

UNIVERSITI PUTRA MALAYSIA

MODIFICATION OF ALGINATE CONTROLLED-RELEASE FORMULATIONS OF ALACHLOR AND DIURON WITH PECTIN: THEIR RELEASE KINETICS AND EFFICACY

SOPIAH BASARI

FP 2003 17

MODIFICATION OF ALGINATE CONTROLLED-RELEASE FORMULATIONS OF ALACHLOR AND DIURON WITH PECTIN: THEIR RELEASE KINETICS AND EFFICACY

By

SOPIAH BASARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfillment of the Requirements for the Degree of Master of Agricultural Science

June 2003

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Agricultural Science

MODIFICATION OF ALGINATE CONTROLLED-RELEASE FORMULATIONS OF ALACHLOR AND DIURON WITH PECTIN: THEIR RELEASE KINETICS AND EFFICACY

By

SOPIAH BASARI

June 2003

Chairman : Associate Professor Dzolkhifli Omar, PhD.

Faculty : Agriculture

Controlled-release formulation (CRF) of alachlor and diuron were prepared by a monolithic system using low methylester pectin and high methylester pectin as the polymers for the purpose of improving the initial release of active ingredient (a.i.) from the formulations. The release rates for both herbicides were evaluated by chemical assay and bioassay. Chemical assay using high performance liquid chromatography with ultraviolet detector showed the pectin-kaolin CRFs (P1K1, P2K1, P1K and P2K) release a.i. was faster compared with alginate:pectin-kaolin CRFs (AP1K1, AP2K1, AP1K and AP2K) and alginate-kaolin CRFs (AK1 and AK2), six hours after placement in water. The release reached a constant level at three, five and seven days after placement in water for pectin-kaolin, alginate:pectin-kaolin and alginate-kaolin CRFs, respectively.

The determination of release rate by bioassay technique was conducted in the glasshouse using *Cucumis sativus* and *Brassica juncea* seedlings as bioindicators for alachlor and diuron, respectively. At 3 days, after treatment (DAT), the CRF of alachlor (AP1K1, AP2K1, P1K1 and P2K1) showed a better performance in inhibiting shoot and root length of *C. sativus* compared to AK1. Similar result was observed for fresh weight of *C. sativus* at 15 DAT. The AP1K1, AP2K1, P1K1 and P2K1 also showed a similar performance with the conventional spray formulation of alachlor (CF1) at the initial treatments. These indicated that the presence of pectin in the CRF improved the initial release of alachlor. At 160, DAT, all the CRFs showed a better effect compared to CF1 indicating the prolonged activity of alachlor through the CRF. Similar results was observed for the CRFs of diuron in inhibiting germination of *B. juncea*. At 7 DAT, the pectin-koalin CRF (P1K and P2K) showed similar performance with the conventional spray formulation of *B. juncea*. At 7 DAT, the CRFs of diuron (CF) and significantly higher mortality was recorded from the CRFs of diuron compared to CF at 120 and 160 DAT.

The best composition of alginate:pectin CRFs based on the physical structure of the CRF granule, release rate and effect on the initial treatment was selected for the preparation of agricultural waste by-product (AWP) CRFs. Chemical assay showed that alginate:pectin-sawdust for both herbicides released more a.i. into distilled water compared to other formulations at 6 hours after placement. The release was recorded to reach a constant level 50 hours after placement in the water. The effectiveness of AWP and selected alginate/pectin-kaolin of CRFs on *Paspalum conjugatum* and *Diodia ocimifolia* was evaluated in the glasshouse. At 7 week after treatments (WAT), all the

CRFs of alachlor except P1K1 and P2K1 showed a lower germination of *P. conjugatum* compared to CF1. In contrast, only AK1, AP2K1, P1K1, P2K1 and ALSAW1 showed a lower germination of *D. ocimifolia* compared to CF1. The effectiveness of diuron CRFs on *P. conjugatum* showed a lower germination for all CRFs compared to CF except AK2, P1K, and AP1SAW. On *D. ocimifolia*, only AP1SAW, AP1PH and AP2PH showed a significantly lower germination compared to CF. In general, the alachlor alginate:pectin-koalin CRF of AP2K1 showed a better control on germination of both weeds.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains Pertanian

PENGUBAHSUAIAN TERHADAP ALGINAT FORMULASI RACUN LEPASAN TERKAWAL ALAKLOR DAN DIURON DENGAN PEKTIN: KINETIK PERLEPASAN DAN EFIKASI

Oleh

SOPIAH BASARI

Jun 2003

Pengerusi : Profesor Madya Dzolkhifli Omar, PhD.

