GENETICS AND GENETIC RESPONSE IN POPULATIONS GENERATED FROM TWO CYCLES OF PHENOTYPIC MASS SELECTION IN SWEET CORN (ZEA MAYS L. SACCHARATA)

ELTAHIR SIDDIG ALI

FP 2003 8
GENETICS AND GENETIC RESPONSE IN POPULATIONS GENERATED FROM TWO CYCLES OF PHENOTYPIC MASS SELECTION IN SWEET CORN (ZEAMAYS L. SACCHARATA)

By

ELTAHIR SIDDIG ALI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2003
DEDICATION

TO MY BELOVED PARENTS, BROTHERS, SISTERS
AND MY SUPPORTING WIFE AWATIF
GENETICS AND GENETIC RESPONSE IN POPULATIONS GENERATED FROM TWO CYCLES OF PHENOTYPIC MASS SELECTION IN SWEET CORN (ZEA MAYS L. SACCHARATA)

By

ELTAHIR SIDDIG ALI

May 2003

Chairman : Associate Professor Ghizan Saleh, Ph.D.
Faculty : Agriculture

Local composite varieties of sweet corn (Zea mays L. saccharata) offer moderate yields and eating quality, while imported hybrid varieties are less adaptable to the local environment, although having good eating quality. A breeding programme was therefore initiated at Universiti Putra Malaysia (UPM), utilising both genetic materials to produce new superior genotypes. The main objectives of this study were to investigate the genetics of populations, and to evaluate genetic response in two sweet corn populations generated from two cycles of phenotypic mass selection.

In Experiment 1, a local composite variety, Manis Madu and two imported hybrid varieties, Hybrid SSC 240 and Hybrid 368 were first evaluated, and found to show comparable performance. Consequently, Manis Madu and Hybrid SSC 240 were chosen as source populations for selection and were then crossed to generate the base population. In Experiment 2, the performance of the cross population was compared to its parents, and was found to show more resemblance to Hybrid SSC 240.
Separately and simultaneously, two cycles of phenotypic mass selection for ear length were employed on the two base populations, Manis Madu, designated as M C0, and the intermated crossed population, designated as MS C0, at Field 2, UPM. The two base populations and the populations generated from the two cycles of selection were then evaluated and compared for general performance at two locations, Field 2 and Share Farm, in UPM.

In Manis Madu populations (M), the predicted responses to individual cycles of selection were almost the same for both cycles, 19.3% in the first cycle and 19.6% in the second. The cumulative predicted response in M C2 population was 43.6%. In the cross populations (MS), the predicted response to individual cycles of selection was higher in the second cycle (26.5%) than it was in the first (16.8%). The cumulative predicted response in MS C2 population was 46.4%.

The two populations responded differently to the two cycles of selection, where, in Manis Madu populations, a positive realised response was only attained in first cycle (4.1%), while a negative one was observed in the second (−0.7%). In contrast, the cross populations showed negative realised response in the first cycle (−0.7%), while a reasonable positive one (2.08%) was observed in the second. The average cumulative realised response to selection was higher in M C2 (3.4%) than that in MS C2 (1.4%). As expected, the realized responses were lower than the predicted.

In the combined analysis, population generated from the second cycle of selection on Manis Madu (M C2), showed significant improvement in fresh husked ear yield
(10996 kg ha⁻¹) and dehusked ear length (15.2 cm). The population generated from the second cycle of selection on the cross (MS C2) showed significant improvement in fresh dehusked ear yield, giving 6887 and 6788 kg ha⁻¹ at Field 2 and Share Farm, respectively. In the combined analysis, MS C2 produced significantly longer dehusked ears (14.7 cm) than did the base population, MS C0 (14.5 cm).

Results of simple phenotypic correlations on traits measured on individual plant samples within the selected populations, showed positive phenotypic correlations between plant height and most of the other traits investigated, including ear height, ear length and number of kernel rows/ear. In addition, positive correlations were also observed among the ear traits, ear length, ear diameter, number of kernel rows/ear and number of kernels/row.

