UNIVERSITI PUTRA MALAYSIA

SIMULATION AND CONSTRUCTION OF VOLTAGE SAG CORRECTOR

DANIEL ROHI

FK 2002 17
SIMULATION AND CONSTRUCTION OF A VOLTAGE SAG CORRECTOR

DANIEL ROHI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of Requirements for the Degree of Master of Science

February 2002
DEDICATION

Give thanks to the Lord, for He is good
His love endures forever (Psalm 136:1)

This report is dedicated to
my lovely mother Maria Rohi Padji for her praying. my lovely wife Eva Juliana, for her patience and understanding during the preparation of this project. and to my sweet heart Zefanya I.Angelista
Abstract of thesis presented to senate of Universiti Putra Malaysia in fulfillment of requirements for the degree of Master of Science.

SIMULATION AND CONSTRUCTION OF A VOLTAGE SAG CORRECTOR

By

DANIEL ROHI

February 2002

Chairman : Nasrullah Khan, Ph.D
Faculty : Engineering

Electrical power quality has been the most important issue in recent years. Research has shown that nearly 92% of the electrical power quality problems were associated with voltage sags. Voltage sag is a short duration reduction in rms voltage caused by short circuit faults, switching operations, impact over loading, or starting of large motors. To mitigate voltage sag problems are to have a cautious maintenance and control to the supply, transmissions and the distribution to prevent damages. User can find the underlying cause of voltage sag by installing devices that can minimize voltage sag. Electro-magnetic contactor is one of the devices that is sensitive to voltage sag. Data shows that contactor, which is widely used for controlling motor, cannot work properly when there are 50% rms voltage reduction for a period longer than one cycle. This project will describe a type of voltage sag corrector (VSC) device that is especially use to minimize voltage sag impact at the contactor. The VSC device is used for contactor that uses 120V AC. To give enough magnetic power to the contactor, AC voltage that is stable is used until
there is a match with DC voltage. When there is 120 V AC input, it will be converted by the rectifier to DC voltage with a value of 170 V. Furthermore, 170 V DC will be reduced to 12 V DC by the chopper circuit. The chopper circuit is driven by the output signal or duty cycle of the control circuit. The duty cycle depends on the occurring voltage sag magnitude. The duty cycle will increase proportional with voltage sag. The software Orcad PSpice version 9.1 is effective to make simulations of the VSC circuit. The experimental result shows that the VSC is effective to mitigate voltage sag for contactor ride-through.
Abstrak tesis yang dikemukakan kepada Senat University Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIMULASI DAN PEMBINAAN PEMBAIKI VOLTAN LENDUTAN

Oleh

DANIEL ROHI

Februari 2002

Pengerusi : Nasrullah Khan, Ph.D
Fakulti : Kejuruteraan

Kualiti kuasa elektrik telah menjadi isu yang sangat penting pada masa kini. Penyelidikan menunjukkan hampir sembilan puluh dua peratus dari masalah kualiti kuasa elektrik memiliki kaitan dengan masalah voltan lendutan. Voltan lendutan adalah kejadian singkat penurunan nilai voltan yang disebabkan oleh litar pintas, kelebihan beban, operasi dari suis dan penggerak motor besar. Mengatasi masalah voltan lendutan dapat dilakukan dengan mengadakan pemeliharaan dan kawalan yang cermat pada penjana, sistem penyaluran dan sistem pengagihan. Selain itu pengguna dapat mengatasi dengan memasang peralatan yang dapat mengurangkan lendutan voltan. Sesentuh adalah salah satu peralatan yang peka terhadap lendutan voltan. Data menunjukan sesentuh yang kebanyakan digunakan untuk kawalan motor tidak dapat bekerja dengan sempurna apabila voltan lendutan sebesar lima puluh peratus dalam jangka masa lebih besar dari satu kitaran. Projek ini akan menguraikan penggunaan dari peralatan pembaiki voltan lendutan yang khas untuk mengurangi pengaruh voltan lendutan pada sesentuh. Peralatan pembaiki voltan lendutan ini dipakai untuk sesentuh jenis 120 V AC. Untuk memberikan kuasa
ACKNOWLEDGEMENTS

Praises the Lord!, with humble gratitude, I wish to express thanks to the Almighty God who has permitted me to further my studies and thanks for His grace and strength that has enabled me to complete my project.

