APPLICATION OF SEWAGE SLUDGE ON AN ACID TROPICAL SOIL: CROP RESPONSE AND HEAVY METALS UPTAKE BY MAIZE AND THEIR ACCUMULATION IN THE SOIL

ROSAZLIN BINTI ABDULLAH

FP 2002 28
APPLICATION OF SEWAGE SLUDGE ON AN ACID TROPICAL SOIL: CROP RESPONSE AND HEAVY METALS UPTAKE BY MAIZE AND THEIR ACCUMULATION IN THE SOIL

ROSALZLIN BINTI ABDULLAH

MASTER OF AGRICULTURAL SCIENCE
UNIVERSITI PUTRA MALAYSIA

2002
APPLICATION OF SEWAGE SLUDGE ON AN ACID TROPICAL SOIL: CROP RESPONSE AND HEAVY METALS UPTAKE BY MAIZE AND THEIR ACCUMULATION IN THE SOIL

By

ROSALIN BINTI ABDULLAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Agricultural Science

July 2002
DEDICATION

This thesis is dedicated to:

My beloved parents

Abdullah Md Noh

and

Junidah Hamid

Brother and sisters,

Rozaidy and Norhayati
Rosazura
Rosazlinda
Rosazleza
Rosazliyana

Who always supported and encouraged me to do the best
APPLICATION OF SEWAGE SLUDGE ON AN ACID TROPICAL SOIL: CROP RESPONSE AND HEAVY METALS UPTAKE BY MAIZE AND THEIR ACCUMULATION IN THE SOIL

By

ROSAZLIN BINTI ABDULLAH

July 2002

Chairman : Dr. Che Fauziah Binti Ishak
Faculty : Agriculture

At present, Malaysia produces about 5 million m³ sludge per year (wet weight basis). Land application of sewage sludge is considered the most economical and also provides an opportunity to recycle beneficial plant nutrients and organic matter to soil for crop production. However, sewage sludge also contain varying amounts of heavy metals which may pose a hazard of metal toxicity to crops and the consumer of these crops. Thus the uptake of heavy metals by crops and the fate of these heavy metals in soils need to be monitored.

The first study, which involved ten sewage sludges, were collected from different wastewater treatment plants and classified into domestic sludge (type A) and light-industry sludge mixed with domestic sludge (type B). The chemical properties of sewage sludge with emphasis on heavy metal content were determined. In general, type
B sludge has higher heavy metal content than type A sludge. The concentration of heavy metals in these sludges did not exceed the maximum permitted concentrations (MPC) of the European Community Standard (ECS), for land application, except for Zn (7110.10 mg kg\(^{-1}\)). Also, the Cu concentration is rather high in type B sludge. Therefore, type B sludge can be characterized as quite hazardous and unsuitable for agricultural use.

The second study was a field experiment conducted at the share farm Universiti Putra Malaysia from 1999 till 2001. The study was to investigate the crop response and uptake of heavy metals from sewage sludge by maize, and, to correlate heavy metals in the soil with content in the maize. The treatments carried out were inorganic N (ammonium sulfate) at 140 kg N ha\(^{-1}\), control (no N application) and sludge application rates at 140, 280, 420 and 560 kg N ha\(^{-1}\) equivalent with five replications. Application of sewage sludge and inorganic fertilizers produced significantly higher yield than the control. The rate of 420 kg ha\(^{-1}\) sewage sludge gave the highest dry matter yield for the 1\(^{st}\) cycle and 720 kg N ha\(^{-1}\) sewage sludge for the 3\(^{rd}\) cycle. It can be concluded that sewage sludge was able to perform just as good as inorganic fertilizer. Sewage sludge application seemed to have little effect in increasing heavy metals concentrations in the soil and grain after the third maize cycle. The concentration of heavy metals in the soil were below the MPC of the ECS, which ranged: Zn (12.44-35.44 mg kg\(^{-1}\)), Cu (5.00-9.80 mg kg\(^{-1}\)), Cd (0.60-2.44 mg kg\(^{-1}\)), Pb (7.16-24.04 mg kg\(^{-1}\)), Ni (7.44-11.36 mg kg\(^{-1}\)), Mn (29.76-41.32 mg kg\(^{-1}\)), Cr (19.72-44.00 mg kg\(^{-1}\)) and Fe (1.47-2.23 %), respectively. The concentrations of heavy metals in maize grain were below the MPC values of Malaysian Food Act 1983 and Food Regulation 1985 (fresh weight basis) which ranged: Zn (4.95-19.18 mg
kg\(^{-1}\), Cu (0.56-2.60 mg kg\(^{-1}\)), Cd (0.037-0.052 mg kg\(^{-1}\)), Pb (0.034-0.052 mg kg\(^{-1}\)), Ni (0.66-1.22 mg kg\(^{-1}\)), Mn (1.56-8.53 mg kg\(^{-1}\)), Cr (0.12-0.44 mg kg\(^{-1}\)) and Fe (8.16-24.93 mg kg\(^{-1}\)), respectively. There were significant correlations between total heavy metals in soil and content of heavy metals in leaves and stems.