Ear length, which was taken as a criterion for selection in this study, showed moderate broad-sense heritability (h²_B) estimates in the two populations investigated, indicating that selection for this trait in these populations would be effective for expression of this trait in the succeeding generations.

This study has revealed that both the local and imported germplasm materials were useful in the breeding of sweet corn populations. The two cycles of phenotypic mass selection for ear length were found to have shown some improvement in fresh ear yield of the populations. Introgression of foreign genes into the local germplasm might have enriched the available gene pool, although more cycles of selection are required for more pronounced genetic improvement to be realised.
Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia bagi memenuhi syarat untuk mendapatkan ijazah Doktor Falsafah.

GENETIK DAN TINDAKBALAS GENETIK DALAM POPULASI TERBENTUK DARI DUA PUSINGAN PEMILIHAN KASAR FENOTIP PADA JAGUNG MANIS (ZEA MAYS L. SACCHARATA)

Oleh

ELTAHIR SIDDIG ALI

Mei 2003

Pengerusi : Profesor Madya Ghizan Saleh, Ph.D.
Fakulti : Pertanian

Varieti-varieti komposit tempatan jagung manis (Zea mays L. saccharata) memberikan hasil dan kualiti pemakanan yang sederhana, manakala varieti-varieti hibrid yang diimport kurang kesesuaian pada persekitaran tempatan, walaupun mempunyai kualiti pemakanan yang baik. Oleh itu, satu program pembiakbakaan telah dimulakan di Universiti Putra Malaysia (UPM), menggunakan kedua-dua bahan genetik untuk menghasilkan genotip baru yang unggul. Objektif utama kajian ini ialah untuk mengkaji genetik populasi, dan tindakbalas genetik dalam dua populasi jagung manis yang dibentuk dari dua pusingan pemilihan kasar fenotip.

Dalam Eksperimen 1, varieti komposit tempatan, Manis Madu dan dua varieti hibrid yang diimport, Hibrid SSC 240 dan Hibrid 368 telah pada mulanya dinilai, dan didapati memberikan prestasi yang setara. Berikut dengan itu, Manis Madu dan Hibrid SSC 240 telah dipilih sebagai populasi sumber untuk pemilihan dan kemudiannya dikacukkan bagi menghasilkan populasi bes. Dalam Eksperimen 2,
prestasi populasi kacukan telah dibandingkan dengan induknya, dan didapati lebih menyerupai Hibrid SSC 240.

Secara berasingan dan serentak, dua pusingan pemilihan kasar fenotip berdasarkan panjang tongkol telah dijalankan terhadap kedua-dua populasi bes, Manis Madu, dinamakan M C0, dan populasi kacukrawak dari kacukan tersebut, dinamakan sebagai MS C0, di Ladang 2, UPM. Dua populasi bes tersebut serta populasi yang dibentuk dari dua pusingan pemilihan kemudiannya dinilai dan dibandingkan untuk prestasi am di dua lokasi, Ladang 2 dan Ladang Kongsi, UPM.

Dalam populasi Manis Madu (M), tindakbalas jangkaan dari pusingan individu adalah hampir sama bagi kedua-dua pusingan, 19.3% dalam pusingan pertama dan 19.6% dalam pusingan kedua. Tindakbalas jangkaan kumulatif dalam populasi M C2 adalah 43.6%. Dalam populasi kacukan (MS), tindakbalas jangkaan dari pusingan individu pemilihan adalah lebih tinggi dalam pusingan kedua (26.5%) berbanding pusingan pertama (16.8%). Tindakbalas jangkaan kumulatif dalam populasi MS C2 adalah 46.6%.

