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In 1999, the Polynomial Reconstruction Problem (PRP) was put forward as a new hard 
mathematics problem. A univariate PRP scheme by Augot and Finiasz was introduced at Eurocrypt 
in 2003, and this cryptosystem was fully cryptanalyzed in 2004. In 2013, a bivariate PRP 
cryptosystem was developed, which is a modified version of Augot and Finiasz’s original work. 
This study describes a decryption failure that can occur in both cryptosystems. We demonstrate 
that when the error has a weight greater than the number of monomials in a secret polynomial, 𝑝, 
decryption failure can occur. The result of this study also determines the upper bound that should 
be applied to avoid decryption failure.

1. Introduction

A valid and secure cryptosystem can be designed using a good hard mathematical problem in cryptography. Cryptography is an 
important mechanism in data security where the cryptography algorithm makes communication possible in the presence of an adver-

sary [8,30]. User’s private data in embedded system needs to be protected and authenticated. It is essential for users to ensure that 
data consumed is valid [10,28]. Shor’s algorithm has successfully solved classical problems such as the integer factorization problem 
(IFP) and the discrete logarithm problem (DLP) in polynomial time, where a quantum computer can attack cryptosystems that rely 
on such difficult mathematical problems [1,3,34]. Among the well-known cryptographic schemes that are algorithmically insecure 
in post quantum cryptography are RSA, El-Gamal, and Elliptic Curve Cryptosystem [7,22]. The National Institute of Standards and 
Technology (NIST) has called for a search for quantum-resistant algorithms [4,11,13,33].

Hence, this shows that post-quantum cryptography is preferable for information security purposes. Post-quantum cryptography 
is a cryptographic algorithm that is believed to be secure from the attack of quantum computer [21]. Post-quantum cryptography 
also consists of five major types which are lattice-based, code-based, isogeny-based, hash-based and multivariate-based cryptography 
[9,19]. The Quantum Algorithm Zoo website lists useful hard mathematical problems that may be immune to a quantum computing 
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attack [20]. Thus, cryptographers must investigate diverse hard problems so that the new design cryptosystems are safe from the 
attack of quantum computers [18]. The evaluation of time intricacy and memory space for the attack is to ensure and validate the 
safety of the cryptosystems [26,27].

Quantum Algorithm Zoo introduced the PRP as a difficult mathematical problem in post-quantum cryptography [20]. This prob-

lem was introduced in 1999 when PRP developed a formulation equivalent to Reed-Solomon error-correcting codes [6,29,31]. The 
problem also contains the full intricacy against the quantum computers with the complexity of (𝑞) in which 𝑞 contains 𝑛 bits of 
prime. Besides that, a wide range of research on the PRP has been conducted based on the solvability and robustness [25].

This problem can be easily solved if the error’s weight, 𝑤, is at most 𝑛−𝑘2 . The parameter 𝑛 represents the number of elements 
of the vector, while the parameter 𝑘 represents the polynomial degree. This equation has been upgraded into 𝑤 ≤ 𝑛 −

√
𝑘𝑛 [16]. 

Augot and Finiasz suggested a univariate PRP cryptosystem in 2003, where we call this scheme the AF-Cryptosystem. A univariate 
polynomial is used in the AF-Cryptosystem [23,24]. The AF-Cryptosystem also applied two PRP types: the first PRP is defined in [20], 
and the second PRP is built to guarantee the process of decryption. The second PRP is denoted as the Augot and Finiasz Solvable PRP 
(AF-SPRP), which is described below:

Definition 1. (Augot and Finiasz Solvable PRP) Given n, k, t and (𝑥𝑖, 𝑦𝑖)𝑖=1,⋯,𝑛, output any polynomial p such that 𝑑𝑒𝑔 < 𝑘 and 
𝑝(𝑥𝑖) = 𝑦𝑖 for at least t values of i where 𝑡 = 𝑛 −𝑤.

From Definition 1, the decryption process can occur in the AF-Cryptosystem. From the Cartesian plane, if we obtain 𝑡 points, a 
polynomial is required to be yielded in which this polynomial consists of all the points where 𝑡 is the zero element in a vector. The 
decryption process in the AF-Cryptosystem can be done using Lagrange interpolation.

Nevertheless, the AF-Cryptosystem was managed to be fully cryptanalyzed by Coron [12]. Next, a bivariate PRP cryptosystem 
was proposed in 2013 by Ajeena et al.; this cryptosystem is called the AAK-Cryptosystem [2]. The AAK-Cryptosystem is the modified 
version of the AF-Cryptosystem where they used bivariate polynomial and Vandermonde method. The creators of AAK-Cryptosystem 
mentioned that if the amount of variables increases, then the cryptosystem’s security level can be improved.