The third study is to determine the forms of Cd, Cu, Ni, Pb and Zn in the sewage sludge, and in the soils applied with sewage sludge, after the 1\(^{st}\) and 3\(^{rd}\) maize cycle. The correlations between different forms of heavy metals in the soil and content in maize grain were also investigated. Fractionation of heavy metals in sewage sludge showed that the dominant form of all heavy metals were residual form except Cu. Leaving the residual fraction out, Cd and Pb were dominant in exchangeable form, Ni in carbonate form and Zn in Fe-Mn oxide form. The organic form is dominant for Cu in sludge treated soil. Cd and Pb were predominant in the exchangeable form. Ni was predominant in the carbonate form and Zn was predominant in the Fe-Mn oxide form. In general, the percentage of water soluble content was less than 5%. Significant correlations were only obtained between Cd content in maize grain and the organic forms in soil, Ni content in grain with total metal in the soil and between Cu content in maize grain and the carbonate, Fe-Mn oxide and organic forms in soils.

For conclusion, domestic sewage sludge produced in Malaysia can be safely as fertilizer applied on agricultural land, in three continuous applications, for crop production. However, the Cu and Zn concentrations in grain and soil need to be monitored.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan penganugerahan ijazah Master Sains Pertanian

PENGUNGAN ENAP CEMAR KUMBANIH PADA TANAH ASID TROPIKA: HASIL PERTUMBUHAN DAN PENGAMBILAN LOGAM BERAT OLEH JAGUNG DAN PENGUMPULANNYA DI DALAM TANAH

Oleh

ROSALIN BINTI ABDULLAH

Julai 2002

Pengerusi : Dr. Che Fauziah Binti Ishak
Fakulti : Pertanian

Setiap tahun Malaysia menghasilkan lebih daripada 5 juta tan enap cemar kumbahan (berdasarkan berat basah). Penggunaan enap cemar kumbahan tersebut pada tanah dapat mengurangkan kos dan ia juga mengandungi nutrien dan bahan organik untuk tanaman. Walau bagaimanapun, enap cemar kumbahan juga mengandungi logam berat yang menyebabkan ketoksikan kepada tanaman dan kepada pengguna tanaman. Jadi, pemanisauan pengambilan logam berat oleh tanaman dan tindakbalas logam berat dalam tanah perlu dilakukan.

Kajian pertama melibatkan sepuluh jenis enap cemar kumbahan yang diambil daripada pelbagai loji rawatan dan dibahagikan kepada enap cemar domestik (jenis A) dan enap cemar industri ringan bercampur dengan enap cemar domestik (jenis B). Komposisi kimia enap cemar kumbahan dengan penekanan kepada kandungan logam
berat dikenalpasti. Pada umumnya, enap cemar kumbahan jenis B adalah lebih tinggi berbanding kandungan logam berat enap cemar jenis A. Kepekatan logam berat di dalam enap cemar kumbahan tidak melebihi tahap yang dibenarkan (MPC) oleh garis panduan Kesatuan Eropah (ECS) untuk penggunaannya ke atas tanah kecuali Zn (7110 mg kg\(^{-1}\)). Juga, kepekatan Cu yang agak tinggi di dalam enap cemar kumbahan jenis B. Oleh itu, enap cemar jenis boleh diklasifikasi agak merbahaya dan tidak sesuai untuk digunakan pada tanah pertanian.

