

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF RISK ASSESSMENT AND EXPERT SYSTEMS FOR CUT SLOPES

HUSAINI BIN OMAR

FK 2002 19

DEVELOPMENT OF RISK ASSESSMENT AND EXPERT SYSTEMS FOR CUT SLOPES

.

By

HUSAINI BIN OMAR

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Graduate School Universiti Putra Malaysia

January 2002

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

DEVELOPMENT OF RISK ASSESSMENT AND EXPERT SYSTEMS FOR CUT SLOPES

By

HUSAINI BIN OMAR

JANUARY 2002

Chairman : Associate Professor Mohamed b. Daud, Ph.D., P.E.

Faculty : Engineering

Slope Assessment System (SAS) was developed to evaluate the risk of the cut slopes that will be used for slope monitoring, management and maintenance. The system was developed through consultations with field experts and field studies. The purposes of the consultations were to identify risk parameters. The risk rating was determined through field studies and then assigned to every parameters. Based on the field results, the risk hazard value (G-Rating) was proposed. The discontinuity data were analysed using stereographical method for Potential Instability (PI) Statement. By combining the PI Statement and G-Rating, the Slope Evaluation Statement (SES) was developed. The SES was divided into four categories: No Risk, Low Risk, Medium Risk and High Risk. To complete the evaluation process for SAS, suggestions were made for each category. The SAS was then transferred into a computer system which is the D-Slope. The D-Slope is an expert system (ES) application to evaluate the cut slope conditions. The field data was stored in a database which can be updated and referred to through the ES. The possible roles for D-Slope are as an assessor and a peer system for cut slopes assessment.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

PEMBANGUNAN SISTEM PENILAIAN RISIKO DAN SISTEM PAKAR UNTUK CERUN POTONGAN

Oleh

HUSAINI BIN OMAR

JANUARI 2002

Pengerusi : Profesor Madya Mohamed b. Daud, Ph.D., P.E.

Fakulti : Kejuruteraan

Sistem Penilaian Cerun (SAS) telah dibina untuk menilai risiko cerun-cerun potongan yang akan digunakan bagi pengawalan, pengurusan dan penjagaan cerun. Sistem ini dibina melalui temubual dengan pakar-pakar dan kajian di lapangan. Tujuan temubual dengan pakar-pakar adalah untuk menentukan parameter-parameter yang berisiko ke atas ketidakstabilan cerun. Kadar risiko setiap parameter ditentukan melalui kajian di lapangan. Berdasarkan keputusan kajian, nilai risiko (G-Rating) dicadangkan. Data diskontinuiti dianalisa menggunakan kaedah stereografikal bagi menentukan Potensi Ketidakstabilan (PI). Melalui kombinasi PI dan nilai G-Rating, Catatan Penilaian Cerun (SES) dibentuk. SES dibahagikan kepada empat kategori: Tiada Risiko, Risiko Rendah, Risiko Pertengahan dan Risiko Tinggi. Untuk melengkapkan proses penilaian pada SAS, cadangan baikpulih cerun telah dibuat pada setiap kategori. SAS seterusnya dipindahkan kepada sistem komputer yang diberi nama D-Slope. D-Slope adalah aplikasi sistem pakar (ES) bagi menilai cerun potongan. Data kajian lapangan akan disimpan di dalam pangkalan data yang kemudiannya boleh dikemaskini dan dirujuk melalui ES. Tugas yang mungkin dijalankan oleh D-Slope adalah sebagai penasihat dan saling membantu pihak penilaian cerun dalan menilai cerun potongan.

ACKNOWLEDGEMENTS

First of all, thanks to God, the most Gracious and most Merciful

Many people have made contributions to this thesis. I wish to acknowledge my supervisors, Associate Professor Dr. Ir. Mohamed Daud, Professor Dato' Dr. Ir. Mohd. Zohadie Bardaie and Dr. Rosely Ab. Malik for their supervision and encouragement. I would like also to thanks MOSTE for funding the project through IRPA grant. The patience and contribution of my beloved wife, Ms Norwati Mustapha, my lovely daughters, Syafrina and Syafiqa, and my son, Aswan are highly appreciated. I wish to thank my parents who are constantly praying for my success.