Kedua-dua populasi menunjukkan tindakbalas yang berbeza terhadap dua pusingan pemilihan, di mana, dalam populasi Manis Madu, tindakbalas sebenar yang positif hanya diperolehi dalam pusingan pertama (4.1%), manakala tindakbalas sebenar yang negatif diperolehi dalam pusingan kedua (-0.7%). Sebaliknya, populasi kacukan menunjukkan tindakbalas sebenar yang negatif dalam pusingan pertama (-0.7%), manakala tindakbalas sebenar positif yang memadai (2.08%) didapati dalam
pusingan kedua. Purata tindakbalas sebenar kumulatif terhadap pemilihan adalah lebih tinggi dalam M C2 (3.4%) berbanding dengan yang di tunjukkan dalam MS C2 (1.4%). Sebagai mana dijangka, tindakbalas sebenar adalah lebih rendah dari yang diramal.

Dalam analisis gabungan, populasi yang terbentuk selepas dua pusingan pemilihan terhadap Manis Madu (M C2), menunjukkan peningkatan yang ketara bagi hasil tongkol segar dengan kulit (10996 kg ha⁻¹) dan panjang tongkol tanpa kulit (15.2 cm). Populasi yang terbentuk selepas pusingan kedua pemilihan terhadap populasi kacukan (MS C2) menunjukkan peningkatan yang bererti bagi hasil tongkol segar tanpa kulit, memberikan 6887 dan 6788 kg ha⁻¹ masing-masing di Ladang 2 dan Ladang Kongsi. Dalam analisis gabungan, MS C2 menghasilkan tongkol segar tanpa kulit yang lebih panjang (14.7 cm) berbanding populasi bes, MS C0 (14.5 cm).

Keputusan korelasi mudah fenotip di antara sifat-sifat yang diukur pada sampel individu pokok, di kalangan populasi terpilih, menunjukkan korelasi fenotip yang positif antara ketingian pokok dengan kebanyakan sifat lain yang dikaji, termasuk ketinggian tongkol, panjang tongkol dan bilangan baris bijian/tongkol. Selain dari itu, korelasi positif juga didapati di antara sifat-sifat tongkol, iaitu panjang tongkol, diameter tongkol, bilangan baris bijian/tongkol dan bilangan bijian/baris.

Panjang tongkol, yang mana diambil sebagai kriteria untuk pemilihan dalam kajian ini, memberikan anggaran kebolehwarisan luas (h²B) yang sederhana dalam kedua-dua populasi yang dikaji, menunjukkan bahawa pemilihan untuk sifat ini dalam
populasi-populasi tersebut boleh memberikan kesan dalam meningkatkan ukuran sifat ini dalam generasi seterusnya.

Kajian ini telah menunjukkan bahawa kedua-dua germplasma tempatan dan juga yang diimport adalah berguna dalam pembiakbakaan populasi jagung manis. Dua pusingan pemilihan kasar fenotip berdasarkan panjang tongkol yang dijalankan telah menunjukkan sedikit peningkatan hasil tongkol segar dalam kedua-dua populasi. Introgressi gen dari luar ke dalam germplasma tempatan mungkin telah memperluaskan himpunan gen sediaada, walaupun lebih banyak pusingan pemilihan diperlukan untuk mencapai peningkatan genetic yang lebih besar.
ACKNOWLEDGEMENTS

My full praise to Allah S.W.T. for enabling me to complete my study. This is a real blessing from Him and thanks to Him in the way that suits His supreme greatness, will and power. Blessings and peace from Allah S.W.T. be upon our Prophet Muhammad and all his Family and Companions.

My sincere appreciation goes to my supervisory committee, who were a great source of inspiration and encouragement throughout the period of my study. I would like to express my deepest gratitude to my supervisor and chairman of the supervisory committee, Associate Professor Dr. Ghizan Saleh for his systematic guidance and advice during the study. All his contributions are truly appreciated.

