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MODELLING AND SIMULATIONS OF THE SilSiGe 
HETEROSTRUCTURE DEVICES 

By 

NORULHUDA BT ABD RASHEID 

April 2002 

Chairperson: Roslina bt Mohd Sidek, Ph.D. 

Faculty: Engineering 

Complementary metal-oxide-semiconductor (CMOS) is currently the most dominant 

technology used in making integrated systems. It consists of both n-channel MOS 

transistor (NMOS) and p-channel MOS transistor (PMOS) fabricated on the same 

substrate. Conventionally, the substrate is made of silicon. Alternatively, the 

substrate can be made from different layer of semiconductors known as 

heterostructure. Much attention has been given to SilSiGe due to its compatibility 

with silicon and the higher carrier mobilities. SiGe is an alloy which is said to be an 

alternative solution to the problem of a down-scaled CMOS to produce high speed 

device. 

This work consists of modelling three different of SilSiGe heterostructure substrates 

which are used to construct n- and p-channel MOSFETs and later to construct 

CMOS inverter. The three types of heterostructures are a strained SiGe on silicon 

substrate, a strained silicon on relaxed SiGe/Si substrate and a strained SiGe on 

strained Silrelaxed layers of SiGe/Si substrate. 
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A device simulator, Avanti MEDICI Version 1999.2 is used in this project. 

Although it has heterojunction capability, it does not support model for a strained Si. 

This work also highlights the method to simulate SilSiGe heterostructures 

containing strained layer using MEDICI. Simulations on the band structure and 

current-voltage (I-V) characteristics of the MOSFETs are carried out. The �-V g 

and �-V d are simulated for different value of Ge% and mobility. This is to observe 

the effect of varying the value of Ge% and mobility used in the design. The 

simulation on the CMOS inverter as the fundamental circuit is carried out to obtain 

the transfer curve. The noise margin and switching characteristics can be extracted 

from the transfer curve. 

All the simulated results are then compared with the Si bulk. The analyses show 

that the performance of the SilSiGe heterostructures is better in terms of the 

electrical characteristics of the MOSFETs and the switching characteristics of the 

CMOS inverter, as compared to the performance of the Si bulk. 
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Abstrak tesis yang dikernukakan kepada Senat Universiti Putra Malaysia sebagai 
rnernenuhi keperluan untuk ijazah Master Sains 

MODEL DAN SIMULASI PERANTI-PERANTI SIMPANG-HETERO SilSiGe 

Oleh 

NORULHUDA BT ABD RASHEID 

April 2002 

Pengerusi: Roslina bt Mohd Sidek, Ph.D. 

Fakulti: Kejuruteraan 

Sernikonduktor-oksida-Iogam pelengkap (CMOS) adalah teknologi dorninasi terkini 

dalam rnernbuat sistern bersepadu. Ia terdiri daripada transistor MOS saluran n 

(NMOS) dan transistor MOS saluran p (PMOS) yang difabrikasikan di atas substrat 

yang sarna. Kebiasaannya, substrat diperbuat daripada silikon. Secara pilihan, 

substrat boleh juga dibuat daripada lapisan semikonduktor yang berlainan yang 

dikenali sebagai struktur-hetero. Perhatian yang banyak telah diberikan kepada 

struktur-hetero SilSiGe kerana keserasiannya dengan silikon dan rnobiliti-rnobiliti 

pernbawa yang tinggi. SiGe adalah sejenis aloi yang dikatakan sebagai salah satu 

penyelesaian terhadap rnasalah pengecilan CMOS dalarn rnenghasilkan peranti yang 

berkelajuan tinggi. 

Projek ini rnengandungi pernodelan tiga jenis struktur-hetero Si/SiGe yang akan 

digunakan untuk rnernbina saluran n dan p dan kernudian untuk rnernbina pernbalik 

CMOS. Tiga jenis struktur-hetero tersebut adalah SiGe tegang di atas substrat 

silikon, silikon tegang di atas lapisan rehat SiGe/substrat Si dan SiGe tegang di atas 

lapisan silikon tegang/lapisan-Iapisan rehat SiGe/substrat Si. 
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Alat simulasi peranti, Avanti MEDICI Versi 1999.2 digunakan untuk 

mensimulasikan struktur jalur dan ciri-ciri arus-voltan MOSFET. Walaupun 

mempunyai keupayaan simpang-hetero, ia tidak menyokong model untuk silikon 

tegang. Cara-cara untuk mensimulasikan struktur-hetero Si/SiGe yang mempunyai 

lapisan silikon tegang dengan menggunakan MEDICI diketengahkan di dalam tesis 

101. Simulasi dijalankan ke atas struktur jalur dan ciri-ciri arus-voltan (I-V) 

MOSFET. LJ-V g dan Id-V d disimulasikan bagi nilai Ge% dan mobiliti yang berbeza. 

Ini adalah bertujuan untuk memerhati kesan perubahan nilai Ge% dan mobiliti 

dalan rekabentuk tersebut. Simulasi ke atas pembalik CMOS sebagai Htar asas 

dijalankan untuk mendapatkan lengkung pindah. Jidar hingar dan ciri-ciri suis boleh 

didapati daripada lengkung pindah tersebut. 