Our contribution. In this paper, we analyze the decryption process for both cryptosystems, which is different from our published 
papers in [36,37]. In our published papers, we put forward results that discusses the AAK-Cryptosystem is not indistinguishable 
chosen plaintext attack (IND-CPA) secure and how to retrieve the private key from the AAK-Cryptosystem. While our findings in 
this paper indicate that decryption errors can occur in both cryptosystems if the weight of the big error vector 𝐸 is greater than the 
number of monomials in the secret polynomial 𝑝.

Organization of the article. This paper’s setup is as follows: in Section 2, we put forward the fundamentals of PRP, Lagrange 
interpolation, and Vandermonde method and outline both AF-Cryptosystem and AAK-Cryptosystem. In Section 3, we explain our 
propositions for decryption failure in both cryptosystems and give an example for this analysis. Finally, we discuss our result in 
Section 4 and we conclude our findings in Section 5.

2. Materials and methods

This section explains the fundamental knowledge about PRP, Lagrange interpolation, Vandermonde method, AF-Cryptosystem 
and AAK-Cryptosystem.

2.1. PRP

The PRP is known since the generalized Reed-Solomon list decoding problem has been reduced to it [32]. Next, we describe PRP 
based on [20], which shown down below:

Definition 2. (PRP from Quantum Zoo) Let 𝑝(𝑥) = 𝑎𝑘𝑥𝑘 +⋯ + 𝑎1𝑥 + 𝑎0 be a polynomial over finite field 𝔽𝑞 . One is given access to 
the oracle and query value of 𝑥𝑖 ∈ 𝔽𝑞 where 1 ≤ 𝑖 ≤ 𝑘 + 1 then output coefficients 𝑎𝑘, … , 𝑎0 to determine 𝑝(𝑥).

From Definition 2, this shows that when the oracle input 𝑥 ∈ 𝔽𝑞 , then it will output 𝑝(𝑥). Then, this provides us the coefficients 
𝑎𝑘, … , 𝑎0 [20]. Classically, we need 𝑘 + 1 queries to identify the number of coefficients. Therefore, the query complexity in PRP for 
a univariate polynomial with a degree equal to 𝑘 is 

(𝑘+1
𝑘

)
.

2.2. Computational complexity of PRP

We know that 𝑝(𝑥) has a degree equal to 𝑘, and 𝑝(𝑥) contains 𝑘 + 1 coefficients, equivalent to 𝑞 − 1, hence 𝑘 = 𝑞 − 2. Thus,



(
𝑘+ 1
𝑘

)
=(𝑞 − 1).

It is impractical for us to query input 𝑥 if 𝑞 ≈ 2𝑛 is exponentially large. This shows that solving PRP would take exponential time, 
2

which is (2𝑛).
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2.3. Lagrange interpolation

The Lagrange interpolation method can identify a polynomial based on the observed value at each observed point. Besides that, 
Lagrange interpolation is regularly utilized in cryptography to share secret and coding computing [14]. The Lagrange interpolation 
is where we are provided 𝑛 real values 𝑥1, 𝑥2, 𝑥3… , 𝑥𝑛 and 𝑦1, 𝑦2, 𝑦3… , 𝑦𝑛, then output a polynomial 𝑝 that contains real coefficients 
which satisfies 𝑝(𝑥𝑖) = 𝑦𝑖 where 𝑖 = 1, 2, 3, … , 𝑛 [17]. Polynomial 𝑝 must have a degree less than the real values where degree(𝑝) < 𝑛. 
The Lagrange interpolation formula with 𝑛th order is as follows,

𝑓 (𝑥) =
(𝑥− 𝑥1)(𝑥− 𝑥2)…(𝑥− 𝑥𝑛)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)…(𝑥0 − 𝑥𝑛)
× 𝑦0 +

(𝑥− 𝑥0)(𝑥− 𝑥2)…(𝑥− 𝑥𝑛)
(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)…(𝑥1 − 𝑥𝑛)

× 𝑦1 +…+
(𝑥− 𝑥0)(𝑥− 𝑥1)…(𝑥− 𝑥𝑛−1)

(𝑥𝑛 − 𝑥0)(𝑥𝑛 − 𝑥1)…(𝑥𝑛 − 𝑥𝑛−1)
× 𝑦𝑛.

The AF-Cryptosystem utilized Lagrange interpolation in decryption process.