I am also indebted to the supervisory committee members, Associate Professor Dr. Anuar Abdul Rahim and Dr. Zakaria Abdul Wahab for their valuable contributions and suggestions that added interesting new knowledge and validity to this study.

My thanks also go to the Sudanese Ministry of Higher Education and Scientific Research, University of Gezira (UG), National Oilseed Processing Research Institute (NOPRI), Agricultural Research Corporation (ARC), and the Malaysian Ministry of Science, Technology and Environment (through the Intensive Research in Priority Areas (IRPA) funds), for their financial support that made this study successful.

I would like to express my deepest thanks to the Graduate School and the Faculty of Agriculture, especially the Department of Crop Science, Universiti Putra Malaysia
for the extensive assistance offered throughout the duration of my study. I would like to thank the staff of Field 2 and Share Farm, especially Mr. Shahril Abdul Rahman and Mr. Yasin for their kind cooperation when conducting my field experiments.

Thanks to the technical staff of the plant breeding laboratory, Mrs. Maininah Tahir and Mr. Hanib Ali, and all my postgraduate colleagues Than Da Min, Khayamuddin Panjaitan, Panca Jarot Santoso and Mohammad Asraf Kamaluddin. Thanks also go to the students on the Bachelors programme, especially Hii Jung Mee and Tham Weng Seong for their assistance.

I am also much indebted to my Sudanese friends and colleagues for their pronounced assistance during the field experiments. My specific thanks go to Dr. Omer Hassan Arabi, Mr. Elsadig Mohamed Ali, Mr. Asaad Abdullah, Mr. Khalid Osman, Dr. Izzeldin Babiker and Dr. Ahmed Abdullah. My thanks also go to many others who were there for me but whose names remain unmentioned.

I would like to express my deepest appreciation and gratitude to my dear wife Awatif Mohamed Ibrahim for her wholehearted assistance throughout this study. Her patience and encouragement always remained as my inspiration to complete this degree. Finally, I owe a big thank you to my family members, father Siddig Ali, mother Arafah Elbasha, and my brothers and sisters for their spiritual, financial and moral support. All of you are respected, loved and cherished for being there for me.
I certify that the Examination Committee met on 5th May 2003 to conduct the final Examination of Eltahir Siddig Ali on his Doctor of Philosophy thesis entitled “Genetics and Genetic Response in Populations Generated from Two Cycles of Phenotypic Mass Selection in Sweet Corn (Zea mays L. saccharata)” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd Said Saad, Ph.D.
Associate Professor,
Faculty of Agriculture,
Universiti Putra Malaysia.
(Chairman)

Ghizan Bin Saleh, Ph.D.
Associate Professor,
Faculty of Agriculture,
Universiti Putra Malaysia.
(Member)

Anuar Abdul Rahim, Ph.D.
Associate Professor,
Faculty of Agriculture,
Universiti Putra Malaysia.
(Member)

Zakaria Abdul Wahab, Ph.D.
Lecturer,
Faculty of Agriculture,
Universiti Putra Malaysia.
(Member)

Zakri A. Hamid, Ph.D.
Professor,
Institute of Advanced Studies,
United Nations University, Tokyo, Japan.
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean,
School of Graduate Studies,
Universiti Putra Malaysia.
16 Jun 2003
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Ghizan Bin Saleh, Ph.D.
Associate Professor,
Faculty of Agriculture,
Universiti Putra Malaysia.
(Chairman)

Anuar Abdul Rahim, Ph.D.
Associate Professor,
Faculty of Agriculture,
Universiti Putra Malaysia.
(Member)

Zakaria Abdul Wahab, Ph.D.
Lecturer,
Faculty of Agriculture,
Universiti Putra Malaysia.
(Member)

AINI IDERIS, Ph.D.
Professor/Dean,
School of Graduate Studies,
Universiti Putra Malaysia.
11 Jul. 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ELTAHIR SIDDIG ALI
Date: 27/5/2003
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEGEMENTS x
APPROVAL xi
DECLARATION xiv
LIST OF TABLES xviii
LIST OF FIGURES xxiii
LIST OF ABBREVIATIONS xxv

