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Abstract. This paper explores the security claims of the Generalized (Rivest-Shamir -
Adleman) - Advance and Adaptable Cryptosystem, in short the GRSA-AA cryptosystem. In
the GRSA-AA design proposal, the public key n is defined as the multiplication of two large
prime numbers, while the values of encryption key E and decryption key D are relying on the
result of multiplying 2* large prime numbers called N where n divides N. The GRSA-AA
claimed that the brute force is necessary to break the cryptosystem even if the integer n was
factored. Nevertheless, this paper aims to show that this scheme is insecure once n is factored.
The mathematical proof is presented to show that it is easy to generate an alternative value to
the private key D without brute-forcing, yet successfully break the system.

1. Introduction

Integer factorization problem is a well-known problem in the field of number theory, computa-
tions and also cryptography. In general, the problem is defined as finding all the prime factors
of an integer and it is the source of security for many cryptosystems most notably the first
public-key encryption namely the RSA cryptosystem [11] and such as [3, 6, 9]. In the RSA
cryptosystem, it is believed that to determine the private key is by factoring the integer n.
However, due to current knowledge and computational power, it is widely known that factoring
n is cannot be done in polynomial time [7]. Furthermore, many cryptanalysis results of the
factoring work, for instance, see [2, 4] and [5], which does not contribute to a real-world threat
to the RSA cryptosystem. As discussed in [7, 10], such attacks do not reflect the insecurity of
any integer factorization-based cryptosystem in general.

The algorithms of the famous RSA cryptosystem which developed by [11] are divided
into three components, namely the key generation algorithm, followed by the encryption and
decryption algorithm, respectively. The details of the RSA algorithms are outlined as follows:
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Algorithm 1 RSA Key Generation Algorithm
1: Generate two prime numbers p; and po such that randomly
2: Calculate n = p1ps and ¢(n) = (p1 — 1)(p2 — 1)
3: Select e satisfies 3 < e < ¢(n) and ged(e, p(n)) =1
4: Determine d satisfies ed = 1 (mod ¢(n))
5: Output the tuple (n,e) and (n,d) as the public private key, respectively.

Algorithm 2 RSA Encryption Algorithm

Input: The public key (n,€)

Output: A ciphertext ¢
1: Select integer m where 0 < m < n satisfies ged(m,n) = 1
2: Calculate ¢ = m® (mod n).
3: Output the ciphertext ¢

Algorithm 3 RSA Decryption Algorithm
Input: A ciphertext ¢ and the private key (n,d)
Output: The plaintext m

1: Calculate m = ¢? (mod n)

2: Output the plaintext m

A new public-key cryptosystem which is called the Generalized (Rivest-Shamir-Adleman) or
in short GRSA-AA using 2¥ prime numbers were introduced by [8]. The authors of [8] proposed
an improved version of the RSA cryptosystem with higher security measure. Suppose the public
key n of the GRSA-AA is defined as the same as the original RSA design, i.e. the multiplication
of two large prime numbers. However, compared to the original RSA cryptosystem, the public
and the private parameters of encryption F and decryption D keys, respectively, are relying on
the result of multiplying 2* large prime numbers called N where n divides N. In that sense, [§]
claimed that GRSA-AA is more secure than RSA.

The aim of this paper is to prove that the need for brute force is unnecessary to break the
system once n is factored. Moreover, this work proves that it is easy to generate an alternative
value to the private key D therefore able to successfully attack the system. As a result, the
security level GRSA-AA has deemed no better than the classical RSA.

This paper has been organized in the following way. Firstly, this paper gives a brief
introduction of the RSA cryptosystem and overview for the GRSA-AA which was established
by [8] in Section 1. Section 2 begins by laying out the details of the GRSA-AA key generation
mechanism, along with the procedure of encryption and decryption. Section 3 describes the
theorem that will be useful for the cryptanalysis results while in Section 4 the execution of the
attack upon the GRSA-AA is presented. The last section concludes the paper.

