% level to broiler grower diet. The ME value was found to be higher in ducks than in chickens. This indicates that the ME value for chickens cannot be applied to ducks. The digestibility of NDF was found to be higher for ducks than for chickens and this could be due to the higher hemicellulose digestibility for ducks than for chickens.

5

The effect of feeding PKC on the intestine dimension, villus height and shape was examined after two and five weeks post-feeding. The results showed that there was no effect of feeding PKC on the intestinal length and weight at both ages. There was no effect on the villus height of the jejunum of the diet, sex and age. However, villus height in the ileum of the male ducks fed PKC after two weeks post-feeding was found to be shorter than those of the control diet. There was no effect in the villus height of the ileum after five weeks post-feeding. The morphology of different intestinal parts was examined under the scanning electron microscope (SEM) at both periods. No damage was found at any intestinal part that could be related to dietary PKC. The results suggested that PKC have no adverse effect on the intestine of Muscovy ducks.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGGUNAAN HAMPAS ISIRUNG KELAPA SAWIT (PKC) PADA MAKANAN ITIK MUSCOVY

Oleh

MUSTAFA FADIL MOHAMMED

Ogos 2003

Pengerusi : Profesor Madya Abd Razak Alimon, Ph.D.

Fakulti : Pertanian

Empat ujikaji telah dijalankan ke atas itik Muscovy untuk menilai tahap pengambilan, prestasi dan nilai cerna nutrien apabila diberi diet-diet yang mengandungi aras PKC yang berbeza. Dalam ujikaji pertama, dua jenis PKC (secara pelarut dan perah asak) telah diberikan secara paksa kepada itik jantan dan betina semasa tempoh pertumbuhan (umur 7 minggu). Nilai cerna nutrien, tenaga metabolisma sebenar dan nilai cerna asid amino sebenar ditentukan. Tiada perbezaan ketara diperolehi antara kedua-dua jenis PKC tersebut daripada segi nilai cerna bahan kering, protein kasar dan asid amino kecuali NDF yang didapati lebih tinggi pada kumpulan yang diberi makan PKC secara pelarut berbanding dengan PKC perah asak. Itik-itik ini didapati menggunakan kira-kira 47% tenaga kasar daripada PKC. Purata nilai tenaga metabolisma PKC pada itik-itik tersebut dalah 1870 kcal/kg.

Kajian juga telah dijalankan terhadap prestasi itik Muscovy jantan dan betina yang diberi PKC pada aras 15% dan 35%. Keputusan menunjukkan bahawa

penambahan PKC sehingga 15% di dalam makanan itik yang sedang membesar tidak merencatkan pertumbuhan atau FCR. Berasaskan kos yang murah, penggunaannya mungkin lebih ekonomi. Walau bagaimanapun, ini bergantung kepada kos minyak sawit yang ditambahkan. Pada aras ini, tiada kesan negatif didapati pada aliran tahi dan kegemukkan karkas apabila aras PKC ditingkatkan sehingga 35%, itik-itik didapati mengambil lebih banyak makanan sehingga menyebabkan penurunan FCR. Penurunan FCR ini mungkin berkaitan dengan penurunan nilai cerna tenaga dan protein apabila ternakan ini diberi makan PKC pada aras 35%, berbanding dengan diet kawalan. Adalah dicadangkan bahawa penambahan minyak ke dalam diet berasaskan PKC boleh meningkatkan kecekapan dan pengambilan makanan serta presatasi itik-itik tersebut.

Perbezaan dalam kecekapan penukaran makanan kepada daging dan nilai cerna nutrien antara itik Muscovy dan ayam pedaging dikesan apabila aras PKC ditingkatkan sehingga 25% di dalam makanan. Pengambilan PKC sehingga ke aras 25% tidak memberi sebarang kesan pada prestasi dan FCR itik. Walau bagaimanapun, di dalam makanan ayam pedaging FCR mula direncat apabila PKC ditambah ke aras 25%. Nilai ME didapati lebih tinggi pada itik berbanding pada ayam. Ini menunjukkan bahawa nilai ME untuk ayam tidak boleh digunakan untuk itik. Nilai cerna NDF didapati lebih tinggi pada itik berbanding dengan nilai cerna pada ayam, dan ini terutamanya disebabkan oleh keupayaan mencerna hemiselulosa yang lebih tinggi pada itik berbanding pada ayam.