Kajian kedua ialah kajian di ladang yang telah dijalankan di Ladang Kongsi Universiti Putra Malaysia dari tahun 1999 hingga tahun 2001. Kajian ini adalah untuk mengenalpasti kesan pertumbuhan oleh tanaman dan pengambilan logam berat daripada enap cemar kumbahan oleh jagung, dan, korelasi antara logam berat di dalam tanah dengan kandungannya di dalam jagung. Rawatan yang digunakan ialah baja tak organik \(N\) (ammonium sulfat) pada kadar 140 kg N ha\(^{-1}\), kawalan (tiada penggunaan N), dan penggunaan enap cemar kumbahan pada kadar setara 140, 280, 420 dan 560 kg N ha\(^{-1}\) dengan 5 replikasi. Penggunaan enap cemar kumbahan dan baja tak organik menunjukkan hasil yang tinggi berbanding kawalan. Kadar enap cemar 420 kg N ha\(^{-1}\) memberikan hasil yang tertinggi pada tanaman pertama dan 720 kg N ha\(^{-1}\) enap cemar pada tanaman ketiga. Ini boleh disimpulkan bahawa enap cemar kumbahan mampu membekal N seperti baja tak organik. Penggunaan enap cemar kumbahan ke atas tanaman memberi kesan ke atas tanah dan bijirin selepas tiga kali penanaman. Kepekatan logam berat dalam tanah masih di bawah tahap yang dibenarkan (MPC) oleh ECS iaitu: Zn (12.44-35.44 mg kg\(^{-1}\)), Cu (5.00-9.80 mg kg\(^{-1}\)), Cd (0.60-2.44 mg kg\(^{-1}\)), Pb (7.16-24.04 mg kg\(^{-1}\)), Ni (7.44-11.36 mg kg\(^{-1}\)), Mn
(29.76-41.32 mg kg⁻¹), Cr (19.72-44.00 mg kg⁻¹) dan Fe (1.47-2.23 %). Kepekatan logam berat di dalam biji jagung masih di bawah tahap yang dibenarkan (MPC) menurut Akta Makanan Malaysia 1983 dan Peraturan Makanan 1985 (berdasarkan berat basah) iaitu : Zn (4.95-19.18 mg kg⁻¹), Cu (0.56-2.60 mg kg⁻¹), Cd (0.037-0.052 mg kg⁻¹), Pb (0.034-0.052 mg kg⁻¹), Ni (0.66-1.22 mg kg⁻¹), Mn (1.56-8.53 mg kg⁻¹), Cr (0.12-0.44 mg kg⁻¹) dan Fe (8.16-24.93 mg kg⁻¹). Terdapat perkaitan yang signifikan di antara logam berat di dalam tanah dan kandungan logam berat di dalam daun dan batang.

Kajian ketiga ialah untuk mengenalpasti bentuk Cd, Cu, Ni, Pb dan Zn di dalam enap cemar kumbahan dan juga di dalam tanah yang dirawat oleh enap cemar kumbahan selepas tanaman pertama dan ketiga. Korelasi di antara bentuk logam berat yang berbeza dengan kandungannya di dalam biji jagung juga dikaji. Kajian pemeringkatan di dalam enap cemar kumbahan menunjukkan semua logam berat yang dikaji adalah dominan di dalam bentuk sisa baki kecuali Cu. Jika bentuk sisa baki tidak di ambil kira, Cd dan Pb adalah dominan dalam bentuk tukarganti, Ni dominan dalam bentuk karbonat dan Zn dalam bentuk Fe-Mn oksida. Cu adalah dominan dalam bentuk organik bagi tanah yang di rawat dengan enap cemar kumbahan, Cd dan Pb adalah dominan dalam bentuk tukarganti, Ni dominan dalam bentuk karbonat, dan Zn dalam bentuk Fe-Mn oksida. Pada umumnya, didapati peratus bentuk larut air yang diekstrak dengan air suling adalah kurang daripada 5%. Terdapat hanya perkaitan positif di antara kandungan Cd di dalam biji jagung dengan bentuk organik di dalam tanah, kandungan Ni di dalam biji jagung dengan bentuk
jumlah di dalam tanah dan di antara kandungan Cu di dalam biji jagung dengan bentuk karbonat, bentuk Fe-Mn oksida dan bentuk organik di dalam tanah.

Kesimpulannya, enap cemar kumbahan domestik yang dihasilkan di Malaysia adalah selamat apabila digunakan sebagai baja untuk tanah pertanian setelah tiga penanaman yang berterusan. Walaubagaimanapun, kepekatan Zn dan Cu dalam bijirin dan tanah hendaklah sentiasa dipantau.
ACKNOWLEDGEMENTS

Alhamdulillah, first of all I would like to express my utmost thanks and gratitude to Almighty Allah SWT Who has given me the will and strength to complete this project and salawat and salam to His messenger, Prophet Muhammad SAW.