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 4
 2.1 Classification of Sweet Corn 4
 2.1.1 Botanical Classification 4
 2.1.2 Classification Based on Endosperm Characters 4
 2.2 Origin and Development of Sweet Corn 6
 2.3 Production of Sweet Corn 7
 2.4 Breeding Progress of Sweet Corn in Malaysia 8
 2.5 Genetics and Breeding of Sweet Corn 9
 2.5.1 General Aspects of Sweet Corn Breeding 9
 2.5.2 Genes Controlling Sweetness in Sweet Corn 12
 2.5.3 Use of Sweetness Genes in Sweet Corn Improvement 14
 2.6 Heritability 16
 2.7 Correlation among Plant Traits 18
 2.8 Mass Selection in Maize 20
 2.8.1 Background and Description 20
 2.8.2 Phenotypic Mass Selection in Maize Breeding 21
 2.8.2 Uses of Mass Selection 22
 2.8.3 Modifications in Mass Selection 24
 2.8.4 Comparison of Mass Selection with Other Selection Procedures 26

3 MATERIALS AND METHODS 28
 3.1 Source Populations 28
 3.2 Controlled Hand Pollination 28
 3.2.1 Covering of Ear-shoot 28
 3.2.2 Collection of Pollen Grains 29
 3.2.3 Pollination 29
 3.3 Crossing and Development of Base Populations 29
 3.4 Selection Experiments 30
 3.5 Evaluation Experiments 31
3.6 Cultural Practices 33
3.7 Preparation of Seed Lots 34
3.8 Data Collection 35
3.9 Data Analysis 38

4 EVALUATION OF PARENTS AND DEVELOPMENT OF BASE POPULATIONS FOR SELECTION 41
4.1 Introduction 41
4.2 Materials and Methods 42
4.3 Results 43
4.4 Discussion 58
4.5 Conclusion 61

5 EVALUATION OF PERFORMANCE OF INTERMATED CROSS POPULATION 63
5.1 Introduction 63
5.2 Materials and Methods 64
5.3 Results and Discussion 67
5.4 Conclusion 75

6 PHENOTYPIC MASS SELECTION FOR EAR LENGTH AND EVALUATION OF POPULATIONS GENERATED 76
6.1 Introduction 76
6.2 Materials and Methods 77
6.3 Results 84
6.3.1 Response to Selection 84
6.3.2 General Performance of Populations Generated from Selection 88
6.3.3 Broad-sense Heritability 124
6.3.4 Simple Phenotypic Correlations within Populations Generated from Selection 126
6.3.6 Distribution of Individual Plants for Ear Length in the Population 141
6.4 Discussion 144
6.4.1 Response to Selection 144
6.4.2 General Performance of Populations Generated from Selection 147
6.4.3 Broad-sense Heritability 151
6.4.4 Simple Phenotypic Correlations within Populations Generated from Selection 153
6.4.6 Distribution of Individual Plants for Ear Length in the Population 156
6.5 Conclusion 157