Ujian terhadap kesan pengambilan PKC terhadap morfologi usus,tinggi dan bentuk vilus telah dijalankan selepas dua dan lima minggu pengambilan makanan

tersebut. Keputusan menunjukkan bahawa pengambilan PKC tidak memberi kesan terhadap kepanjangan dan berat usus pada kedua-dua peringkat umur. Makanan, jantina dan umur tidak memberi kesan terhadap tinggi vilus pada jejunum. Walaupun begitu, ketinggian vilus di dalam bahagian ileum pada itik jantan yang mengambil makanan kawalan didapati lebih panjang berbanding kumpulan itik yang mengambil PKC selepas dua minggu. Tiada sebarang kesan pada ketinggian vilus di ileum selepas lima minggu pengambilan. Pemerhatian morfologi pada bahagian usus telah diperiksa menggunakan mikroskop elektron pada kedua-dua tempoh tersebut. Tiada terdapat sebarang kerosakan pada bahagian usus yang boleh dikaitkan dengan pengambilan PKC. Keputusan ini menunjukkan bahawa PKC tidak memudaratkan usus itik Muscovy.

ACKNOWLEDGEMENTS

First, my praise to Almighty Allah, for giving me the strength and patience to complete my study and peace is upon the final prophet and messenger Mohammed.

I wish to express my deepest appreciation and gratitude to Associate Professor Dr. Abd Razak Alimon, chairman of supervisory committee, for his kind help, guidance, encouragement and invaluable suggestions during my course of the study. I am much indebted and grateful to Associate Professor Dr. Mohammad Hair Bejo, Dr. Ismail Idris and Dr. Wan Zahari Mohamed, members of my supervisory committee, for their encouragement, discussion, advice, comments and suggestions.

I wish to thank Dr. Izzeldin Babiker Ismail, Dr. Goh Yong Meng and Dr. Lan Gan Qiu for their valuable advice and suggestions related to my experiments. I would also like to thank Associate Professor Dr. Fauziah Othman of Institute of Bioscience and Dr. Wan Nordin Wan Mahmud, Faculty of Veterinary Medicine, Universiti Putra Malaysia for allowing me to use the facilities of their laboratories.

I am indebted to Mr. Ibrahim Mohsin, Mr. Saparin Demin, Mr. Islahuddin Musa, Miss Azilah Ab. Jalil, Mr. Ho Oi Kuan, Mrs. Sapiah Jalal and Mr. Mohd Sharudin Mohd Ali for their technical assistance while conducting my study.

I am most grateful to the Government of Malaysia for the IRPA Grant for the financial support. I wish to express my deepest appreciation to the staff of graduate school for all kinds of assistance provided to the international students.

TABLE OF CONTENTS

	Page
DEDICATION	2
ABSTRACT	3
ABSTRAK	6
ACKNOWLEDGMENTS	9
APPROVAL	11
DECLARATION	13
LIST OF TABLES	18
LIST OF FIGURES	21
LIST OF ABBREVIATIONS	23

CHAPTER

Ι	INTRODUCTON	25
II	LITERATURE REVIEW	29
	Muscovy Ducks	29
	Origin and Characteristics	29
	Growth Rate and Performance	29
	Palm Kernel Cake (PKC)	31
	Production of PKC	31
	Nutrient Composition of PKC	32
	Amino Acid Content and Digestibility of PKC	
	for Poultry	33
	Treatment Methods of PKC	34
	Feeding Value of PKC for Livestock	36
	Utilization of PKC by Ruminants	36
	Utilization of PKC by Pigs	36
	Utilization of PKC by Poultry	37
	Metabolizable Energy (ME)	38
	Definition and Determination	38
	ME Value for Ducks and Other Poultry Species	40
	Dietary Fibre	41
	Definition and Determination	41
	Influence of Fibre on Energy Utilization	42
	Influence of Fibre on Protein Utilization	45
	Influence of Fibre on Mineral Utilization	45
	Digestive System of Ducks	47
	Structure of Avian Intestine	47
	Development and Morphology of the Gastrointestinal	
	Tract	48
	Influence of Dietary Fibre on Intestinal Morphology	
	and Villus Height	49
	Factors Influencing Villus Height and Morphology	50
	Intestinal Microflora	51