Fakulti : Pertanian

Formulasi racun lepasan terkawal (CRF) alachlor and diuron telah dihasilkan melalui satu sistem monolitik menggunakan pektin metilester rendah dan pektin metilester tinggi sebagai polimer dengan tujuan memperbaiki perlepasan awal bahan aktif (b.a.) dari formulasi. Kadar perlepasan bagi kedua-dua racun ini telah dinilai secara asai kimia dan bioasai. Asai kimia menggunakan kromatografi cecair bertekanan tinggi dengan pengesan UV telah menunjukkan CRF pektin:kaolin (P1K1, P2K1, P1K and P2K) melepaskan b.a. lebih cepat berbanding alginat:pektin-kaolin (AP1K1, AP2K1, AP1K and AP2K) dan alginat-kaolin (AK1 and AK2), enam jam selepas diletak dalam air. Perlepasan telah mencapai tahap malar pada tiga, lima dan tujuh hari selepas diletak dalam air masing-masing bagi CRF pektin-kaolin, alginat:pektin-kaolin dan alginat-kaolin.

Penentuan kadar perlepasan melalui teknik bioasai telah dijalankan di dalam rumah kaca menggunakan anak benih *Cucumis sativus* dan *Brassica juncea* sebagai penunjuk, masing-masing untuk alaklor dan diuron. Pada 3 hari selepas rawatan (DAT), CRF alaklor telah menunjukkan prestasi yang lebih baik bagi menghalang pemanjangan pucuk dan akar *C. sativus* berbanding AK1. Keputusan yang serupa telah diperhatikan ke atas berat basah *C. sativus* pada 15 DAT. Di awal rawatan AP1K1, AP2K1, P1K1 and P2K1 juga telah menunjukkan prestasi yang sama dengan formulasi lazim alaklor (CF1). Ini menunjukkan kehadiran pektin dalam CRF telah memperbaiki perlepasan awal alaklor. Pada 160 DAT, semua CRF telah menunjukkan prestasi yang serupa berbanding CF1, ini menunjukkan aktiviti CRF alaklor lebih berpanjangan. Keputusan yang serupa telah diperhatikan untuk CRF diuron dalam mengawal percambahan *B. juncea*. Pada 7 DAT, pektin-kaolin CRF (P1K dan P2K) telah menunjukkan prestasi setanding dengan formulasi lazim diuron (CF) dan keberertian kematian yang lebih tinggi telah direkodkan oleh CRF diuron berbanding CF pada 120 dan 160 DAT.

Komposisi yang terbaik dari CRF alginat:pektin berasaskan kepada struktur fisikal granul CRF, kadar perlepasan dan kesan ke atas rawatan awal telah dipilih untuk menyediakan CRF sisa buangan pertanian (AWP). Asai kimia telah menunjukkan alginat:pektin-habuk papan (SAW) untuk kedua-dua racun telah membebaskan lebih b.a. dalam air suling berbanding lain-lain formulasi pada 6 jam selepas diletakkan dalam air. Perlepasan telah direkodkan mencapai tahap malar 50 jam selepas diletakkan dalam air. Keberkesanan AWP dan CRF alginat/pektin-kaolin yang terpilih ke atas *P. conjugatum* dan *D. ocimifolia* telah dinilai di dalam rumah kaca. Pada 7 minggu selepas rawatan (WAT) semua CRF alaklor melainkan P1K1 and P2K1 telah menunjukkan percambahan *P. conjugatum* yang lebih rendah berbanding CF1. Sebaliknya, hanya AK1, AP2K1, P1K1, P2K1 dan AP1SAW1 menunjukkan percambahan *D. ocimifolia* yang lebih rendah berbanding CF1. Manakala keberkesanan CRF diuron ke atas *P. conjugatum* juga telah menunjukkan percambahan yang lebih rendah untuk semua CRF berbanding CF melainkan AK2, P1K dan AP1SAW. Bagi *D. ocimifolia* hanya AP1SAW, AP1PH dan AP2PH yang telah menunjukkan percambahan yang lebih rendah untuk semua CRF alginat:pektin-kaolin alachlor iaitu, AP2K1 telah menunjukkan kawalan percambahan yang lebih baik bagi kedua-dua jenis rumpai.