Keputusan-keputusan simulasi kemudian dibandingkan dengan Si pukal. Analisis­

analisis menunjukkan bahawa pencapaian bagi simpang-hetero SilSiGe adalah 1ebih 

baik jika dibandingkan dengan pencapaian bagi Si pukal, dari segi ciri-ciri elektrik 

MOSFET dan ciri-ciri suis pembalik CMOS. 
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CHAPTERl 

INTRODUCTION 

Complementary metal-oxide-semiconductor (CMOS) consists of both n-channel 

MOS (NMOS) and p-channel MOS (PMOS) transistors fabricated on the same 

substrate as shown in Figure 1 . 1  [ 1 ]. 

Since the early eighties until today, complementary metal-oxide-semiconductor 

(CMOS) has emerged as the dominant technology for general purpose integrated 

circuit applications [2] . As trend continues, CMOS has edged out less competitive 

technologies such as bipolar and NMOS, while relegating more exotic technologies 

such as GaAs to niche applications. 

n-channel p-channel 

Figure 1 . 1 :  Cross-section of CMOS 



1.1 The Advantage of CMOS 

C MOS is recognized as a leading contender for existing and future VLSI systems. 

Since the beginning of VLSI era, CMOS technology has gained more and more 

significance than its predecessor: the NMOS technology. There are several main 

reasons, which has contributed to the use and acceptance of the CMOS technology 

[3].  CMOS circuits have been at the forefront ofthe technology primarily due to 

their passive power consumption. Aside from leakage currents, power in digital 

circuits are d issipated only during switching events. There is virtually no power 

consumed when the circuit is in steady state. 

Another significant feature of CMOS is its stabil ity of operation. Unl ike its 

counterpart technologies such as NMOS and bipolar, smal l  deviation in device 

characteristics do not perturb the circuit operating point. It has proven to be robust 

and permits large quantities and varieties ofICs to be fabricated with high yield. 

CMOS is flexible for a wide variety of applications, which includes digital logic, 

static/dynamic random access memories (RAMs), signal processing and a variety of 

analogue circuits. As a result, CMOS technology has reached the enviable position 

where supply generates its own demand. The wide appl icability of CMOS has given 

rise to a broad, h igh quality infrastructure for development and fabrication that 

a l lows advances to be made widely available at a reasonable cost. 

In the CMOS c ircuit, the p-channel transistor has lower performance compared with 
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n-channel transistor because of the lower mobility of holes than the electrons. 

However, the performance difference between PMOS and NMOS has reduced 

drastically due to velocity saturation thus making CMOS technology more attractive 

in VLSI circuit. CMOS also has another advantage, which is a very large noise 

margin [4]. 

1.2 Limitations of Down-Scaled CMOS 

From 1 960's until now, speed improvement is achieved through down scal ing. 

There are some physical l imitations due to down scaling such as the gate oxide 

becomes very thin (- 30 A), the source and drain resistances become more 

dominating and other parasitic effects. This wi l l  reduce the rel iabi lity of the device. 

Thi s  is where S iGe alloy is introduced as an alternative solution to produce h igh 

speed device. 

1.3 Silicon Germanium (SiGe) 

A few years after the invention of the bipolar transistor the basic electronic 

semiconductor material changed from germanium to sil icon. During that switch 

around 1 960 considerable interest was focused on bulk, un strained SiGe al loys. 

Advance epitaxy methods have enabled the growth of high qual ity, thin, strained 

SiGe layers on Si substrates since around 1 985 [5]. The avai labil ity of strained 

SiGe/Si structures stimulated heavily the research on si l icon-based heterostructure 

devices resulting within a few years in the fastest si l icon-based transistors and other 

very attractive options. 
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1.4 The Advantage of Si/SiGe 

There have been suggestions to use complementary heterostructure field-effect 

transistors based on GaAsl AIGaAs in order to make use of the high electron 

mobility in this material system [6]. However, the problem of the low mobility 

which plagues Si was not solved. In addition, that technology relied on making 

Schottky gates, which result in several orders of magnitude higher gate leakage 

current than in oxide-gated devices. 

Unlike the other group III-V elements (e.g. GaAs), SiGe is compatible with 

silicon process. The intrinsic advantage of Si/SiGe allowing the high-speed 

operation of the transistors at lower supply voltage would, in principle, result in 

higher reliability. Although it is inconceivable that SilSiGe Heterojunction CMOS 

(HCMOS) will replace Si CMOS in ULSI applications in the near future, there is 

increasing interest in application-specific designs which require low power 

consumption and high speed (e.g., cellular phones, other portable electronics, opto­

electronic receivers, etc.) [6]. This is where we believe that there is ample room for 

implementing Si/SiGe HCMOS, making use of its potential perfonnance leverage 

over Si CMOS. 

If cryogenic applications become of importance, the advantage of Si/SiGe over Si 

wilI become even more clear, since at 77 K for instance, the electron and hole 

mobilities are an order of magnitude higher than in Si. 
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