7 GENERAL DISCUSSION AND CONCLUSION 158

REFERENCES 165

APPENDICES 177
Appendix A: Additional Tables 178
Appendix B: Soil Characteristics of Locations 205
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Outline of the ANOVA table in the analysis at individual location</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Outline of the ANOVA table for effects of blocks and varieties, where data entry was a single value of each variety in a block</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Outline of the ANOVA table for effects of blocks and varieties, where data entries were from various samples taken from each variety in a block</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean squares from ANOVA for plant traits measured on individual plot basis, on three sweet corn varieties</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean squares from ANOVA for plant traits measured on individual plant samples, on three sweet corn varieties</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Mean values for yield and other characters measured on three sweet corn varieties</td>
<td>49</td>
</tr>
<tr>
<td>4.6</td>
<td>Maximum, on individual plants in three sweet corn varieties</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Genotypic and phenotypic variances and broad-sense heritability estimates for traits measured on three sweet corn varieties</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>Simple phenotypic correlations among plant traits measured on three sweet corn varieties</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Mean squares from ANOVA for plant traits measured on the intermated population cross, and its parents, Manis Madu and Hybrid SSC 240</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>Mean values for plant traits measured on the intermated population cross and its parents, Manis Madu and Hybrid SSC 240</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Phenotypic variance (variance within intermated population), environmental variance (variance within Hybrid SSC 240) and broad-sense heritability estimates for traits measured in the study</td>
<td>70</td>
</tr>
<tr>
<td>5.4</td>
<td>Simple phenotypic correlation coefficients among plant traits measured on the intermated population cross</td>
<td>70</td>
</tr>
<tr>
<td>6.1</td>
<td>Outline of the ANOVA table in the analysis at individual location</td>
<td>83</td>
</tr>
<tr>
<td>6.2</td>
<td>Outline of the ANOVA table in the combined analysis over Locations</td>
<td>83</td>
</tr>
<tr>
<td>6.3</td>
<td>Estimates of predicted response to selection for ear length measured on sweet corn populations generated from two cycles of phenotypic mass selection on Manis Madu (M), and the cross Manis Madu x SSC 240 (MS)</td>
<td>85</td>
</tr>
<tr>
<td>6.4</td>
<td>Mean values and realized response to two cycles of phenotypic mass selection for ear length, measured on sweet corn populations of Manis Madu (M), and the cross Manis Madu x SSC 240, from evaluations at Field 2 and Share Farm</td>
<td>87</td>
</tr>
</tbody>
</table>
6.5 Comparison between predicted and realised responses to selection for ear length measured on sweet corn populations generated from two cycles of phenotypic mass selection on Manis Madu (M), and the cross Manis Madu x SSC 240 (MS)

6.6 Mean squares in ANOVA for traits measured on populations generated from selection and the base population of Manis Madu (M), evaluated at Field 2 and Share Farm

6.7 Mean squares in ANOVA for traits measured on populations generated from selection and the base population Manis Madu (M), evaluated at the two locations combined

6.8 Mean squares in ANOVA for traits measured on populations generated from selection and the base population of the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm

6.9 Mean squares in ANOVA for traits measured on populations generated from selection and the base population of the cross Manis Madu x SSC 240 (MS), evaluated at the two locations combined

6.10 Mean values for traits measured on populations generated from selection and the base population of Manis Madu (M), evaluated at Field 2

6.11 Mean values for traits measured on populations generated from selection and the base population of Manis Madu (M), evaluated at Share Farm

6.12 Mean values for traits measured on populations generated from selection and the base population of Manis Madu (M), evaluated at the two locations combined

6.13 Mean values for traits measured on populations generated from selection and the base population of the cross Manis Madu x SSC 240 (MS), evaluated at Field 2

6.14 Mean values for traits measured on populations generated from selection and the base population of the cross Manis Madu x SSC 240 (MS), evaluated at Share Farm

6.15 Mean values for traits measured on populations generated from selection and the base population of the cross Manis Madu x SSC 240 (MS), evaluated at the two locations combined

6.16 Genetic variances (\(\sigma^2_g\)), phenotypic variances (\(\sigma^2_p\)), and broad-sense heritability estimates (\(h^2\)) for traits measured on populations of Manis Madu and the cross Manis Madu x SSC 240

6.17 Simple phenotypic correlations among some traits measured on selected Manis Madu populations, M C1 (above diagonal) and M C2 (below diagonal), evaluated at Field 2

6.18 Simple phenotypic correlations among some traits measured on selected Manis Madu populations, M C1 (above diagonal) and M C2 (below diagonal), evaluated at Share Farm

6.19 Simple phenotypic correlations among some traits measured on selected Manis Madu populations, M C1 (above diagonal) and M C2 (below diagonal), evaluated at the two locations combined
6.20 Simple phenotypic correlations among some traits measured on selected populations of the cross Manis Madu x SSC 240, MS C1 (above diagonal) and MS C2 (below diagonal), evaluated at Field 2.