I would also like to express my most sincere appreciation and deepest gratitude to Dr. Che Fauziah Ishak, the chairman of my Supervisory Committee, for her kind assistance, advice and guidance during the course of this study and in the preparation of this thesis.

I am also grateful to other members of the Supervisory Committee, Associate Professor Dr. Rosenani Abu Bakar and Associate Professor Dr. Siti Zauyah Darus, for their supervision, comments and direct contribution to this study.

I am also grateful to the laboratory staffs of the Department of Land Management, Faculty of Agriculture, UPM, especially Puan Norhashimah, Puan Rozita, Cik Norazlina Shaari, En. Rahim, En. Jamil, En. Alias, Mr. Mutuviren, Puan Faridah, Hajah Faridah, Hajah Umi Kalthum, Puan Sarimah, Puan Rusnah, En. Ariffin, Puan Fauziah, and En. Ramli. To my friends, Cik Sharol Nasidah, En. Tai, En. Sabri, Cik Susilawati and Cik Wan Asrina, my sincere thanks for their help and co-operation during the course of my study.
I wish to express my heartfelt thanks to my friends, Cik Aniza Meor Sleman for her patience, support and understanding. As for Cik Noor Hazlyna Din, heartiest thanks for her encouragements and support.

Finally, I would also like to acknowledge the financial support provided by Indah Water Konsortium, which made my study possible.
I certify that an Examination Committee met on 22nd July 2002 to conduct the final examination of Rosazlin Binti Abdullah on her Master of Agricultural Science thesis entitled “Application of Sewage Sludge on an Acid Tropical Soil: Crop Response and Heavy Metals Uptake by Maize and Their Accumulation in the Soil” in accordance with Universiti Putra Malaysia (Higher Degree) Act 1980 and Universiti Putra Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

HALIMI BIN MOHD SAUD, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

CHE FAUZIAH BINTI ISHAK, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ROSENANI BINTI ABU BAKAR, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

SITI ZAUYAH BINTI DARUS, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Agricultural Science. The members of the Supervisory Committee are as follow:

CHE FAUZIAH BINTI ISHAK, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Chairperson)

ROSENANI BINTI ABU BAKAR, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

SITI ZAUYAH BINTI DARUS, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean,
School of Graduate Studies
Universiti Putra Malaysia

Date:
I hereby declare the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ROSALIND BINTI ABDULLAH

Date: 19/09/02
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

1

II LITERATURE REVIEW

6

2.1 Heavy Metals

6.1.1 Factors Affecting the Bioavailability of Heavy Metal for Plant Uptake

6.1.1.1 Soil pH

7

6.1.1.2 Organic Matter

7

6.1.1.3 Cation Exchange Capacity (CEC)

8

6.1.1.4 Plant Factors

9

6.1.1.5 Fertilizer Application

10

6.1.1.6 Environmental Factors

11

2.1.2 Heavy Metals in Sludge

11

2.1.2.1 Loading Limits of Heavy Metals

12

2.1.2.2 Potentially Toxic Elements

16

2.2 Sewage Sludge

19

2.2.1 Sewage Sludge Properties

22

2.2.1.1 Physical Properties

22

2.2.1.2 Chemical Properties

22

2.2.1.3 Biological Properties

23

2.2.2 Land Application of Sewage Sludge

24

2.2.3 Benefits of Sewage Sludge Application on Land

25

2.2.3.1 Sewage Sludge as N Fertilizers

28

2.2.3.2 Nitrogen Mineralization of Sewage Sludge

29

2.2.3.3 Factors Affecting N Mineralization of Sludge

30

2.2.4 Crop Response to Sewage Sludge Application

33

2.2.4.1 Effect of Sludge Properties on Accumulation of Heavy Metals by Crops

35
2.2.4.2 Soil Properties Which Influence the Accumulation of Heavy Metals by Crops