I am also indebted to the following: Mr. Mohd Sal Salsidu, Ms. Azfariza, Mr. Rozaini Mohd Yusof, Mr. Ratnasamy Muniandy and all MTD-RC staff for their support and contribution. I would like to acknowledge the following; Dato' Mohd Ramli Ismail (General Manager of MTD), Ir. Mohd Fauzi (Director of MTD), Mr. Aziman Madun, Ir. Saaidin, Ir. Tarmizi (Field Experts) and MTD Capital Berhad for helped me in gathering data, information and financial support.

Husaini Omar

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENTS	iv
APPROVAL SHEET	v
DECLARATION	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvii

CHAPTER

7
7
12
13
17
20
22
23
29
29
31
32
34
35
39

Knowledge Representation

III	THEORETICAL CONSIDERATION	42
	Introduction	42
	Slope	43
	Factor of Safety	47
	Geological Factors Contributing to Slope Failures	49
	Risk Parameters	53
	Individual Rating of Selected Parameters	53
	Potential Instability	53
	Theoretical Analysis	54
	Method of Projection	55
	The Structure of Expert Systems	56
	Conclusions	62
IV	MATERIALS AND METHODS	63
	Introduction	63
	The Methodology of The Proposed System	65
	Knowledge Acquisition	68
	Field Study	69
	Slope Evaluation Analysis	75
	Expert System Development Tool	76
	The Proposed Structure of the System	76
	Rock Slope Database	78
	Geological Rating	78
	Potential Instability Analysis	79
	Slope Category	80
	Slope Evaluation Statement	81
v	RESULTS AND DISCUSSIONS	82
	Introduction	82
	Interviewing the Experts	85
	Field Study	89
	Geological Setting	95
	Geological Parameters	98
	Hydrogeological Parameters	127
	Slope Properties	136
	Risk Hazard Assessment	140
	Risk Parameters	140
	Individual Rating	142
	Geological Rating (G-Rating)	146
	Potential Instability Analysis (PI)	155
	Slope Evaluation Statement	163

		Development of Expert System for Slope Assessment	167
		Rules	167
		Handling the Unknown or Error	173
		Databases	174
		Interface	175
		Programming Technique	176
		Expert System – Predictions and Suggestions	178
		D-Slope	181
		Input-Output of D-Slope	182
		'Rock Slope Database' Section	188
		'Geological Rating' Section	190
		'Potential Instability' Section	191
		Slope Evaluation Statement – Predictions and Suggestions	193
		Verification of D-Slope	195
		D-Slope Capabilities	202
		Conclusions	204
	VI	CONCLUSIONS AND RECOMMENDATIONS	213
	V I		213
		Major Findings Future Studies	214
		Future Studies	210
REFE	RENC	ES	220
APPE	NDIC	ES	
	1	Slope Locations and Field Data	239
	2	Stereographical Plot	310
	3	Test Cases	334
	4	D-Slope	394
VITA			406

LIST OF TABLES

Table		Page
2.1	Record of some major landslides in Malaysia	8
2.2	Comparison of various engineering and geological schemes proposed for classifying weathering profile in igneous rocks	10
2.3	Factors that cause increases in shear stresses in slopes	18
2.4	Factors that cause reduced shear strength in slopes	19
2.5	Different types of knowledge	41
5.1	Slope location	84
5.2	The domain experts	87
5.3	Results based on interview with domain experts, documented information and field study	88
5.4	Summary of the selected risk parameters	89
5.5	The cut slope failures from October 1997 to January 2001	91
5.6	The geology and their risk rating	101
5.7	Geology and Weathering	102
5.8	The engineering classification of weathered rocks	104
5.9	Number of major sets and orientation	120
5.10	Aperture, Spacing and Persistence	126
5.11	The hydraulic condition	134
5.12	Risk parameters	142
5.13	The risk rating	143
5.14	Individual risk rating	144
5.15	The risk hazard values	149
5.16	Descriptive statistics	151
5.17	Results of potential instability analysis	159
5.18	The potential instability statement (PI)	163
5.19	Slope category	164
5.20	SES – Suggestion table	166

