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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Pellet length (6 classes) and shape (8 
categories) were identified from 
>17,000 images. 

• Breakage and rounding occur simulta-
neously, with rounding dominant for L/ 
D < 3. 

• A 2-dimensional population balance 
model is presented which captures the 
trends. 

• Better agreement requires better, auto-
mated, image classification methods.  
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A B S T R A C T   

In the breakage stage of extrusion-spheronisation, initially cylindrical extrudates undergo simultaneous breakage 
and rounding on a rotating friction plate. This sets the starting conditions (number of pellets, size and shape 
distributions) for the subsequent, lengthy, rounding stage. The simultaneous evolution of pellet size and shape 
during the initial stages of spheronisation has not been considered in depth. Wang et al. (2021) AIChEJ, 67(6), 
e17247 investigated the breakage of 2 mm diameter microcrystalline cellulose/water extrudates and modelled 
the evolution of length using a 1-D population balance model. Here the data (over 17,000 images) were rean-
alysed and classified by both length and shape (8 shape classes). Their model was extended to 2-D (tracking size 
and shape), and the data fitted by a combination of optimization approaches. The effect of pellet length on the 
likelihood of breakage over rounding, and the influence of plate rotation speed and initial number of extrudates, 
is reported.  
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1. Introduction 

Extrusion-spheronisation (E-S) is a granulation method that yields 
pellets with high density and sphericity [1,2]. The particulate solids are 
firstly combined with a liquid (the binder) to give a dense wet mass (also 
termed ‘dough’ or ‘paste’) which is then ram-, screw- or screen-extruded 
through circular holes (often several in number) to give cylindrical 
extrudates of random length but uniform diameter, D. The extrudates 
are then spheronised on a rotating friction plate which features protu-
berance patterns that (i) promote the breakage of the extrudates and (ii) 
drive the formation of a toroidal bed in which the shorter fragments 
(here termed pellets) are subject to multiple collisions in a complex 
motion (see e.g. [3,4]). 

Studies of spheronisation dynamics, e.g. [5,6], have shown that 
spheronisation is a two-stage process. In the first stage, collisions be-
tween the cylindrical rod-shaped extrudates and the wall, the friction 
plate, and other extrudates result in breakage, forming two or more rods 
of shorter length. The rod length L is conveniently quantified as the 
pellet aspect ratio, AR = L/D. As the number of pellets increases and rod 
length decreases, collisions are less likely to cause breakage and instead 
result in plastic deformation, promoting rounding (the second stage). The 
number of pellets does not change significantly in this stage and the 
rounding of short rods has been modelled in detail using numerical 
methods such as DEM, e.g. [4,7,8]. Breakage of rods in agitated beds, e. 
g. [9], has been modelled using these methods, but simulating the initial 
breakage stage in spheronisation has not been attempted, partly because 
the starting condition varies widely in that the extrudate lengths are not 
controlled. 

The importance of the breakage stage lies in it setting the starting 
conditions (number of pellets, N, size and shape distributions) for the 
subsequent rounding stage. Studies of spheronisation dynamics (e.g. 
[10,11]) have reported that the evolution of pellet shape, often quan-
tified by an average aspect ratio, AR, during the rounding stage follows 
the relationship 

AR(t) = ARfin +
(
AR0 − ARfin

)
exp( − krt) (1)  

where AR0 and ARfin are the initial and final values of the aspect ratio, 

respectively (an AR value of 1.2 is often cited as acceptable for subse-
quent process operations as tabletting or capsule filling); t is time and kr 

is a kinetic constant. Evers et al. [11] investigated the effect of initial 
loading and plate diameter, dp (0.12, 0.25 and 0.38 m) on kr, AR0 and 
ARfin for 1 mm diameter extrudates. They reported size and shape data 
after 30 s and reported initial (AR0) values in the range 1.4–2.4 and ARfin 

values of 1.05–1.25, confirming that breakage was mostly complete by 
the time they started sampling. 