2.3 Heavy Metals Fractionation

2.3.1 Analytical Considerations

III GENERAL MATERIALS AND METHODS

3.1 Preparations and Analyses of Sewage Sludge

3.1.1 Determination of Moisture content (based on wet weight) and Total Dry Solid

3.1.2 Determination pH of Sewage Sludge

3.1.3 Determination of Volatile Solid and Organic Carbon of Sewage Sludge (Loss on Ignition Method)

3.1.4 Determination of Total Nitrogen (Kjedahl Method)

3.1.5 Determination of Total Heavy Metals in Sewage Sludge

3.2 Preparations and Analyses of Soil Samples

3.2.1 Determination of Soil pH

3.2.2 Determination of Electrical Conductivity (EC)

3.2.3 Determination of Organic Carbon (Walkley and Black)

3.2.4 Determination of Available Heavy Metals

3.2.5 Determination of Available Phosphorous

3.2.6 Determination of Cation Exchange Capacity (CEC)

3.2.7 Determination of Total Heavy Metals in Soil

3.2.8 Determination of Particle Size Distribution (texture)

3.3 Preparations and Analyses of Plant Samples

3.3.1 Determination of Total Heavy Metals (Dry Ashing Method)

3.3.2 Determination Total Nitrogen (Kjedahl Method)

IV STUDY I: CHEMICAL CHARACTERIZATION OF SEWAGE SLUDGE FROM SEVERAL WASTEWATER TREATMENT PLANTS

4.1 Introduction

4.2 Materials and Methods

4.2.1 Sludge Sampling

4.2.2 Physical and Chemical Analyses of Sewage Sludge

4.2.3 Statistical Analyses

4.3 Results and Discussion

4.3.1 Physical Properties of Sewage Sludge

4.3.2 Chemical Properties Sewage Sludge

4.3.2.1 Major/Macro Elements

4.3.2.2 Heavy Metals

4.4 Conclusion
<table>
<thead>
<tr>
<th>Study</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>STUDY 2: EVALUATION OF SEWAGE SLUDGE AS A SOURCE OF N FERTILIZERS IN THE MAIZE PRODUCTION</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Materials and Methods</td>
<td>73</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Site, Soil and Climate</td>
<td>73</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Experimental Treatments and Design</td>
<td>74</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Application of Sewage Sludge</td>
<td>78</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Sowing</td>
<td>78</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Crop Maintenance</td>
<td>80</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Harvesting</td>
<td>81</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Plant sampling</td>
<td>82</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Soil Sampling, Preparation and Analyses</td>
<td>82</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Quality Assurance of Cd and Pb Analyses in Grains</td>
<td>83</td>
</tr>
<tr>
<td>5.2.10</td>
<td>Statistical Analyses</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Results and Discussion</td>
<td></td>
</tr>
<tr>
<td>5.3.1</td>
<td>Dry Matter Yield</td>
<td></td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>Field Spatial Variability</td>
<td></td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>Dry Matter Yield Calibration Curve</td>
<td></td>
</tr>
<tr>
<td>5.3.2</td>
<td>Economic Yield</td>
<td></td>
</tr>
<tr>
<td>5.3.3</td>
<td>Effect of Soil Chemical and Physical Properties Applied with Sewage Sludge</td>
<td></td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Electrical Conductivity (EC)</td>
<td></td>
</tr>
<tr>
<td>5.3.3.3</td>
<td>Total N Content</td>
<td></td>
</tr>
<tr>
<td>5.3.3.4</td>
<td>Available P</td>
<td></td>
</tr>
<tr>
<td>5.3.3.5</td>
<td>Organic Carbon Content</td>
<td></td>
</tr>
<tr>
<td>5.3.3.6</td>
<td>Cation Exchange Capacity (CEC)</td>
<td></td>
</tr>
<tr>
<td>5.3.4</td>
<td>Heavy Metals in the Soil</td>
<td></td>
</tr>
<tr>
<td>5.3.5</td>
<td>Heavy Metals in the Maize Grain</td>
<td></td>
</tr>
<tr>
<td>5.3.6</td>
<td>Heavy Metals in Other Parts of the Maize Plants</td>
<td></td>
</tr>
<tr>
<td>5.3.7</td>
<td>Nitrogen in Plant Tissue</td>
<td></td>
</tr>
<tr>
<td>5.3.8</td>
<td>Correlation Study</td>
<td></td>
</tr>
<tr>
<td>5.3.9</td>
<td>Quality Assurance</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusion</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Recommendation for Future Studies</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>STUDY 3: FRACTIONATION STUDY OF HEAVY METALS IN SOILS APPLIED WITH SEWAGE SLUDGE</td>
<td>126</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>126</td>
</tr>
<tr>
<td>6.2</td>
<td>Materials and Methods</td>
<td>127</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Sewage Sludge and Soil Samples</td>
<td>127</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Preparation of Soil Samples</td>
<td>128</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Chemical Analysis</td>
<td>128</td>
</tr>
<tr>
<td>6.2.3.1</td>
<td>Water Soluble Fraction</td>
<td></td>
</tr>
<tr>
<td>6.2.3.2</td>
<td>Exchangeable Fraction</td>
<td></td>
</tr>
<tr>
<td>6.2.3.3</td>
<td>Carbonate Fraction</td>
<td></td>
</tr>
<tr>
<td>6.2.3.4</td>
<td>Fe-Mn Oxides Fraction</td>
<td></td>
</tr>
</tbody>
</table>
6.2.3.5 Organic Fraction 131
6.2.3.6 Residual Fraction 132
6.2.4 Washing Procedure 132
6.2.5 Total Metal Extraction 133
6.2.6 Heavy Metals content in Maize Grain 133
6.2.7 Statistical Analysis 133