2.4. Vandermonde method

An interpolation polynomial with two or more dimensions is determined using the Vandermonde method. Given points that have 
two variables where (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), for each point, one must obtain the polynomial values 𝑧1, 𝑧2, … , 𝑧𝑛, correspondingly. 
The two variables polynomial with the degree of 𝑛 − 1 can be obtained by using the following steps,

1. Formulate the formula of a polynomial with the degree 𝑛 − 1 where this polynomial contains two variables.

2. Calculate the polynomial at the given points.

3. Solve the system of linear equations.

The problem can be presented in the form 𝑉 ⋅ 𝑐 =𝑍 where 𝑉 is a Vandermonde matrix with the dimension of 𝑛 × 𝑛, also known 
as coefficients matrix [15,35]. Parameter 𝑍 contains 𝑧 values, while parameter 𝑐 is the coefficient vector. The AAK-Cryptosystem 
applied the Vandermonde method in the decryption process.

2.5. AF-cryptosystem

Augot and Finiasz introduced a univariate PRP cryptosystem which describes down below [5]. Considering that 𝑛 is the number 
of elements in the vector and the AF-cryptosystem applied the following parameters in Table 1.

Table 1

Parameters.

Parameter Remark

𝔽𝑞 A finite field of size 𝑞
𝑛 The number of elements in the vector

𝑘 Its dimension

𝑊 The weight of big error vector, 𝐸 where PRP is hard when, 𝑊 >
𝑛−𝑘
2

[2]

𝑤 The weight of small error vector, 𝑒 that enabling the PRP to decrypt the 
ciphertext when 𝑤 ≤ 𝑛−𝑘

2
[12]

Remark 1. The parameter 𝑤 is the vector’s maximum number of nonzero elements.

Remark 2. The parameter 𝑛 −𝑤 is known as the number of zero elements of the vector.

The proposed AF-Cryptosystem is as follows:

Algorithm 1: Key generation process.

Input: Parameters (𝑥𝑖, 𝑞, 𝑛, 𝑘, 𝑊 , 𝑤)

Output: Public Key, 𝑃𝐾 and private key pair (𝐶, 𝐸)
1: Generate 𝑝(𝑋) of degree 𝑘.

2: Generate big error vector E with the weight W.

3: Compute vector 𝐶 = 𝑒𝑣(𝑝(𝑋)) = 𝑝(𝑥𝑖) where 𝑥𝑖 ∈ 𝔽𝑞 .
4: Computes 𝑃𝐾 = 𝐶 +𝐸.
3

5: Publish PK and (𝐶, 𝐸).
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Algorithm 2: Encryption process.

Input: Message, 𝜇 ∈ 𝔽𝑞
Output: Ciphertext, 𝐶𝑇
1: Generate message polynomial 𝜇(𝑋) with length 𝑘.

2: Calculate 𝜇 = 𝑒𝑣(𝜇(𝑋)) = 𝜇(𝑥𝑖).
3: Generate 𝛼 ∈ 𝔽𝕢 .

4: Generate small error vector 𝑒 with the weight 𝑤.

5: Calculate 𝐶𝑇 = 𝜇 + 𝛼 × 𝑃𝐾 + 𝑒.
6: Publish 𝐶𝑇 .

Algorithm 3: Decryption process.

Input: Ciphertext, 𝐶𝑇
Output: Message polynomial, 𝜇(𝑋)
1: for 𝑖 ← 1 to 𝑛 where 𝐸𝑖 = 0 do

2: 𝐶𝑇 = 𝜇 + 𝛼 ×𝐶 + 𝑒.
3: end

4: Correct 𝐶𝑇 and determine 𝐶𝑇 = �̃� + 𝛼 × �̃� .

5: Computes 𝑞(𝑋) with the degree of 𝑘 by applying Lagrange interpolation.

6: Determine leading coefficient of 𝑞(𝑋).
7: Calculate 𝜇(𝑋) = 𝑞(𝑋) − 𝛼𝑝(𝑋).

2.5.1. Proof of correctness

Proposition 1. The message polynomial 𝜇(𝑥) can be obtained through the decryption algorithm in AF-Cryptosystem.

Proof. Refer to Appendix A. □

2.6. AAK-cryptosystem

The AF-Cryptosystem was altered by Ajeena et al. to create the bivariate PRP cryptosystem that is described below [2]. The 
AAK-Cryptosystem applied the parameters in Table 1. The proposed modified cryptosystem is as follows:

Algorithm 4: Key generation process.

Input: Parameters (𝑥𝑖, 𝑦𝑖, 𝑞, 𝑛, 𝑘, 𝑊 , 𝑤)

Output: Public Key, 𝑃𝐾 and secret key pair (𝐶, 𝐸)
1: Generate 𝑝(𝑋, 𝑌 ) with degree of 𝑘 − 1 to both 𝑋 and 𝑌 .