ACKNOWLEDGEMENTS

Praise be Allah swt., upon His permission I could complete this thesis smoothly. Contributions of individuals and institution for the successful completion of this thesis are also acknowledged.

I would like to take this opportunity to express my deep appreciation and gratitude to Associate Professor Dr. Dzolkhifli Omar for his valuable advice, guidance, suggestions, encouragement and strong support throughout the research work. I would also like to express my thanks to Professor Yusof Ibrahim, Professor Rosli Mohamad and Associate Professor Dr. Rajan Amartalingam for serving as members of the supervisory committee.

Sincere thanks and appreciation to staff of the Toxicology Laboratory for giving me the opportunity to carry out the project and making all facilities available to me. Appreciation also goes to Mr. Saparin, Mr. Yahya, Madam Mahrita, Miss Norida and Miss Azlina for their help and encouragement. Finally, special thanks to my husband, son and my parents for their loving support.

I want to express my sincere gratitude to the Malaysian people for the opportunity to accomplish this goal and the Universiti Putra Malaysia for the financial support to carry out the master programme.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF PLATES	xx

CHAPTER

1	INTRODUCTION	1
2	REVIEW OF LITERATURE	4
	Herbicide for crop protection	4
	Pesticide and its behaviour in the environmental	5
	The scope for improving pesticide efficacy through	
	formulation	6
	Controlled-release formulation of herbicides	7
	Types of controlled-release herbicides systems	9
	Chemically bonded system	9
	Microencapsulation	9
	Matrix encapsulation	10
	Advantages of controlled release formulations of	
	herbicides	13
	Disadvantages of controlled release formulation of	
	herbicides	14
	Mechanisms of controlled-release formulations	15
	Reservoir system	16
	Monolithic system	17
	Factors influencing the release rate of active agent	17
	Determination of release rate	18
	¹⁴ C-Radiolabelled	19
	Chromatographic analysis	19
	Bioassay	20
	Interaction pectin-alginate	21

	Pectin	22
	Alachlor	23
	Diuron	24
	Paspalum conjugatum	25
	Diodia ocimifolia	25
	Agriculture waste by-Product (AWP)	26
	Sawdust	26
	Paddy Husk	26
3	PREPARATION OF ALGINATE/PECTIN-KAOLIN	
	CONTROLLED-RELEASE FORMULATIONS OF	
	ALACHLOR AND DIURON	28
	Materials and Methods	28
	Chemicals	28
	Equipment	29
	Preparation of controlled-release formulations of	
	alachlor and diuron	30
	Results and Discussions	31
	Production of controlled-release formulations of	
	alachlor and diuron	31
4	ANALYSIS OF ALACHLOR AND DIURON ACTUAL CONTENT	24
	Materials and Methods	34 34
		34 34
	Chromatographic analysis Loading of alachlor and diuron into the	54
	formulations	35
	Results and Discussions	35 36
	HPLC analysis of formulation for alachlor and	50
	diuron content	36
		50
5	RELEASE RATE OF ALACHLOR AND	
	DIURON FROM CONTROLLED-RELEASE	
	FORMULATION	37
	Methods	37
	Determination of the release rate of CRF by	
	chemical assay	37
	Determination of the release rate of CRF by	
	bioassay	38
	Results and Discussions	40
	Chemical assay	40
	Bioassay	43