III	GENERAL MATERIALS AND METHODS	53
	Location and Housing	53
	Experimental Animals	53
	Sanitation of the House	54
	Ambient Temperature and Humidity	54
	Rearing Period up to 14 Days	54
	Growth Trial	55
	Feed Conversion Ratio (FCR)	55
	Digestibility Trial	55
	Mixing of Diets and Chemical Analysis	56
	Proximate Analysis	57
	Dry Matter (DM) Determination	57
	Ash Determination	57
	Gross Energy (GE) Determination	58
	Crude Protein (CP) Determination	59
	Neutral Detergent Fibre (NDF) Determination	60
	Acid Detergent Fibre (ADF) Determination	61
	Mineral Determination	62
	Phosphorus (P) Determination	62
	Amino Acid (AA) Determination	63
	Acid Hydrolysis	63
	Derivatization	63
	Separation	64
	Chromatography	64
	Microscopic Procedure	64
	Light Microscopy	64
	Scanning Electron Microscope (SEM)	65
IV	NUTRIENT DIGESTIBILITY OF PALM KERNEL	
	CAKE FOR MUSCOVY DUCKS	67
	Introduction	67
	Materials and Methods	68
	Analysis of PKC Samples	68
	Birds	69
	Housing and Feeding Procedure	69
	Calculations	70
	Statistical Analysis	71
	Results	74
	Chemical and Amino Acid Analysis of PKC	74
	Nutrient Digestibility of PKC for Muscovy Ducks	74
	Metabolizable Energy and Amino Acid Digestibility	
	of PKC for Muscovy Ducks	77
	Discussion	80
	Conclusion	82

V	PERFORMANCE OF MUSCOVY DUCKS	
	OFFERED DIET CONTAINING DIFFERENT	
	INCLUSION LEVELS OF PALM KERNEL CAKE	83
	Introduction	83
	Materials and Methods	84
	Animals and Housing	84
	Diets	85
	Balance Trial	85
	Carcass Evaluation	85
	Data Collection	86
	Statistical Analysis	86
	Results	88
	Growth Performance	88
	Body Weight	88
	Feed Intake	90
	Weight Gain	90
	Feed Conversion Ratio (FCR)	91
	Balance Trial	92
	Carcass Evaluation	97
	Discussion	98
	Conclusion	103
VI	COMPARISON OF THE PERFORMANCE OF	
	MUSCOVY DUCKS AND BROILER CHICKENS	
	FED DIET CONTAINING PALM KERNEL CAKE	105
	Introduction	105
	Materials and Methods	106
	Animals and Housing	106
	Diets	106
	Balance Trial	106

V

	Results	109
	Growth Performance	109
	Balance Trial	110
	Carcass Evaluation	111
	Discussion	113
	Conclusion	116
VII	INFLUENCE OF FEEDING DIFFERENT LEVELS OF PALM KERNEL CAKE ON THE GASTROINTESTINAL TRACT MORPHOLOGY	
	OF MUSCOVY DUCKS	117
	Introduction	117
	Materials and Methods	118

Carcass Evaluation

Data Collection

Statistical Analysis

107

107

107

	Intestinal Measurements	119
	Histological Examination	119
	Scanning Electron Microscope (SEM)	120
	Statistical Analysis	120
	Results	121
	Intestinal Measurements	121
	Histological Examination	123
	Scanning Electron Microscope (SEM)	125
	Discussion	126
	Conclusion	129
VIII	GENERAL DISCUSSION	138
IX	CONCLUSIONS	144
BIBILIOGR	ХАРНҮ	145
BIODATA OF THE AUTHOR		160

LIST OF TABLES

Table		Page
1	Nutrient content (% dry matter) of PKC cited from different literature	33
2	Amino acid composition (%) of PKC	35
3	Nutrient composition of PKC tested in metabolic study	75
4	Amino acid content (%) of PKC used in metabolic study	76
5	Dry matter, CP, EE and NDF digestibilities of PKC for male and female Muscovy ducks	77
6	AME, AMEn, TME and TMEn values of PKC for male and female Muscovy ducks	77
7	True amino acid availability (%) of PKC of male and female Muscovy ducks	79
8	Amino acid composition of PKC in relation to NRC (1994) requirements for ducks at growing period	81
9	Composition of the diets using different levels of PKC	87
10	Nutrient composition of the diets and PKC	88
11	Effects of different levels of PKC on mean body weight of Muscovy ducks fed from 2 nd to 7 th weeks of age	89
12	Effects of different levels of PKC on mean feed intake of Muscovy ducks fed from 2 nd to 7 th weeks of age	90
13	Effects of different levels of PKC on mean weight gain of Muscovy ducks fed from 2 nd to 7 th weeks of age	91
14	Effects of different levels of PKC on mean feed conversion ratio of Muscovy ducks fed from 2 nd to 7 th weeks of age	91
15	Effects of different levels of PKC on total feed intake, weight gain and feed conversion ratio of Muscovy ducks fed from 2 nd to 7 th weeks of age	92
16	Effects of different levels of PKC on apparent DM, energy and CP utilization by Muscovy ducks	93