2: Generate big error vector with a weight of the 𝑊 .

3: Compute vector 𝐶 = 𝑒𝑣(𝑝(𝑋, 𝑌 )) = 𝑝(𝑥𝑖, 𝑦𝑖) where 𝑥𝑖, 𝑦𝑖 ∈ 𝔽𝑞 .
4: Compute 𝑃𝐾 = 𝐶 +𝐸.

5: Publish PK and (𝐶, 𝐸).

Algorithm 5: Encryption process.

Input: Message, 𝜇 ∈ 𝔽𝑞
Output: Ciphertext, 𝐶𝑇
1: Generate message polynomial 𝜇(𝑋, 𝑌 ) with length 𝑘 + 1.

2: Calculate 𝜇 = 𝑒𝑣(𝜇(𝑋, 𝑌 )) = 𝜇(𝑥𝑖, 𝑦𝑖).
3: Generate 𝛼 ∈ 𝔽𝕢 .

4: Generate small error vector 𝑒 with the weight 𝑤.

5: Calculate 𝐶𝑇 = 𝜇 + 𝛼 × 𝑃𝐾 + 𝑒.
6: Publish 𝐶𝑇 .

Algorithm 6: Decryption process.

Input: Ciphertext, 𝐶𝑇
Output: Message polynomial, 𝜇(𝑋, 𝑌 )
1: for 𝑖 ← 1 to 𝑛 where 𝐸𝑖 = 0 do

2: 𝐶𝑇 = 𝜇 + 𝛼 ×𝐶 + 𝑒.
3: end

4: Correct 𝐶𝑇 and determine 𝐶𝑇 = �̃� + 𝛼 × �̃� .

5: Compute 𝑞(𝑋, 𝑌 ) with the degree of 𝑘 − 1 by applying the Vandermonde method.

6: Determine leading coefficient of 𝑞(𝑋, 𝑌 ).
4

7: Calculate 𝜇(𝑋, 𝑌 ) = 𝑞(𝑋, 𝑌 ) − 𝛼𝑝(𝑋, 𝑌 ).
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2.6.1. Proof of correctness

Proposition 2. The proof of the decryption algorithm in AAK-Cryptosystem is correct.

Proof. Refer to Appendix B. □

3. The decryption failure

This section explains how decryption failure can occur in the AF-Cryptosystem and AAK-Cryptosystem. A numerical illustration 
is also provided.

3.1. Decryption failure in AF-cryptosystem

Proposition 3. If the weight of nonzero element in big error 𝐸 is 𝑊 > 𝑘 + 1, then the decryption process in AF-Cryptosystem cannot occur.

Proof. Refer to Appendix C. □

3.1.1. Numerical illustration for Proposition 3

In this section, inline with Proposition 3, we put forward a numerical example where the system owner incorrectly sets the system 
parameters such that 𝑛 −𝑊 < 𝑘 + 1 which would lead to the system owner unable to decrypt the ciphertext.

Example 1. Let 𝑛 = 7, 𝑘 = 2, 𝑤 = 2 and 𝑊 = 5 in 𝔽11. Given 𝑥 = (9, 8, 7, 6, 5, 4, 3). We start with the key generation process by taking 
the private polynomial,

𝑝(𝑥) = 𝑥2 + 2𝑥+ 6

and big error vector E,

𝐸 = (1,2,3,4,5,0,0).

The public key is:

𝑃𝐾 = 𝐶 +𝐸.

Vector 𝐶 is obtained by the evaluation of 𝑝(𝑥) where:

𝑝(9) = 6, 𝑝(8) = 9, 𝑝(7) = 3, 𝑝(6) = 10,

𝑝(5) = 8, 𝑝(4) = 8, 𝑝(3) = 10.

Hence, 𝐶 = (6, 9, 3, 10, 8, 8, 10). Then, compute 𝑃𝐾 as follows,

𝑃𝐾 = 𝐶 +𝐸

= (6,9,3,10,8,8,10) + (1,2,3,4,5,0,0)

= (7,0,6,3,2,8,10).

Next, in encryption process, we evaluate 𝜇(𝑥) = 𝑥 + 5 codeword 𝜇 which shown as follows,

𝜇(9) = 3, 𝜇(8) = 2, 𝜇(7) = 1, 𝜇(6) = 0,

𝜇(5) = 10, 𝜇(4) = 9, 𝜇(3) = 8.

Thus, we have

𝜇 = (3,2,1,0,10,9,8).