6.3 Results and Discussion 134
6.3.1 Forms of Heavy Metals in Sewage Sludge 134
6.3.2 Forms of Heavy Metals in Soil Applied with Sewage Sludge 137
 6.3.2.1 Cadmium 137
 6.3.2.2 Copper 141
 6.3.2.3 Nickel 145
 6.3.2.4 Lead 148
 6.3.2.5 Zinc 151
6.3.3 Correlation Study 155
6.4 Conclusions 158

VII GENERAL CONCLUSION 161

REFERENCES 165

APPENDICES 181
 A) Soil Profile 181
 B) Raw Data : Study 2 184
 C) Statistics : Study 2 194
 D) Plates : Study 2 211

VITA 225
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Limitations imposed on heavy metals in sludge application to land</td>
</tr>
<tr>
<td>2.2</td>
<td>Maximum values for metal concentration in sewage sludge in agriculture, their rate of application and concentrations in sludge treated soil in the Commission of the European Communities directive (Commissions of the European Communities, 1986)</td>
</tr>
<tr>
<td>2.3</td>
<td>Effects of heavy metals on human health</td>
</tr>
<tr>
<td>2.4</td>
<td>Sources of heavy metals in domestic wastewater by product type</td>
</tr>
<tr>
<td>2.5</td>
<td>Yields response to sludge and commercial fertilizer</td>
</tr>
<tr>
<td>4.1</td>
<td>Location of sewage sludge used in this study</td>
</tr>
<tr>
<td>4.2</td>
<td>Chemical characterization of domestic sludge (Type A)</td>
</tr>
<tr>
<td>4.3</td>
<td>Chemical characterization of light industries sludge mixed with and domestic mixed sludge (Type B)</td>
</tr>
<tr>
<td>4.4</td>
<td>T-test comparison with domestic sludge (Type A) and light industries mixed domestic sludge (Type B)</td>
</tr>
<tr>
<td>5.1</td>
<td>Physico-chemical properties of the soil at the experimental site before planting and before liming</td>
</tr>
<tr>
<td>5.2</td>
<td>Chemical composition of sewage sludge</td>
</tr>
<tr>
<td>5.3</td>
<td>Schedule of planting of maize for three cycles</td>
</tr>
<tr>
<td>5.4</td>
<td>Mean dry matter yield of the 3 crop cycles (kg ha(^{-1}))</td>
</tr>
<tr>
<td>5.5</td>
<td>Economic yields (kg ha(^{-1})) of the 3 crop cycles</td>
</tr>
<tr>
<td>5.6</td>
<td>Correlation between total and available heavy metal in plant parts (n=60)</td>
</tr>
<tr>
<td>5.7</td>
<td>Cross-checking data of maize grain analyses obtained from UPM and Rothamsted Laboratories using graphite method</td>
</tr>
<tr>
<td>6.1</td>
<td>Effect of 1(^{st}) and 3(^{rd}) cycle on the correlation (r) between extractable metals fraction and content in the maize grain</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Rainfall distribution during the 3 crop cycles a) 1st maize cycle in 1999, b) 2nd maize cycle in 2000 and c) 3rd cycle in 2000</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>Layout of experimental plots (microplots were established in all replicates of the treatment)</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of sludge rate on the total dry matter yield a) 1st maize cycle and b) 3rd maize cycle</td>
<td>91</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of pH in soil applied with sewage sludge</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of electrical conductivity (EC) in soil applied with sewage sludge</td>
<td>95</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of total N in soil applied with sewage sludge</td>
<td>96</td>
</tr>
<tr>
<td>5.7</td>
<td>Effect of Available P in soil applied with sewage sludge</td>
<td>97</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect of organic carbon in soil applied with sewage sludge</td>
<td>98</td>
</tr>
<tr>
<td>5.9</td>
<td>Effect of cation exchangeable capacity (CEC) pH in soil applied with sewage sludge</td>
<td>100</td>
</tr>
<tr>
<td>5.10</td>
<td>Mean concentration of heavy metals in soil a) Zn b) Cu</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>(cont.) Mean concentration of heavy metals in soil c) Cd d) Pb</td>
<td>105</td>
</tr>
<tr>
<td>5.10</td>
<td>(cont.) Mean concentration of heavy metals in soil e) Ni f) Mn</td>
<td>106</td>
</tr>
<tr>
<td>5.10</td>
<td>(cont.) Mean concentration of heavy metals in soil g) Fe and h) Cr</td>
<td>107</td>
</tr>
<tr>
<td>5.11</td>
<td>Mean concentration of heavy metals in maize grain a) Zn b) Cu</td>
<td>112</td>
</tr>
<tr>
<td>5.11</td>
<td>(cont.) Mean concentration of heavy metals in maize grain c) Cd d) Pb</td>
<td>113</td>
</tr>
<tr>
<td>5.11</td>
<td>(cont.) Mean concentration of heavy metals in maize grain e) Ni f) Mn</td>
<td>114</td>
</tr>
<tr>
<td>5.11</td>
<td>(cont.) Mean concentration of heavy metals in maize grain g) Fe and h) Cr</td>
<td>115</td>
</tr>
<tr>
<td>5.12</td>
<td>N yield in different parts of plant a) 1st maize cycle</td>
<td>118</td>
</tr>
</tbody>
</table>
5.12 (cont.) N yield in different parts of plant b) 2nd maize cycle and c) 3rd maize cycle