6 PREPARATION OF ALGINATE/PECTIN-AGRICULTURAL WASTE BY-PRODUCT (AWP)

xiii

CONTROLLED-RELEASE FORMULATION OF	
ALACHLOR/DIURON AND EVALUATION OF	
THEIR EFFECTIVENESS	72
Materials	72
Methods	72
Preparation of alginate/pectin-agricultural waste	
by-product controlled-release formulations	72
Determination of actual content and release rates of	
alachlor and diuron of AWP controlled-release	
formulations	74
Efficacies of controlled-release formulations of	
alachlor and diuron	74
Result and Discussions	75
Production of AWP controlled-release formulation	
of alachlor and diuron	75
Analysis of AWP controlled-release formulations of	
alachlor content and determination of release rate	77
Analysis of AWP controlled-release formulation of	
diuron content and determination of release rate	80
Efficacy of controlled-release formulation of	
alachlor on Paspalum conjugatum and Diodia	
ocimifolia	83
Efficacy of controlled-release formulation of diuron	
on Paspalum conjugatum and Diodia ocimifolia	88
CONCLUSION.	93
1 - AL	
REFERENCES	96
APPENDICES	102
APPENDIX 1(a): Data for release rates of CRFs	
alachlor and diuron after	
placement in the water	103
APPENDIX 1(b): ANOVA Table for linear	
regression study	104
APPENDIX 1(c): ANOVA Table for percentage	
Loading of alachlor and diuron	114
APPENDIX 1(d): ANOVA Table Tukey grouping	
study	115
APPENDIX 2: Determination of alachlor and	
diuron content and their release	
rate of CRFs	130
VITA	131

VITA

....

æ

APPENDIX 1(a): Data for release rates of CRFs	
alachlor and diuron after	
placement in the water	103
APPENDIX 1(b): ANOVA Table for linear	
regression study	104
APPENDIX 1(c): ANOVA Table for percentage	
Loading of alachlor and diuron.	114
APPENDIX 1(d): ANOVA Table Tukey grouping	
study	115
APPENDIX 2: Determination of alachlor and	
diuron content and their release	
rate of CRFs	130
VITA	131

LIST OF TABLES

Table		Page
1	Average composition of paddy husk	27
2	Composition of controlled-release formulations of alachlor and diuron.	30
3	Percentage of water loss of controlled-release formulations	32
4	Mean percentage of alachlor and diuron loading in controlled-release formulations.	36
5	Percentage shoot length of <i>Cucumis sativus</i> after treatments with CF and controlled-release formulations of alachlor	45
6	Influence of time (DAT) on the shoot length of <i>Cucumis sativus</i> exposed to various controlled-release formulation of alachlor recorded at 10 DAS	48
7	Percentage root length of <i>Cucumis sativus</i> after treatments with CF and controlled-release formulations of alachlor	51
8	Influence of time (DAT) on the root length of <i>Cucumis sativus</i> exposed to various controlled-release formulation of alachlor recorded at 10 DAS.	54
9	Percentage fresh weight of <i>Cucumis sativus</i> after treatments with CF and controlled-release formulations of alachlor	57
10	Influence of time (DAT) on the fresh weigth of <i>Cucumis sativus</i> exposed to various controlled-release formulation of alachlor recorded at 10 DAS.	60
11	Percentage mortality of <i>Brassica juncea</i> after treatments with CF and controlled-release formulations of diuron	63
12	Influence of time (DAT) on percentage of mortality of <i>Brassica juncea</i> exposed to various controlled-release formulation of diuron recorded at 14 DAS.	66
13	Percentage fresh weight of <i>Brassica juncea</i> after treatments with CF and controlled-release formulations of diuron	69