Next, we generate a constant 𝛼 = 2 ∈ 𝔽11 and a small error vector, 𝑒 where

𝑒 = (6,7,0,0,0,0,0).

Observe that the weight for the small error vector is 𝑤 = 2. Then, the CT is:

𝐶𝑇 = 𝜇 + 𝛼 × 𝑃𝐾 + 𝑒
5

= (3,2,1,0,10,9,8) + 2 × (7,0,6,3,2,8,10) + (6,7,0,0,0,0,0)
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= (3,2,1,0,10,9,8) + (3,0,1,6,4,5,9) + (6,7,0,0,0,0,0)

= (1,9,2,6,3,3,6).

In the decryption process, based on the AF-Cryptosystem, we need to consider the position of zero elements in 𝐸 where 𝑛 −𝑊 = 2. 
From 𝐸, we have

𝐸6 =𝐸7 = 0.

Therefore, we obtain two shadows 𝐶𝑇 = 𝐶𝑇6 = 𝐶𝑇7 = (3, 6). Next, Lagrange interpolation is applied to find 𝑞(𝑥). The degree of 
polynomial 𝑞(𝑥) must be 𝑘 = 2. From 𝐶𝑇 , we have

𝑞(4) = 3 and 𝑞(3) = 6

Hence, the unique polynomial 𝑞(𝑥) is as follows,

𝑞(𝑥) =
(𝑥− 𝑥7)
(𝑥6 − 𝑥7)

(𝐶𝑇6) +
(𝑥− 𝑥6)
(𝑥7 − 𝑥6)

(𝐶𝑇7)

= (𝑥− 3)
(4 − 3)

(3) + (𝑥− 4)
(3 − 4)

(6)

= 3𝑥− 9 − 6𝑥+ 24 mod 11

= 8𝑥+ 4.

As we can see here, 𝑞(𝑥) has a degree of 1, which is smaller than 𝑝(𝑥). Therefore, we cannot identify 𝜇(𝑥) due to the small size of 
𝑞(𝑥). Hence, the decryption process is a failure.

3.2. Decryption failure in AAK-cryptosystem

This section presents the scenario where the decryption process in AAK-Cryptosystem is a failure. A larger size of 𝑊 , will make 
it difficult to determine the message polynomial, 𝜇(𝑥, 𝑦).

Proposition 4. If the weight of nonzero element in big error 𝐸 is larger than number of monomial of secret polynomial 𝑝(𝑥, 𝑦), then the 
decryption process in AAK-Cryptosystem cannot occur.

Proof. Refer to Appendix D. □

3.2.1. Numerical illustration of Proposition 4

In this section, inline with Proposition 4, we put forward a numerical example where the system owner incorrectly sets the system 
parameters such that 𝑛 −𝑊 < 𝑘2 which would lead to the system owner unable to decrypt the ciphertext.

Example 2. Let 𝑛 = 10, 𝑘 = 2, 𝑤 = 1 and 𝑊 = 7 in 𝔽11. Given 𝑥 = (4, 3, 2, 1, 2, 1, 2, 3, 4, 3) and 𝑦 = (1, 1, 2, 2, 3, 3, 4, 4, 3, 0). We start 
with the key generation process by taking the secret polynomial,

𝑝(𝑥, 𝑦) = 𝑥𝑦+ 2𝑥+ 𝑦+ 1

and big error vector E,

𝐸 = (1,2,3,4,1,2,3,0,0,0).

The public key is:

𝑃𝐾 = 𝐶 +𝐸.

Vector 𝐶 is obtained where the 𝑝(𝑥, 𝑦) is evaluated down below:

𝑝(4,1) = 3, 𝑝(3,1) = 0, 𝑝(2,2) = 0, 𝑝(1,2) = 7, 𝑝(2,3) = 3,

𝑝(1,3) = 9, 𝑝(2,4) = 6, 𝑝(3,4) = 1, 𝑝(4,3) = 2, 𝑝(3,0) = 7.

Thus, 𝐶 = (3, 0, 0, 7, 3, 9, 6, 1, 2, 7). Then, the 𝑃𝐾 is as follows,

𝑃𝐾 = 𝐶 +𝐸

= (3,0,0,7,3,9,6,1,2,7) + (1,2,3,4,1,2,3,0,0,0)
6

= (4,2,3,0,4,0,9,1,2,7).
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Next, in encryption process, we evaluate 𝜇(𝑥, 𝑦) = 2𝑥 + 4𝑦 + 5 codeword 𝜇 which shown as follows,

𝜇(4,1) = 4, 𝜇(3,1) = 2, 𝜇(2,2) = 4, 𝜇(1,2) = 2, 𝜇(2,3) = 8,

𝜇(1,3) = 6, 𝜇(2,4) = 1, 𝜇(3,4) = 3, 𝜇(4,3) = 1, 𝜇(3,0) = 9.