5.21	D-Slope interface	175
5.22	List of files under module	177
5.23	D-Slope suggestion table	180
5.24	Summary of the test results	199
5.25	T – Test between D-Slope and Human Expert	201
5.26	Summary of the results	208
6.1	The slope evaluation statement	216

LIST OF FIGURES

Figure		Page
2.1	Common slope failure in Malaysia	12
2.2	Slope failure features	14
2.3	Failure mechanisms	16
2.4	Highly weathered rock slope showing the development of discontinuities	17
2.5	Slope history for Johnson Peak, British Columbia, where the latest movement was associated with erosion	20
2.6	Deeply weathered rock slope under tropical conditions	21
2.7	The method of slices	25
2.8	The stereographic plot of potential instability analysis – types of failure mode	27
2.9	SpheriStat 2 – A computer system for analyse the geological data	28
2.10	Core boulder develop due to the weathering process	31
3.1	A Slope	43
3.2	Types of slope failure	45
3.3	Major slope failure in Malaysia	46
3.4	Factor of safety	48
3.5	Graben on slump slide	52
3.6	General orientation of trees on slump landslide	52
3.7	Method of projection	55
3.8	Structure of an Expert System	57
3.9	Knowledge representation techniques	59
3.10	Registration form	61
4.1	The methodology implemented in this research project	64
4.2	Schematic diagram of three major elements	66
4.3	System shell	67
4.4	Expert system shell	68

)

ŧ

4.5	The equipments used in field study	70
4.6	The geological discontinuities	72
4.7	Field data sheet	73
4.8	The architecture of the Slope Assessment System	77
4.9	Potential instability analysis using stereographic plot	80
5.1	Consultation with the domain experts at the field	87
5.2	The location map	90
5.3	The number of frequency of slope failures at Pos Selim Highway	93
5.4	A view of tropical rain forest at the study area – hilly terrain	94
5.5	The geological map	95
5.6	Collovium – showing weak structures	97
5.7	The geology of the study slopes	101
5.8	The geology – Granite and Schist	103
5.9	Petrographical analysis – weathered schist	108
5.10	Weathered schist – highly fractured	108
5.11	Highly weathered granitic rock – Grade V	109
5.12	The weathering grade of the study slopes	110
5.13	Schematic drawing of fault	111
5.14	The occurrence of faults	113
5.15	Faults	113
5.16	Joints	115
5.17	Number of major joints sets	116
5.18	Joints a) Complexity of joints b) Measurements of joints	117
5.19	Stereographical analysis for determination of number of major sets	119
5.20	The rating assignment for orientation	121
5.21	Rating assignment for aperture	123
5.22	Rating assignment for persistence	124
5.23	Rating assignment for spacing	125
5.24	The average monthly rainfalls for Cameron Highland and Ipoh	128

5.25	The monthly average of rainfalls	130
5.26	The average monthly rainfalls from three stations	131
5.27	The average 10 days rainfalls	131
5.28	The hydraulic condition of the study slopes	133
5.29	The hydraulic conditions	135
5.30	Influence of slope height on stable slope angle	137
5.31	Cut slope design drawing	138
5.32	The previous instability	139
5.33	Field mapping on discontinuities	147
5.34	The level of risks	152
5.35	Slope height versus G-Rating	153
5.36	a) Slope height versus Area Ratio and b) G-Rating versus Area Ratio	154
5.37	Stereonet mounted on baseboard or drawing board with pins and protector ruler	157
5.38	Stereographical analysis – Yellow area is the unstable zone or daylight	158
5.39	Wedge failure (Location: CH9700)	162
5.40	Rule sets	168
5.41	Error message box	173
5.42	The layout of the ES	177
5.43	D-Slope flowchart	182
5.44	D-Slope login menu	183
5.45	D-Slope main menu	184
5.46	Display data sets	185
5.47	Print output	186
5.48	Help file	186
5.49	File menu, view and exit box	187
5.50	Rock Slope Database	188
5.51	The three main parameters in RSD	189
5.52	RSD flowchart	189
5.53	Geological Rating	190