15	Composition of AWP controlled-release formulations of alachlor and diuron	73
16	Percentage of water loss of AWP controlled-release formulations of alachlor and diuron.	77
17	Alachlor content in AWP controlled-release formulations	78
18	Diuron content in controlled-release formulations	81
19	Percentage germination of <i>D. ocimifolia</i> and <i>P. conjugatum</i> after treatment with CF1 and CRFs of alachlor	85
20	Percentage germination of D. ocimifolia and P. conjugatum after treatment with CF and CRFs of diuron	9 0

LIST OF FIGURE

Figure		Page
1	Theoritical curves comparing herbicide concentration available to plants	8
2	Sphere reservoir system	16
3	Monolithic system	1 7
4	Chemical structure of alachlor	23
5	Chemical structure of diuron	24
6	Release rates of controlled-release formulations (CRFs) of alachlor	42
7	Release rates of controlled-release formulation (CRFs) of diuron	42
8	Percentage of shoot length of C. sativus at 3 until 20 days after treatment (DAT) with CF1 and CRFs of alachlor	46
9	Percentage of shoot length of <i>C. sativus</i> at 25 until 160 days after treatment (DAT) with CF1 and CRFs of alachlor	47
10	Influence of time on the shoot length of <i>C. sativus</i> exposed to various controlled-release formulation of alachlor recorded at 10 DAS	49
11	Percentage of root length of C. sativus at 3 until 20 days after treatment (DAT) with CF1 and CRFs of alachlor	52
12	Percentage of root length of C. sativus at 25 until 160 days after treatment (DAT) with CF1 and CRFs of alachlor	53
13	Influence of time on the root length of C. sativus exposed to various controlled-release formulation of alachlor recorded at 10 DAS	55
14	Percentage of fresh weight of <i>C. sativus</i> at 3 until 15 days after treatment (DAT) with CF1 and CRFs of alachlor	58
15	Percentage of fresh weight of <i>C. sativus</i> at 20 until 160 days after treatment (DAT) with CF1 and CRFs	59

16	Influence of time on the weight of <i>C. sativus</i> exposed to various controlled-release formulations of alachlor recorded at 10 DAS	61
1 7	Percentage mortality of <i>B. juncea</i> at 3 until 30 days after treatment (DAT) with CF and CRFs of diuron	64
18	Percentage mortality of <i>B. juncea</i> seedlings at 40 until 160 days after treatment (DAT) with CF and CRFs of diuron	65
19	Influence of time on the mortality of <i>B. juncea</i> exposed to various controlled-release formulations of diuron recorded at 14 DAS	67
20	Percentage fresh weight of <i>B. juncea</i> seedlings at 3 until 30 days after treatment (DAT) with CF and CRFs of diuron	70
21	Percentage mortality of <i>B. juncea</i> at 60 until 160 days after treatment (DAT) with CF and CRFs of diuron	71
22	Release rate of sawdust controlled-release formulation of alachlor	7 9
23	Release rate of paddy husk controlled-release formulation of alachlor	79
24	Release rate of sawdust controlled-release formulation of diuron	82
25	Release rate of paddy husk controlled-release formulation of diuron	82
26	Percentage germination of <i>P. conjugatum</i> after treatment with conventional formulation (CF1) controlled-release formulation (CRF) of alachlor.	86
27	Percentage germination of <i>D. ocimifolia</i> after treatment with conventional formulation (CF1) controlled-release formulation (CRF) of alachlor	87
28	Percentage germination of <i>P. conjugatum</i> after treatment with conventional formulation (CF) controlled-release formulation (CRF) of diuron.	91
29	Percentage germination of <i>D. ocimifolia</i> after treatment with conventional formulation (CF) controlled-release formulation (CRF) of diuron.	92

LIST OF PLATES

Plates		Page
1	Apparatus used in the production of controlled-release formulation	29
2	The physical structure a controlled-release formulation of alachlor	33
3	The physical structure a controlled-release formulation of diuron	33
4	High performance liquid chromatography (HPLC) system	35
5	The physical structure of the AWP controlled-release formulation of alachlor	76
6	The physical structure of the AWP controlled-release formulation of diuron	7 6

CHAPTER 1

INTRODUCTION

The trends in pesticide consumption in some countries clearly indicate that pesticides are not only a critical input in pest management, mainly to increase crop production, but also for public health, recreation and forestry. One of the major types of pesticide used is herbicide. Since three decades ago, many experiments have been conducted on the development of sustained release of herbicides in order to reduce the loss through chemical and microbial processes in the soil. An effective approach to reduce these loses is through controlled-release technology. Flynn *et al.* (1994) showed that the controlled-release formulation reduced volatile loss of herbicide from 52% to 18% and phytotocixity on plant by 45% compared with EC formulation.