Hence, we obtain

𝜇 = (4,2,4,2,8,6,1,3,1,9).

Next, we generate a secret value 𝛼 = 3 ∈ 𝔽11 and a small error vector, 𝑒 such that

𝑒 = (2,0,0,0,0,0,0,0,0,0).

Observe that the weight for the small error vector is 𝑤 = 1. Then, CT is:

𝐶𝑇 = 𝜇 + 𝛼 × 𝑃𝐾 + 𝑒

= (4,2,4,2,8,6,1,3,1,9) + 3 × (4,2,3,0,4,0,9,1,2,7) + (2,0,0,0,0,0,0,0,0,0)

= (4,2,4,2,8,6,1,3,1,9) + (1,6,9,0,1,0,5,3,6,10) + (2,0,0,0,0,0,0,0,0,0)

= (7,8,2,2,9,6,6,6,7,8).

In the decryption process, based on the AAK-cryptosystem, we need to consider the position of zero elements in 𝐸 where 𝑛 −𝑊 =
3. From 𝐸 we have

𝐸8 =𝐸9 =𝐸10 = 0.

Thus, we contain three shadows 𝐶𝑇 = 𝐶𝑇8 = 𝐶𝑇9 = 𝐶𝑇10 = (6, 7, 8). The next step is to find a unique polynomial 𝑞(𝑥, 𝑦) using the 
Vandermonde method. Polynomial 𝑞(𝑥, 𝑦) must be with the degree of 𝑘 − 1 = 1 for 𝑋 and 𝑌 . Let 𝑞(𝑋, 𝑌 ) = 𝑞1𝑥𝑦 + 𝑞2𝑥 + 𝑞3𝑦 + 𝑞4, we 
have,

𝑞(3,4) = 𝑞1(1) + 𝑞2(3) + 𝑞3(4) + 𝑞4 = 6

𝑞(4,3) = 𝑞1(1) + 𝑞2(4) + 𝑞3(3) + 𝑞4 = 7

𝑞(3,0) = 𝑞1(0) + 𝑞2(3) + 𝑞3(0) + 𝑞4 = 8.

We need to determine the coefficients for 𝑞(𝑋, 𝑌 ) by using Gaussian elimination,

⎡⎢⎢⎣
1 3 4 1
1 4 3 1
0 3 0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
𝑞1
𝑞2
𝑞3
𝑞4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣
6
7
8

⎤⎥⎥⎦ .
Then, the equation of the system is

⎡⎢⎢⎣
1 0 0 2
0 1 0 2
0 0 1 2

|||||||
3
1
0

⎤⎥⎥⎦ .
As we can see here, the system shows that 𝑞4 is a free variable and is not a unique solution. Hence, we cannot identify 𝑞(𝑥, 𝑦). 

From 𝐶𝑇 = (6, 7, 8), we have insufficient information to identify unique polynomial 𝑞(𝑥, 𝑦). Hence, the decryption process cannot be 
done.

4. Discussion

Based on the results, we need to ensure the weight of big error vector 𝑊 , is less than the number of monomials of the secret 
polynomial 𝑝, for both AF-Cryptosystem and AAK-cryptosystem. The users of these cryptosystems need to take into consideration 
information regarding the boundary value for 𝑊 , to prevent decryption failure from occurring.

5. Conclusion

This paper presents that decryption failure can occur in AF-Cryptosystem and AAK-Cryptosystem. When 𝑊 is greater than 
the number of monomials of secret polynomial 𝑝, then we cannot determine unique polynomial 𝑞. Hence, we cannot decrypt the 
ciphertext, 𝐶𝑇 , to identify the message polynomial, 𝜇. Thus, the recommended weight for big error vector, 𝐸 to be used in AF-
7

Cryptosystem and AAK-Cryptosystem are 𝑛−𝑘2 < 𝑊 ≤ 𝑘 + 1 and 𝑛−𝑘2 < 𝑊 ≤ 𝑘2 respectively so that decryption process can occur. 
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For the future works, we would suggest an investigation into whether the size of the message polynomial that is used in both 
cryptosystems could also contribute towards decryption failure.
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Appendix A. The proof of Proposition 1

Proof. Based on the ciphertext 𝐶𝑇 , the message polynomial 𝜇(𝑥) can be recovered where:

𝐶𝑇 = 𝜇 + 𝛼 × 𝑃𝐾 + 𝑒

= 𝜇 + 𝛼 × (𝐶 +𝐸) + 𝑒.
(A.1)