I would also like to thank my supervisor Dr. Nasrullah Khan, and the members of the supervisory committee of associate professor Ir. Dr. Norman Mariun and Dr. Senan Mahmod for their advice, understanding, support, criticism, idea and co-operation in completing this project.

Especial my appreciation to Dr. Nasrullah Khan that have given full attention for me is not only at the academic problem but also for my personal problem and for full supervise until midnight working together in the laboratory. May lovely God bless Dr. Nasrullah Khan and his family.

Last but, not least I want to thank for all of my friend for praying, helping and encouragement so I get the strength to finish this work. My pray and hope that may lovely God will bless us in every step in our lives. SOLI DEO GLORY.
I certify that an Examination Committee met on 20 February 2002 to conduct the final examination of Daniel Rohi, on his Master of Science thesis entitled “Design and Construction of a Voltage Sag Corrector” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

JASRONITA JASNI
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

NASRULLAH KHAN, Ph.D
Faculty of Engineering
Universiti Putra Malaysia
(Member)

NORMAN MARIUN, PhD,P.Eng
Faculty of Engineering
Universiti Putra Malaysia
(Member)

SENNAN MAHMOOD, Ph.D
Faculty of Engineering
Universiti Putra Malaysia
(Member)

SHAMSHER MUHAMAD RAMADILLI
Professor/Deputy Dean of School of Graduate Studies
Universiti Putra Malaysia
Date: 4 APR 2002
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the requirements for the degree of Master of Science.

AINI IDERIS, Ph.D.
Professor
Dean of School of Graduate Studies
Universiti Putra Malaysia

Date: 15 JUN 2012
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

[Signature]

Candidate
DANIEL ROHI
Date: 03/09/2002
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/GLOSSARY TERMS</td>
<td>xix</td>
</tr>
</tbody>
</table>

## CHAPTER

### 1. POWER QUALITY PROBLEMS

1.1 Introduction

1.2 Aims and Objectives

1.3. Thesis Layout

### 2. LITERATURE REVIEW

2.1 Introduction

2.2 Causes of Voltage Sag

2.2.1 Short Circuit Faults at Utility Side

2.2.1.1 Insulator Flashover Phenomenon

2.2.1.2 Aggressive Weather Conditions

2.2.1.3 External Touches

2.2.1.4 Environmental Effects

2.2.2 Customers Side Oriented Voltage Sag

2.2.2.1 Effects of Motor

2.2.2.2 Capacitor Switching

2.2.2.2 Operation of AC Arc Furnaces

2.2.2.3 Large and Cyclic Loading

2.3 Characteristic of Voltage Sag

2.3.1 Magnitude of voltage Sag

2.3.1.1 Monitoring the Magnitude of Voltage Sag
REFERENCES

APPENDICS
A. Experimental in Progress
B. Power MOSFET N-Ch, Enhancement
   Mode High Speed Switch
C. I.C Timers 555 and 556

BIODATA OF AUTHOR
## LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Protective devices with fault clearing time</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Timing diagrams</td>
<td>76</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Comparison of sag magnitude and the duty cycle for simulation results</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Comparison of sag magnitude and the duty cycle for experimental results</td>
<td>99</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Voltage sag due to short circuit fault</td>
<td>08</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Voltage sag due to induction motor starting</td>
<td>08</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Voltage wave shape at arcing horns</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>One-cycle rms voltage for the voltage sag shown in Figure 2.1</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Magnitude of the fundamental component of the voltage sag in Figure 2.1</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Half-cycle peak voltage for the voltage sag shown in Figure 2.1</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Distribution network with load positions and fault positions</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Voltage divider model for a voltage sag</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Sag magnitude as a function of the distance to the fault</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Sag magnitude versus distance, for overhead lines with different cross sections.</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Power system with faults at two voltage level</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Comparison of voltage sag magnitude for 132 kV and 33 kV faults</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Estimation of voltage sag duration by power quality monitor</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Half-cycle rms voltage together with absolute value of the voltage</td>
<td>31</td>
</tr>
</tbody>
</table>
Figure 3.10  Step down DC-to-DC converter circuit 64
Figure 3.11  Internal Power Supply 65
Figure 3.12  Control Circuit 67
Figure 3.13  The 555/556 timer functional block diagram 68
Figure 3.14  Gate Drive Circuit for Power MOSFET 71
Figure 3.15  Power up Reset 72
Figure 3.16  Voltage Sag Generator 73
Figure 3.17  Experiment set up 74
Figure 4.1  Input profile at normal operation, output $V_{C(DC)}$ and output rectifier 78
Figure 4.2  The output voltage $V_{C(DC)}$ at normal operation 78
Figure 4.3  The output current $I_{C(DC)}$ at normal operation 79
Figure 4.4  An example of duty cycle profile 79
Figure 4.5  Input profile at forty percent sag, output $V_{C(DC)}$ and output rectifier 80
Figure 4.6  The output voltage $V_{C(DC)}$ at forty percent sag 80
Figure 4.7  The output current $I_{C(DC)}$ at forty percent sag 81
Figure 4.8  Input Profile at fifty percent sag, Output $V_{C(DC)}$ and output rectifier 81
Figure 4.9  The output voltage $V_{C(DC)}$ at fifty percent sag 82
Figure 4.10  The output current $I_{C(DC)}$ at fifty percent sag 82
Figure 4.11  Input Profile at seventy percent sag and output rectifier 83
Figure 4.12  The output voltage $V_{C(DC)}$ at seventy percent sag 83
Figure 4.13  The output current $I_{C(DC)}$ at seventy percent sag 84
Figure 4.14  Input Profile at ninety percent sag and output rectifier 84
Figure 4.15  The output voltage $V_{C(DC)}$ at ninety percent sag 85
Figure 4.16  The output current $I_{C(\text{DC})}$ at ninety percent sag  