6.1 Schematic diagram for the sequential extraction of the different forms of Cd, Cu, Ni, Pb and Zn in soil applied with sewage sludge

6.2 Forms of Ni, Cd, Zn, Pb and Cu in sewage sludge

6.3 Forms of cadmium in soil after 1st (C1) and 3rd (C3) maize cycle

6.4 Mean concentration of cadmium in soil applied with sewage sludge after a) 1st maize cycle and b) 3rd maize cycle using different chemical extractants

6.5 Forms of copper in soil after 1st and 3rd maize cycle

6.6 Mean concentration of copper in soil applied with sewage sludge after a) 1st maize cycle and b) 3rd maize cycle using different chemical extractants

6.7 Forms of nickel in soil after 1st and 3rd maize cycle

6.8 Mean concentration of nickel in soil applied with sewage sludge after a) 1st maize cycle and b) 3rd maize cycle using different chemical extractants

6.9 Forms of lead in soil after 1st and 3rd maize cycle

6.10 Mean concentration of lead in soil applied with sewage sludge after a) 1st maize cycle and b) 3rd maize cycle using different chemical extractants

6.11 Forms of zinc in soil after 1st and 3rd maize cycle

6.12 Mean concentration of zinc in soil applied with sewage sludge after a) 1st maize cycle and b) 3rd maize cycle using different chemical extractants
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The scheduled desludging of individual septic tank by Indah Water's service (Indah Water, 1997)</td>
<td>21</td>
</tr>
<tr>
<td>5.1</td>
<td>Sowing of maize seeds</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Soil profile at the right-end of the field</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Soil profile at the left-end of the field</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of roots of maize from right-end (R1T5 and R4T5) and left-end (R3T5 and R5T5) of the field</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

C = Carbon
CEC = Cation Exchange Capacity
EC = Electrical Conductivity
ECS = European Communities Standard
IWK = Indah Water Konsortium
MPC = Maximum Permitted Concentration
N = Nitrogen
P = Phosphorous
UK = United Kingdom
UPM = Universiti Putra Malaysia
USDA = United State Department of Agriculture
USEPA = United States Environmental Protection Agency