5.54	Graph G-Rating vs Slope	191
5.54	Oruph O Running vo biope	171
5.55	The process of discontinuities data for PI Statement	192
5.56	Potential Instability	192
5.57	Slope Evaluation Statement	193
5.58	The examples of Slope Categories from SES	194
5.59	SES – An example from Suggestion	195
5.60a	Test 1 – Expert Evaluation	196
5.60b	Test 1 – Expert System Evaluation (D-Slope)	197
5.61	Potential Instability Statement	206
5.62	Four major rules	211

LIST OF ABBREVIATIONS

AR	Area Ratio
°C	Degree of Celsius
СН	Chainage
ES	Expert System
F	Faults
FoS	Factor of safety
GA	Geological Affected Area
G-Rating	Geological Rating
H, h	Height
HR	High Risk
IA	Investigated Area
J	Joints
km	kilometers
L, 1	Length
LR	Low Risk
m	metres
mm	millimeters
MoF	Mode of Failure
MR	Medium Risk
NR	No Risk
PI	Potential Instability
R _i	Individual rating
R _{max}	Maximum Rating
RSD	Rock Slope Database
SAS	Slope Assessment System
SEA	Slope Evaluation Analysis
SES	Slope Evaluation Statement
α	Slope angle
φ	Angle of internal friction

CHAPTER I

INTRODUCTION

Background

Malaysia has a total land area of about 330,000 square kilometers. The length of road network totals almost 80 328 km, of which 15% traverses mountainous terrain that features steep to very steep slopes (Ab. Jalal, 2000). In most mountainous areas the topography is very steep and slope failures are often caused by the construction of roads. The warm and wet climatic conditions of Malaysia affect the weathering of the rocks to a great depth. Therefore, it is very important to construct roads on stable slopes and it should be noted that high-structure roads constructed on steep terrain often end up with failures of cut slope. Minimum attention has been given to the assessment of cut slopes when planning roads are done in mountainous areas. In fact, techniques of planning roads in mountainous areas have yet been generalized and at present, success of such work depended on individual knowledge and experiences of experts.

Slope failures often occur because the slopes are steeper compared to the equilibrium grade. Prolong intense rainfall and treacherous instable geological settings such as presence of permeable and unstable relict joints, dykes and unfavourable bedding planes are identified as major factors causing slope instability. In fact, in slope design process, it is difficult to include the geological structures in

stability analysis. This is because most of the slope stability analysis will only require the strength parameters of the materials and the slope dimensions.

Slope failure occurrences are rather common in Malaysia and are associated with the development of hilly terrain and construction of roads and highways. The rapid economic development in Malaysia over the last decades has resulted in the construction of many new roads and highways. Previously constructed roads tend to follow the ground contours as far as possible to minimise the difficulties and costs of construction. The newer roads have been built to a much higher standard of alignment and this meant that cut slopes have become higher and it has been necessary to excavate in a wide range of geological profiles.

Many slope failures have been reported in Malaysia, for example the Highland Tower tragedy in 1993 which claimed 48 lives and the Bukit Antarabangsa landslide in 1999 crippled the livelihood of the people residing in that housing estate for a couple of days. Some of the slopes failed during construction and some only after many years of completion. Omar et al. (2001a) reported on continuous failure of cut slopes during construction of highway in mountainous areas. The complexity of geological structures is reported as one of the factors that contributed to the slope failures. It is not easy to predict when the slopes are going to fail. Once a slope fails, intensive manpower and finance are required for restoration.

Many studies on the prediction of slope failures have been carried out using statistical methods (Kobashi, 1973 and Othman, et al., 1992), which employed as

many factors possible to enhance the accuracy of prediction. But there are some limitations on the statistical methods because factors influencing the occurrences of slope failure vary greatly depending on the characteristics of each region (Kobashi, 1973), and no means have been established to investigate conditions within slopes (Tsukamoto and Kobashi, 1991).

The large variations of residual materials from geological and weathering points of view are such that it is not generally possible to apply satisfactory slope design procedures, engineering judgement and precedent being relied upon for the determination of cut slope angles. As a result, failures in cut slopes are increasingly common, and they represent a continuing heavy maintenance commitment and a substantial economic nuisance (Tan, 1984).