The principle of controlled-release technology was pioneered by the drug industry more than a century ago. The initial goal of producing controlled-release oral drug is to maintain effective level of drug in the body (Duncan *et al.* 1989). The first controlled-release herbicide was developed in 1969 when the ester of 2,4-D was formulated in natural rubber. Since then, various methods and polymers were developed for encapsulation of herbicides.

The controlled-release technology is also used to improve the performance and reduce the environmental impact of pesticide. These includes assurance of reliability of performance, lack of residues after termination of the effective release period, low cost of materials and production and also adaptability to wide range of farming techniques (Wilkin, 1978). The use of additives such as a small amount of high polymer molecules in formulations not only improves the physical properties of the formulations but also affects the rate of release of the active agent.

Studies by Coftman and Gentner (1980) have shown that trifluralin prepared by starch-encapsulated formulation persisted longer than the EC formulation when tested in the greenhouse and field condition. In 1995, Rajagopalan *et al.* used a technique of double encapsulation of carbofuran in starch urea formaldehyde (starch-UF) and they obtained a better performance than the EC formulation in paddy cultivated under flooded condition. Other polymers used include kraft lignin (Dellicolli, 1977; Chanse *et al.* 1987) and calcium alginate (Connick *et al.* 1982; Hussain *et al.* 1992; Mardi, 1994) which is the most widely used biopolymer as encapsulation agent is calcium alginate.

Mazlan (1999) showed that the granule size affects the rate of release. Smaller granules released a.i. faster than bigger granules. Fillers also influenced the efficacy; between the three agriculture products that were used as a filler, the sawdust formulation gave a better control of *Paspalum conjugatum* and *Diodia ocimifolia* compared with the paddy husk and oil palm empty fruit bunch formulations.

Most of the previous works showed that the controlled-release formulation gave a good control of weed over a longer period of time, but the initial release of toxicant was slow. This led to a lower efficacy in weed control at the early stage (Mardi, 1994; Mazlan, 1999). Thus, the objectives of this research were :-

a). To study the effect on pectin as a substitute for alginate on the release rate of alginate/pectin-kaolin controlled-release formulation (CRF) of alachlor and diuron.

b). To evaluate and compare their release rates by bioassay.

c). To determine their effectiveness against *Diodia ocimifolia* and *Paspalum* conjugatum.

CHAPTER 2

REVIEW OF LITERATURE

Herbicide for crop protection

Herbicides began to make their appearance in the first half of the twentieth century. In 1897, it was discovered in France that a 2% solution of copper sulphate killed charlock (*Sinapsis alba*) in wheat without causing damage to the wheat. By early 1945, 2,4-D was marketed as 'weedone' for broadleaf control and dinoseb was marketed by Dow in the 50s as a contact herbicide for use prior to crop emergence. In the early 60s, chloramben was introduced as the first compound that gave good control against a range of major grasses and broad-leaf weeds. It was safe to the crop and consistent in its performance in the midwest of the USA (Lever, 1990).

Roberts (1982) used a mixed herbicide formulation to get the best control for weed control in a crop. The concept that an optimum weed management system employs multiple herbicides rather than a single herbicide. For example, combination of a triazine and acetanilide successfully controlled grasses and broadleaf weeds in of corn (Barrett, 1993). In 1986, Teng and Teh were also successfully developed a commercial mixture of glyphosate IPA + picloram known as MON-8010 for general weed control in rubber plantation. Other mixtures have been developed include butachlor + 2,4-D (IBE) for