Figure 4.17  Sag magnitude as a function of the duty cycle for simulation results  

Figure 4.18  The output voltage $V_{C(\text{DC})}$ at normal operation  

Figure 4.19  The duty cycle profile at normal operation  

Figure 4.20  The output voltage $V_{C(\text{DC})}$ at forty percent sag  

Figure 4.21  The duty cycle profile at forty percent sag  

Figure 4.22  The output voltage $V_{C(\text{DC})}$ at fifty percent sag  

Figure 4.23  The duty cycle profile at fifty percent sag  

Figure 4.24  The output voltage $V_{C(\text{DC})}$ at seventy percent sag  

Figure 4.25  The duty cycle profile at seventy percent sag  

Figure 4.26  The output voltage $V_{C(\text{DC})}$ at eighty percent sag  

Figure 4.27  The duty cycle profile at eighty percent sag  

Figure 4.28  Sag magnitude as a function of the duty cycle for experimental results
LIST OF ABBREVIATIONS

AC          Alternating Current  
ASDs        Adjustable Speed Motor Drives  
CBEMA       Computer Business Equipment Association  
CVTs        Ferro-resonant, Constant Voltage Transformer.  
DC          Direct Current  
DPQ         Distribution Power Quality  
EMP         Electromagnetic Pulse  
EPRI        Electric Power Research Institute  
HEMP        High Altitude Electromagnetic Pulse  
HID         High-Intensity Discharge  
ITI         Technology Industry Council  
M-G Sets    Motor Generator Sets.  
PCC          Point-of- Common Coupling  
PLC’s        Programmable Logic Controllers  
RMS          Root Mean Square  
SLGF         Single Line Ground Fault  
SSDs         Super conducting Storage Devices  
UPS          Uninterruptible Power Supply  
VSC          Voltage Sag Corrector
CHAPTER 1
POWER QUALITY PROBLEMS

1.1 Introduction

The problem of electric power system has become complex now. It is not just a question of how to generate electrical power and the means of transferring this power, but also about how to maintain the voltage and frequency within certain level suitable for consumer equipment. All the process that was described above must follow several criteria such as reliability, economic viability and quality.

Reliability is associated with protection system, and it consists of two elements: dependability and security. Dependability is the certainty of correct operations in response to system trouble, whereas security is the ability of the system to avoid missed operations or to be without faults. The economic viability tells about producing good electrical power with reasonable cost. The final criterion is quality, which is related to the effects of electrical power supply instability on consumer equipment [1].

The instability of power supply can be caused by disturbances at utility or by consumers of the supply, which affects the load. This, in turn, will affect other equipment especially those that are sensitive to this instability. This equipment, or load, cannot function properly, because of the low quality of the power supply. Furthermore, if the consumer uses non-linear equipment, it can introduce harmonic
distortion on the supply. Based on these phenomena, power quality problem can be defined as: Any power problem manifested in the voltage, current, or frequency deviation that results in failure or miss operation of customer equipment. In short, power quality problem can be identify as voltage quality [2].