6.21 Simple phenotypic correlations among some traits measured on selected populations of the cross Manis Madu x SSC 240, MS C1 (above diagonal) and MS C2 (below diagonal), evaluated at Share Farm.

6.22 Simple phenotypic correlations among some traits measured on 137 selected populations of the cross Manis Madu x SSC 240, MS C1 (above diagonal) and MS C2 (below diagonal), evaluated at the two locations combined.

A.1 Results of test of homogeneity for errors variances from the ANOVA on performance of Manis Madu populations (M), evaluated at Field 2 and Share Farm.

A.2 Results of test of homogeneity for errors variances from the ANOVA on performance of populations of the cross, Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm.

A.3 Maximum, minimum and mean values for fresh husked ear yield measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined.

A.4 Maximum, minimum and mean values for fresh dehusked ear yield measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined.

A.5 Maximum, minimum and mean values for plant height measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined.

A.6 Maximum, minimum and mean values for ear height measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined.

A.7 Maximum, minimum and mean values for number of ears ha⁻¹ counted on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined.

A.8 Maximum, minimum and mean values for tassel branch number counted on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined.

A.9 Maximum, minimum and mean values for days to tasseling counted on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined.
A.10 Maximum, minimum and mean values for days to silking counted on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.11 Maximum, minimum and mean values for days to maturity counted on populations of Manis Madu (M), and the cross Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.12 Maximum, minimum and mean values for fresh husked ear weight measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.13 Maximum, minimum and mean values for fresh dehusked ear weight measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.14 Maximum, minimum and mean values for husked ear length measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.15 Maximum, minimum and mean values for dehusked ear length measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.16 Maximum, minimum measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.17 Maximum, minimum and mean values for dehusked ear diameter measured on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.18 Maximum, minimum and mean values for number of kernel rows/ear counted on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.19 Maximum, minimum and mean values for number of kernels/row counted on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.20 Maximum, minimum and mean values for kernel total soluble solids recorded on populations of Manis Madu (M), and the cross Manis Madu x SSC 240 (MS), evaluated at Field 2 and Share Farm, and the two locations combined