17	Effects of different levels of PKC on the utilization of fibre component by Muscovy ducks	94
18	Effects of different levels of PKC on Ca, P, Mn, Cu and Zn utilization by Muscovy ducks	96
19	Total faeces, dry faeces, water content of faeces and time of digesta passage by Muscovy ducks fed different levels of PKC	97
20	Dressing percentage and organ proportion (body weight %) of Muscovy ducks fed different levels of PKC	98
21	Composition of the experimental diets	108
22	Nutrient composition of the experimental diets	109
23	Effects of inclusion of PKC on the body weight, feed intake, weight gain and FCR of Muscovy ducks and broiler chickens fed from 2 nd to 7 th weeks of age	110
24	Apparent digestibility (%) of DM, CP and energy for Muscovy ducks and broiler chickens	111
25	Digestibility of fibre component (%) in Muscovy ducks and broiler chickens	112
26	Dressing percentage and organ proportion (body weight %) of Muscovy ducks and broiler chickens	113
27	Mean length (cm/kg) of various intestinal parts of Muscovy ducks fed different levels of PKC after two weeks post-feeding	121
28	Mean weight (g/100 g body weight) of various intestinal parts of Muscovy ducks fed different levels of PKC after two weeks post-feeding	122
29	Mean length (cm/kg) of various intestinal parts of Muscovy ducks fed different levels of PKC after five weeks post-feeding	123
30	Mean weight (g/100 g body weight) of various intestinal parts of Muscovy ducks fed different levels of PKC after five weeks post-feeding	123
31	Mean height and width (μ m) of intestinal villi of Muscovy ducks fed different levels of PKC after two weeks post-feeding	124

32 Mean height and width (μ m) of intestinal villi of Muscovy ducks fed different levels of PKC at 7th week of age 125

-

LIST OF FIGURES

Figure		Page
1	Male (left) and female (right) Muscovy ducks at 9 weeks of age	30
2	The extraction rate of PKC	32
3	A stainless steel funnel with a stainless plunger used for force feeding in Muscovy ducks	72
4	Force feeding in Muscovy ducks	73
5	Body weight of male and female Muscovy ducks during the growing period	89
6	Jejunum of male (a) and female (b) Muscovy ducks fed the control diet after two weeks post-feeding. HE, 40X (Bar = $250 \mu m$)	130
7	Ileum of male Muscovy ducks fed (a) control diet and (b) 35% PKC after two weeks post-feeding. HE, 40X (Bar = $250 \mu m$)	131
8	Jejunum of male (a) and female (b) Muscovy ducks fed the control diet after five weeks post-feeding. HE, 40X (Bar = 250 μ m)	132
9	Ileum of male (a) and female (b) Muscovy ducks fed the control diet after five weeks post-feeding. HE, 40X (Bar = 250 μ m)	133
10	Duodenum of male Muscovy ducks fed corn-soybean meal diet after two weeks post-feeding. SEM, 85X	134
11	Jejunum of male Muscovy ducks fed corn-soybean meal diet after two weeks post-feeding. SEM, 85X	134
12	Ileum of male Muscovy ducks fed corn-soybean meal diet two weeks post-feeding. SEM, 120X	135
13	Colon of male Muscovy ducks fed corn-soybean meal diet after two weeks post-feeding. SEM, 85X	135
14	Proximal caecum of male Muscovy ducks fed corn-soybean meal diet after two weeks post-feeding. SEM, 85X	136

15	Distal caecum of male Muscovy ducks fed corn-soybean meal diet after two weeks post-feeding. SEM, 85X	136
16	Duodenum of male Muscovy ducks fed corn-soybean meal diet after five weeks post-feeding. SEM, 85X	137

~

LIST OF ABBREVIATIONS

AA	Amino Acid
ANOVA	Analysis of Variance
AOAC	Association Official Agricultural Chemists
ADF	Acid Detergent Fibre
AME	Apparent Metabolizable Energy
AMEn	Apparent Metabolizable Energy Corrected to Zero Nitrogen
Ca	Calcium
CF	Crude Fibre
СР	Crude Protein
cm	Centimetre
Cu	Copper
DCP	Di Calcium Phosphate
DE	Digestible Energy
DM	Dry Matter
EE	Ether Extract
FCR	Feed Conversion Ratio
g	Gram
GE	Gross Energy
Kcal	Kilocalorie (1Kcal = 4.186 kJ)
kg	Kilogram
ME	Metabolizable Energy
Mg	Magnesium
Min	Minute

Mn	Manganese
Ν	Nitrogen
NRC	National Research Council
NDF	Neutral Detergent Fibre
NFE	Nitrogen Free Extract
NS	Not Significant
Р	Phosphorus
PITC	Phenylisothiocyanate
РКС	Palm Kernel Cake
PTC	Phenylthiocarbamyl
SE	Standard Error
SEM	Scanning Electron Microscope
TEA	Triethylamine
TME	True Metabolizable Energy
TMEn	True Metabolizable Energy Corrected to Zero Nitrogen
VFA	Volatile Fatty Acid
Zn	Zinc