Consider 𝐸𝑖 = 0, which is the shortened code of Reed-Solomon code of dimension k, 𝑅𝑆𝑘. Given that 𝜇, 𝐶 , 𝑒 and 𝐶𝑇 are the 
shortened code for 𝜇, 𝐶, 𝑒 and CT respectively then E is disappeared. Now, (A.1) turns into

𝐶𝑇 = 𝜇 + 𝛼 ×𝐶 + 𝑒. (A.2)

From (A.2), 𝜇+𝛼×𝐶 ∈𝑅𝑆𝑘. Given that the weight of e is smaller than error correction capacity 𝑅𝑆𝑘 then correct 𝐶𝑇 and determine 
�̃� + 𝛼 × �̃� . By applying Lagrange interpolation, calculate 𝑞(𝑥) which has the degree equals to k such that

𝑒𝑣(𝑞(𝑥𝑖)) = 𝜇𝑖 + 𝛼 × �̃�𝑖 (A.3)

for 𝑖 ∈ {1, 2, … , 𝑛}. Since 𝑒𝑣(𝑞(𝑥𝑖)) is the evaluation of 𝑞(𝑥𝑖), vector �̃� = 𝑒𝑣(𝑝(𝑥𝑖)) is the evaluation of 𝑝(𝑥𝑖) and vector �̃� = 𝑒𝑣(𝜇(𝑥𝑖))
is the evaluation of 𝜇(𝑥𝑖) then

𝑞(𝑥𝑖) = 𝜇(𝑥𝑖) + 𝛼𝑝(𝑥𝑖)

𝜇(𝑥𝑖) = 𝑞(𝑥𝑖) − 𝛼𝑝(𝑥𝑖).
(A.4)

Based on (A.4), the 𝜇(𝑥) has been recovered. Thus, the proof is terminated. □

Appendix B. The proof of Proposition 2

Proof. Based on the ciphertext 𝐶𝑇 , the message polynomial 𝜇(𝑥, 𝑦) can be recovered where:

𝐶𝑇 = 𝜇 + 𝛼 × 𝑃𝐾 + 𝑒

= 𝜇 + 𝛼 × (𝐶 +𝐸) + 𝑒.
(B.1)

The position 𝐸𝑖 = 0 is considered the shortened code of Reed-Solomon of dimension 𝑘, 𝑅𝑆𝑘. Given that 𝜇, 𝐶 , 𝑒 and 𝐶𝑇 are the 
8

shortened code for 𝜇, 𝐶, 𝑒 and CT respectively then 𝐸 is disappeared. Now, (B.1) turns
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𝐶𝑇 = 𝜇 + 𝛼 ×𝐶 + 𝑒. (B.2)

From (B.2), 𝜇+ 𝛼 ×𝐶 ∈𝑅𝑆𝑘. Given that e is with the weight less than error correction capacity 𝑅𝑆𝑘 then correct 𝐶𝑇 and determine 
�̃� + 𝛼 × �̃� . By applying Vandermonde method, compute 𝑞(𝑥, 𝑦) which has the degree equals to 𝑘 − 1 where

𝑒𝑣(𝑞(𝑥𝑖, 𝑦𝑖)) = 𝜇𝑖 + 𝛼 × �̃�𝑖 (B.3)

for 𝑖 ∈ {1, 2, … , 𝑛}. Since 𝑒𝑣(𝑞(𝑥𝑖, 𝑦𝑖)) is the evaluation of 𝑞(𝑥𝑖, 𝑦𝑖), vector �̃� = 𝑒𝑣(𝑝(𝑥𝑖, 𝑦𝑖)) is the evaluation of 𝑝(𝑥𝑖, 𝑦𝑖) and vector 
�̃� = 𝑒𝑣(𝜇(𝑥𝑖, 𝑦𝑖)) is the evaluation of 𝜇(𝑥𝑖, 𝑦𝑖), hence

𝑞(𝑥𝑖, 𝑦𝑖) = 𝜇(𝑥𝑖, 𝑦𝑖) + 𝛼𝑝(𝑥𝑖, 𝑦𝑖)

𝜇(𝑥𝑖, 𝑦𝑖) = 𝑞(𝑥𝑖, 𝑦𝑖) − 𝛼𝑝(𝑥𝑖, 𝑦𝑖).
(B.4)

Based on (B.4), the 𝜇(𝑥, 𝑦) can be recovered. □

Appendix C. The proof of Proposition 3

Proof. Based on Table 1, Alice generates 𝑝(𝑥) with a degree equal to 𝑘, and during the key generation process, E with weight W is 
generated by Alice. Given that 𝑝(𝑥) be as follows,

𝑝(𝑥𝑖) = 𝑥𝑘 +…+ 𝑎2𝑥2 + 𝑎1𝑥1 + 𝑎0.