2. Review of the GRSA-AA Cryptosystem
This section dedicated for the GRSA-AA cryptosystem, as presented in [8]. We summarized it
in a simplified version and provides with security analysis as follows.
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Algorithm 4 GRSA-AA Key Generation Process for 23 prime numbers

Choose eight (i.e 23) random and distinct primes p; where i = 1,2, ...,8
Compute n = p1p2

Compute N = H?:l Di

Determine ¢(n) = (p1 — 1)(p2 — 1)

Determine ¢(N) = [[5_,(p; — 1)

Choose at random e; such that 1 <e; < ¢(n) and ged(eq, p(n)) =1
Choose at random eg such that 1 < es < ¢(N) and ged(ez, ¢(N)) =1
Compute E’ such that E' = e?> (mod N)

Choose E such that 1 < E' < ¢(n) - E' and ged(E, ¢(n) - E') =1
Compute D such that ED =1 (mod ¢(N) - E')

Return the public key (n, E') and the private key (n, D)

— =
= O

Note that Algorithm 4 is the algorithm for GRSA-AA to generate its public and private keys
of 23 prime numbers, while the following Algorithm 5 is the algorithm for GRSA-AA to generate
its public and private keys of 24 prime numbers (rewritten in this paper as a simplified version
of the original GRSA-AA [8]).

Algorithm 5 GRSA-AA Key Generation Process for 24 prime numbers

Choose sixteen (i.e 2*) random and distinct primes p; where i = 1,2, ..., 16
Compute n = p1p2

Compute N = Hgﬁl Di

Determine ¢(n) = (p1 — 1)(p2 — 1)

Determine ¢(N) = [[;2,(p; — 1)

Choose at random e; such that 1 <e; < ¢(n) and ged(eq, p(n)) =1
Choose at random eg such that 1 < ez < ¢(N) and ged(ez, ¢(N)) =1
Compute E’ such that E' = e7? (mod N)

Choose F such that 1 < E < ¢(n) - E' and ged(E, ¢(n) - E') =1
Compute D such that ED =1 (mod ¢(N) - E')

Return the public key (n, E') and the private key (n, D)

— =
—= O

The next two algorithms which labelled as Algorithm 6 and Algorithm 7 are for the GRSA-AA
encryption and decryption algorithm, respectively. Observed that, the procedure is analogous
to the original RSA cryptosystem except for the public and parameters are generated using
GRSA-AA key generation mechanisms as presented as above.

Algorithm 6 GRSA-AA Encryption Algorithm
1: Select M as an integer satisfies 0 < M < n and ged(M,n) =1
2: Calculate c = M* (mod n).
3: Output the ciphertext C

Algorithm 7 GRSA-AA Decryption Algorithm

1: Calculate M = CP (mod n)
2: OQutput the plaintext M
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In [8], the GRSA-AA was claimed that brute force is required despite whether somebody able
to factor the public key n, to get the rest of the set of primes that constructs N. Therefore,
the private key D. Hence, in [8] affirmed that the security level considerably strengthened, in
contrast to the original design of the RSA cryptosystem. In this work, we tend to argue that
the said claim in [8] is often not necessarily true and will justify the argument in the following
section.

3. Results and Discussion
This section will now explain the argument such that whenever the modulus n is factored, then
the GRSA-AA already insecure and broken (i.e. easily attacked). The argument starts as follows.

Suppose that the prime factors of n is obtained; i.e. its corresponding primes p; and po.
Thus, from here the value ¢(n) = (p1 —1)(p2 — 1) easily computatable. Note that the public key
E of GRSA-AA cryptosystem is determine satisfying the ged(E, ¢(N)- E’) = 1 for the generated
modulus N as described in Algorithm 4 and Algorithm 5, respectively. Now, the modulus N is
a multiple of n, hence ¢(N) is a multiple of ¢(n), therefore the ged(E, ¢(n)) = 1. Thus, E has
a modular inverse in mod ¢(n). Suppose such integer (i.e. modular inverse) is labeled as D*.
Consider the following classical theorem by Euler;

Theorem 1. (Euler’s Theorem). Let n = pips and ¢p(n) = (p1 — 1)(p2 — 1). For every integer
M such that such that 0 < M < n and ged(M,n) = 1, then M®™ =1 (mod n).

Hence Euler’s Theorem is an important tool to justify the argument, which written as the
following proposition.