This definition is one of the many definitions of power quality. The experiences of many people have resulted in its numerous definitions. However, most people agree and have the same perception about the phenomena of power quality. They have, for example, agreed on the possible causes of power quality problems that can generally be classified as one of the following phenomena: Transients under voltage or voltage sag, transients over voltage or voltage swell, momentary interruptions, transient, harmonics distortion and electrical noise.

The problem of power quality has become an important issue. This is due to several reasons: The first is, customers, especially in industries, use equipment that is sensitive to changes in power supply, caused by power instability. For example, large industries now use many equipment that are load sensitive, such as in design processes, in which Adjustable-Speed drives (ASDs) for speed control remotely communicate with Programmable Logic Controller (PLC) to monitor and control many aspects of processes behavior, and contactors. The equipment, and hence the process, does not function properly in the event of an electrical power problem, that can create voltages changes especially voltage sag.

The second reason is related to economics. In this case, if a production process is disrupted by the poor quality of power supply, the company involved will suffer
economic lost. Therefore, the effect of poor power quality, especially that of voltage sag is also an economic one. Companies must spend money to mitigate it. The economic impact is on both the utility companies and consumers. Another basis for action is the integration of processes. Integrated processes mean that the failure of any component will result in the failure of the whole. a very serious consequence indeed [2].

Surveys have shown that voltage sags are considered as the dominant factor affecting power quality. Productivity loss due to deep voltage sags and brief power interruptions has been called "the most important concern affecting most industries and customers", costing billions of dollar every year in the United State alone [3].

Electrotek Concepts, in a study sponsored by the Electric Power Research Institute (EPRI), and in collaboration with 24 utilities, evaluated power quality disturbances over a period of 27 months from 1993 to 1995. Approximately 300 power quality monitors were installed in locations across the US, resulting in over 6 million power quality events being recorded. The cumulative data from the "Distribution Power Quality (DPQ) study" indicates that 92% of all events correspond to voltage sags down to 40-50% of nominal line voltage, and that most of these events last for less than 2 seconds [4].

In Malaysia, the problem of voltage sag has become important, as the country has set its sight on becoming a developed country by the year 2020. The incidence of voltage sags in Malaysia is on the average, high, because the country has a very high rate of thunder (lighting) /day of more than 200. Many research results indicate that
the main cause of voltage sag is due to single line ground fault (slgf). For example, on the utility side, 75% of the voltage sag is due to single line ground fault. 19% and 6% are due to two and three phase faults respectively. On the consumer side, one industry data shows that there are 1.06 disturbances per month of which voltage sags make up about 1.01 or 97% of the disturbances [5].

In short, power quality is becoming an important concern in distribution systems and industrial plants. It is expected that these concerns will be even more prevalent in a deregulated power systems environment, where electricity may be available at different rates and with various power quality features. A supply of high quality and availability is essential for the operation of modern plants in which the use of computers and other sensitive electronic equipment is widespread [6].

Solving power quality problems especially on voltage sags can be done on either the utility side or on the consumer side. On the consumer side, the best solution is to protect the entry facility from voltage sag with a device such as a dynamic voltage restorer or in other cases, it is more economical to identify particularly susceptible components and protect them alone. Many facilities have motors controlled by contactors. While motors often have enough inertia to ride through power line disturbances, contactors have been shown to be particularly susceptible to voltage sags. One manufacturer has provided data that indicates their line of motor contactors will drop out at 50% voltage if the condition lasts for longer than one cycle [7].
1.2 Aims and Objectives

The aim of this project is to develop a device to address the problem of voltage sag especially to facilitate a contactor ride through. To achieve this objective, the following works were carried out.

1. Simulation of a voltage sag corrector circuit using PSpice software program.
2. Construction of a voltage sag corrector circuit to demonstrate the operation of the contactor during voltage sag.

1.3. Thesis Layout

This thesis is divided into five chapters. Chapter 1 gives an overview of power quality problems and the scope of work in this thesis. Chapter 2 reviews literature on voltage sag problems, causes of voltage sag, characteristics of voltage sag, and the relationship between voltage sag and sensitive equipment. Chapter 3 describes the workings of a contactor and the voltage sag corrector circuit, and the experiment conducted with it. Chapter 4 discusses the results of the circuit simulation and experiment. Finally, chapter 5 presents the conclusion and suggestions for further development of voltage sag corrector circuit.