In the past, research work by many researchers like Donald and Chen (1997), Cheng (1999), Sarma (1973), Janbu (1973), Spencer (1967), Chowdhury (1987), Passalacqua and Dalerci (1999), and Fredlund and Krahn (1977) was directed towards developing slope stability analysis. There are a few researchers were studied on slope assessment, for example Hudson (1992) discussed on rock engineering system; Matheson (1983) on rock stability assessment in preliminary site investigation discussed on graphical methods; Nathanail et al. (1992) discussed on stability hazard indicator system for slope failures in heterogenous strata; Hearn and Griffith (2001) discussed on landslide hazard mapping and risk assessment.

In Malaysia, the Public Works Department makes concerted effort to produce guidelines and better design strategy for geotechnical engineers and geomorphologists involved in slope stability analysis and design. The Malaysian Engineered Hillslope Management System (MEHMS) (JKR Malaysia, 1998) and JKR Slope Inspection Guidelines and Notes (JKR Malaysia, 2000) have been widely used by local contractors.

Most of the above studies have not addressed how to carry out the slope assessment in the proper manner and they also have not developed a system that enables engineers to consider for evaluating the conditions of the cut slopes. As such, a systematic method and tool are required in carrying out slope assessment in the proper manner for geological point of view. The study is focused to develop a slope assessment system based on selected geological parameters. The slope assessment system will then be transferred into a computer system as an Expert System (ES). This ES is a system developed as a support tool that will facilitate users.

In summary, the development of a Slope Assessment System using expert system techniques or artificial intelligence requires the involvement of slope experts, geological knowledge and user requirements. The implementation of this system for the conduct of slope assessment has resulted in the reduction of rehabilitation cost and improvement of evaluation technique. Furthermore when constructing roads in steep mountainous areas, this system will be helpful to determine slope conditions for maintenance purposes.

Research Aims and Objectives

The main aim of this research is to develop a slope assessment system based on geological parameters which will assist geotechnical engineers and geological engineers in slope evaluation. This slope assessment system will then be transferred into a computer programme to form an Expert System.

The main objectives were:

- to develop the risks hazard value (Geological Rating) based on the selected field parameters
- to study the Potential Instability (PI) of slopes using stereographic projection analysis (Schmidt net Methods)
- to integrate the Geological Rating and Potential Instability for Slope Evaluation Statement

Scope and Limitation

The study focuses on two aspects, which are development of Slope Assessment System (SAS) and it's expert system. Firstly, the development of slope assessment system is conducted through interviewing the experts followed by field

study and then analyzing the field data for the determination of potential risk parameters. The risk rating could be determined and slope category would be developed to complete the slope evaluation process.

Secondly, the Slope Assessment System (SAS) is then transferred into computer programming for the development of Expert System (ES). The SAS is then translated into numerical form or specific rules for the ES and the database is created for the data input.

Expected Outcome of the Research

The expected outcome of the research is the development of Geological Rating (G-Rating) based on the selected parameters for risk assessment and the Potential Instability Statement (PI) of slopes using stereographical plot or Schmidt net methods. The potential instability analysis is carried out on the geological discontinuities. As such, a systematic slope category is developed. The integrations of these elements are used for the development of an Expert System for slope assessment which is called D-Slope. This ES could be a useful tool for field engineers to use in carrying slope assessment works.

CHAPTER II

LITERATURE REVIEW

Introduction

There are many slope failures being reported today in Malaysia. Most of these failures are triggered by prolonged intense rainfall. Rain water infiltrates into the slope and reduce the soil matric suction and the strength of the soil. Many researchers found out that rainfall infiltration is a single most important triggering factor for most landslides or slope failures (Affendi, 1996, and Fredlund and Rahardjo, 1993). Rain induced landslides and slope instability are really a costly recurring problem faced by many tropical countries like Malaysia.

In January 1996, a cut slope collapsed on the North-South Expressway (one of the major highway in Malaysia) at Gunung Tempurung. In this slope failure, one of the road users was killed. Table 2.1 shows a record of some major landslides in Malaysia (The Sun, 1996). From 1997 to 2001, many cut slope fails during construction of the highway at Pos Selim and the project was delayed because of the continuous failures of cut slopes due to the complexity of the geology of the areas (Omar et al. 2001a).