Thus, 𝑝(𝑥) has 𝑘 +1 coefficients. Suppose that Alice chooses the weight 𝐸 as 𝑊 > 𝑘 +1. The position of zero and nonzero elements 
in 𝐸 can vary. The ciphertext, 𝐶𝑇 contains 𝑛 vector elements given by,

𝐶𝑇𝑖 = 𝜇𝑖 + 𝛼 ⋅ 𝑃𝐾𝑖 + 𝑒𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛.

In the decryption process, the position of zero elements is important, and there are 𝑛 −𝑊 zero elements. The decryption process 
will acquire 𝐶𝑇 where 𝐶𝑇 contains 𝑛 −𝑊 elements. Next, the unique polynomial 𝑞(𝑥) with degree 𝑘 can be determined by applying 
Lagrange interpolation. Polynomial 𝑞(𝑥) must have 𝑘 + 1 coefficients which are the same as the secret polynomial 𝑝(𝑥).

If Alice takes 𝑊 > 𝑘 + 1, it will result in the polynomial 𝑞(𝑥), which contains less number of coefficients in 𝐶𝑇 . This is because 
𝑛 −𝑊 < 𝑘 + 1. From here, by using Lagrange interpolation, the 𝑞(𝑥) that will be acquired contains degree 𝑛 −𝑊 − 1, which is less 
than 𝑘. One must compute 𝑞(𝑥) − 𝛼 ⋅ 𝑝(𝑥) in order to recover 𝜇(𝑥). Since 𝑞(𝑥) is smaller than 𝑝(𝑥), we will recover 𝜇(𝑥) with a degree 
less than 𝑝(𝑥). Hence, the decryption process is a failure due to the weight of the big error vector, 𝐸. □

Appendix D. The proof of Proposition 4

Proof. Based on the parameters in Table 1, we start with the key generation process, where Alice has a private polynomial 𝑝(𝑥, 𝑦)
of degree 𝑘 − 1 for both 𝑥 and 𝑦 and a big error vector E its weight is W. Given that 𝑝(𝑥, 𝑦) is as follows,

𝑝(𝑥𝑖, 𝑦𝑖) = 𝑥𝑘−1𝑦𝑘−1 +…+ 𝑎1,1𝑥1𝑦1 + 𝑎1,0𝑥1 + 𝑎0,1𝑦1 + 𝑎0,0.

Then, 𝑝(𝑥, 𝑦) has 𝑘2 coefficients. Suppose that Alice chooses the weight 𝐸 as 𝑊 > 𝑘2. The position of zero and nonzero elements 
in 𝐸 can vary. The ciphertext, 𝐶𝑇 contains 𝑛 vector elements given by,

𝐶𝑇𝑖 = 𝜇𝑖 + 𝛼 ⋅ 𝑃𝐾𝑖 + 𝑒𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑛

In the decryption process, the position of zero elements is essential, and there are 𝑛 −𝑊 zero elements. The decryption process 
will obtain 𝐶𝑇 , with 𝑛 −𝑊 elements in 𝐶𝑇 . Next, by using the Vandermonde method, we can determine 𝑞(𝑥, 𝑦) with degree 𝑘 − 1
where 𝑞(𝑥, 𝑦) contains 𝑘2 coefficients which are the same as the secret polynomial 𝑝(𝑥, 𝑦).

If Alice selects 𝑊 to be more than 𝑘2, it will result in 𝑞(𝑥, 𝑦) containing less number of coefficients in 𝐶𝑇 . This is because 
𝑛 −𝑊 < 𝑘2. Using the Vandermonde method, the solution we will obtain is not unique. This would lead to a situation where we 
have to calculate a system of equations where the number of equations is less than the number of variables. Therefore, matrix 𝑉 is 
not a square matrix. Upon solving such systems, we would arrive at the following situations:

i) infinitely many solutions

ii) no solution

The 𝜇(𝑥, 𝑦) can be recovered by calculating 𝑞(𝑥, 𝑦) − 𝛼 ⋅ 𝑝(𝑥, 𝑦). Since 𝑞(𝑥, 𝑦) can be i) or ii), then we cannot calculate 𝑞(𝑥, 𝑦) − 𝛼 ⋅
9

𝑝(𝑥, 𝑦). Thus, the decryption process is a failure due to the weight of the big error vector, 𝐸. □
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