A.21 Simple phenotypic correlations among traits measured on Manis Madu populations (M), evaluated at Field 2
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.22</td>
<td>Simple phenotypic correlations among traits measured on Manis Madu populations (M), evaluated at Share Farm</td>
</tr>
<tr>
<td>A.23</td>
<td>Simple phenotypic correlations among traits measured on Manis Madu populations (M), evaluated at the two locations combined</td>
</tr>
<tr>
<td>A.24</td>
<td>Simple phenotypic correlations among traits measured on populations of the cross Manis Madu x SSC 240 (MS), evaluated at Field 2</td>
</tr>
<tr>
<td>A.25</td>
<td>Simple phenotypic correlations among traits measured on populations of the cross Manis Madu x SSC 240 (MS), evaluated at Share Farm</td>
</tr>
<tr>
<td>A.26</td>
<td>Simple phenotypic correlations among traits measured on populations of the cross Manis Madu x SSC 240 (MS), evaluated at the two locations combined</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Schematic illustration of the phenotypic mass selection and evaluation procedures undertaken on two sweet corn populations</td>
</tr>
<tr>
<td>5.1</td>
<td>Distribution of individual plant performance for plant height at 21 days after planting on the population cross and its parents, Manis Madu and Hybrid SSC 240</td>
</tr>
<tr>
<td>5.2</td>
<td>Distribution of individual plant performance for number of leaves at 21 days after planting on the population cross and its parents, Manis Madu and Hybrid SSC 240</td>
</tr>
<tr>
<td>5.3</td>
<td>Distribution of individual plant performance for ear height measured on the population cross and its parents, Manis Madu and Hybrid SSC 240</td>
</tr>
<tr>
<td>5.4</td>
<td>Distribution of individual plant performance for ear length measured on the population cross and its parents, Manis Madu and Hybrid SSC 240</td>
</tr>
<tr>
<td>6.1</td>
<td>Individual plants distribution for ear length in the base and selected populations of Manis Madu (M), evaluated at Field 2</td>
</tr>
<tr>
<td>6.2</td>
<td>Individual plants distribution for ear length in the base and selected populations of Manis Madu (M), evaluated at Share Farm</td>
</tr>
<tr>
<td>6.3</td>
<td>Individual plants distribution for ear length in the base and selected populations of the cross (MS), evaluated at Field 2</td>
</tr>
<tr>
<td>6.4</td>
<td>Individual plants distribution for ear length in the base and selected populations of the cross (MS), evaluated at Share Farm</td>
</tr>
<tr>
<td>A.B1</td>
<td>Sand, silt and clay percentage in the soil of Field 2, with sandy loam texture and Share Farm, with sandy clay loam texture</td>
</tr>
<tr>
<td>A.B2</td>
<td>Average pH values in the soils of Field 2 and Share Farm, taken before planting</td>
</tr>
<tr>
<td>A.B3</td>
<td>The amount of nitrogen (N) available in the soils of Field 2 and Share Farm, taken before planting</td>
</tr>
<tr>
<td>A.B4</td>
<td>The amount of phosphorus (P) available in the soils of Field 2 and Share Farm, taken before planting</td>
</tr>
<tr>
<td>A.B5</td>
<td>The amount of potassium (K) available in soils of Field 2 and Share Farm, taken before planting</td>
</tr>
<tr>
<td>A.C1</td>
<td>Ear length measured in experimental grids on Manis Madu populations (M) in Cycle 0</td>
</tr>
<tr>
<td>A.C2</td>
<td>Ear length measured in experimental grids on Manis Madu populations (M) in Cycle 1</td>
</tr>
<tr>
<td>A.C3</td>
<td>Ear length measured in experimental grids on the cross populations (MS) in Cycle 0</td>
</tr>
<tr>
<td>A.C4</td>
<td>Ear length measured in experimental grids on the cross populations (MS) in Cycle 1</td>
</tr>
<tr>
<td>A.D1</td>
<td>Grades of ears produced by Manis Madu populations (M), evaluated at Field 2</td>
</tr>
<tr>
<td>A.D2</td>
<td>Grades of ears produced by Manis Madu populations (M), evaluated at Share Farm</td>
</tr>
</tbody>
</table>
A.D3 Grades of ears produced by the cross Manis Madu x SSC 240 populations (MS), evaluated at Field 2 214
A.D4 Grades of ears produced by the cross Manis Madu x SSC 240 populations (MS), evaluated at Share Farm 214
A.E1a Monthly mean temperature at Universiti Putra Malaysia, in 1998 (source: Malaysian Meteorological Service, 2002) 216
A.E1b Monthly mean rainfall at Universiti Putra Malaysia, in 1998 (source: Malaysian Meteorological Service, 2002) 216
A.E2a Monthly mean temperature at Universiti Putra Malaysia, in 1999 (source: Malaysian Meteorological Service, 2002) 217
A.E3a Monthly mean temperature at Universiti Putra Malaysia, in 2000 (source: Malaysian Meteorological Service, 2002) 218
A.E3b Monthly mean rainfall at Universiti Putra Malaysia, in 2000 (source: Malaysian Meteorological Service, 2002) 218
A.E4a Monthly mean temperature at Universiti Putra Malaysia, in 2001 (source: Malaysian Meteorological Service, 2002) 219