Proposition 1. Let (n, E) denoted as the public tuple and (n, D) as its private key counterparts
of the GRSA-AA cryptosystem. For any message M such that 0 < M < n, and for D* # D
such that ED* =1 (mod ¢(n)), then M = CP" (mod n).

Proof. Consider D* # D such that ED* =1 (mod ¢(n)). Since D* # D is the multiplicative
inverse of £ (mod ¢(n)), thus ED* =1 (mod ¢(n)) can be rewritten as ED* = 1+ ¢(n)j for
some integer j. Now, for any message M such that 0 < M < n, Theorem 1 confirmed that
CP" = MPP" = M+t = Mt Mo = M (mod n). O

Hence, given only the parameter of n, ' and its ciphertext C, the above result shows that
any message M < n easily recovered by using the newly introduce private key D*.

Note that the private key D generated from Algorithm 4 (or Algorithm 5) indicate that
it has at least as the same size as of the modulus N. Surprisingly, the Proposition 1 shows
that it is not necessarily to find the exact private key D, yet it is sufficient only to have the
prime factors of the modulus n, contradicts to the original claim of [8]. Hence, the GRSA-AA
cryptosystem is broken once the prime factors of n are available, without using brute force. In
the next subsections, the successful attacks on the examples given in [8] using Proposition 1 will
be presented.

3.1. Attack 1: on the illustration of the GRSA-AA with 23 (eight) prime numbers

The following is the illustration of the GRSA-AA with eight prime numbers, which replicated
directly from the Example 2.5 given in [8]. Take eight prime numbers and proceed the key
generation procedure of Algorithm 4 and obtaining the following parameters;
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Public keys n = 10403, F = 239
Private modulus N = 31705684556450851
Private key D = 18393515478533395755916798406159
Message M =786
Ciphertext C =9614

Table 1. Relevance parameters displayed in ([8], Section 2.5)

Successful Attack 1: Now, the following steps will illustrate the attack using Proposition 1
to obtain M easily without the need to obtain all the prime factors of N = 31705684556450851
nor the exact value of decryption key D = 18393515478533395755916798406159. Assume that
the factorization of the modulus n = 10403 are given, i.e. obtain its corresponding prime factors
pl = 101,p2 = 103, respectively. Next, compute ¢(n) = 10200. Since E = 239 is publicly
available therefore it is easy to determine the private value D* = 6359 # D where D* = E~!
(mod ¢(n)). Finally, compute CP" = 9614%3%9 = 786 = M (mod n), which is the intended
message M.

3.2. Attack 2: on the illustration of the GRSA-AA with 2* (sizteen) prime numbers

The following is the Example 2.6 (attack on the illustration of the GRSA-AA with sixteen prime
numbers) given in [8]. Take sixteen prime numbers and proceed the key generation procedure
of Algorithm 5 and obtaining the following parameters;

Public keys n = 129593387513, £ = 769

Private modulus | N = 42624624772085204961203849243873728696103577690
708177642812230936409520655643273544114569

Private key D = 140044658995370745324926225059055410024264194246
645270734820063515907116459162019549611244132869
70145959814470422376744664507961279454080254512854
8804726245621329007919101443329

Message M = 786786

Ciphertext C = 115334483704

Table 2. Relevance parameters displayed in ([8], Section 2.6)

Successful Attack 2: Now, the following steps will illustrate the second attack using
Proposition 1 to obtain M easily without the need to obtain all the prime factors of N nor the
exact value of decryption key D. Suppose the factorization of the modulus n = 129593387513
i.e. its corresponding prime factors p; = 317159,p, = 408607 are given. Next, compute
¢(n) = 129592661748. Using the public key E = 769 hence compute D* = 28311530785 # D
where D* = E~! (mod ¢(n)). Finally, compute CP" = 11533448370428311530785 = 786786 = M
(mod n), which is the intended message M.

4. Conclusion

This paper has argued that the brute force in unnecessary to break the GRSA-AA cryptosystem
once the public key n is factored. Moreover, this work proves that it is easy to generate an
alternative value to the private key D, namely the attacking private value D*, therefore able
to successfully attack the system. In conclusion, the security level GRSA-AA has deemed no
better than the classical RSA.
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