For a given load of extrudates the timescale of breakage and of 
rounding (i.e. k− 1

r ) is expected to depend on the rotational speed, ω. 
Parkin et al.’s dimensional analysis [10] gave a scaled time τ = ω3t 
which mapped data sets for rounding conducted at different speeds 
using a given plate (protuberance pattern, diameter) on to a common 
trend. Wang et al. [12] conducted a detailed analysis of the breakage 
stage for D = 2 mm extrudates of a model pharmaceutical paste (45 wt% 
microcrystalline cellulose, MCC, and water) on a dp = 0.12 m friction 
plate, interrupting the tests at regular intervals to track the change in 
pellet size and number. They employed initial loadings of 20 or 80 
identical extrudates (AR = L/D = 10) and found that scaling the time as 
τ = ω3t again collapsed the breakage data on to a common trend. Little 
further breakage occurred after τ ~ 2 × 107 s− 2. This is comparable with 
the results reported by Evers et al., where the first samples at low speed 
for their dp = 0.12 m plate, corresponding to τ = 0.7 × 107 s− 2, featured 
AR0 ~ 2. It should be noted that Evers et al. [1] employed higher 
loadings, which they reported as (mass of extrudates)/d3

p , with values of 
16–100 kg m− 3: the tests in [12], with 20 and 80 extrudates, featured 
loadings of 0.73 and 2.9 kg m− 3, respectively. 

Wang et al. presented a simple population balance model (PBM) to 
describe the evolution of pellet size, ni(τ), where ni is the number of 
pellets in size range i. Image analysis of each pellet yielded its aspect 
ratio: the values ranged from 1.3 to ~10 so they allocated each pellet to 
one of 6 bins of width 10/6, i.e. i = 1, AR < 1.66; i = 2, 1.66 ≤ AR < 3.3, 
etc. They described breakage as a set of first-order events (see Supple-
mentary Material S1) in which pellets with i ≥2 were assumed to yield 
two smaller pellets on breakage, of bin sizes j and k where i = j + k and i, 
j and k are all integers. Mass loss during collisions and attrition was 
ignored. Table 1 summarises the experimental conditions that they 

Nomenclature 

Roman 
Aproj Projected area, m2 

AR, AR0,ARfin Aspect ratio, initial value, final value, – 
bi Sum of breakage rate constants for pellets of length i s2 

Bi,jD Net breakage rate for pellets of length I, j = 1D or 2D, s2 

dp Spheroniser plate diameter, m 
D Extrudate diameter, m 
ki,j,i-j Breakage kinetic constant, 1-D model, s2 

kis1,js2,ks3 Breakage kinetic constant, 2-D model: i, j, k indicate length 
of pellets; s1, s2, s3 indicate shape, s2 

kr Rate constant, Eq. (1), s− 1 

kis1,is2 Rounding kinetic constant, 2-D model, s2 

L0 Initial rod length, m 
L Extrudate length, m 
ni Number of pellets of length i at time τ, – 
ni,s Number of pellets of length i and shape s at time τ, – 
Nall Total number of pellet images studied, all interval, s– 
N, N0, Nfin Total number of pellets at given time, initial value, final 

value, – 
P Perimeter length, m 
pB,i Net likelihood of breakage, – 
Ri Sum of rounding rate constants for pellets of length i, s2 

R2 Coefficient of determination, – 
rp Radius of spheroniser friction plate, m 
s Label for shape of pellet (see Table 2), – 
t Time, s 
W Pellet width, m 

Greek 
χ Circularity: R – rod; C – cigar; H – half-cigar, – 
μi Mean of the number of pellets of classification i at time τ, – 
σi Standard deviation of the number of pellets of 

classification i at time τ, – 
τ Scaled time, s− 2 

ω Spheroniser rotational speed, s− 1 

Acronymns 
BCA Boundary constraint algorithm 
DEM Discrete element modelling 
E-S Extrusion-spheronisation 
GA Genetic algorithm 
GD Gradient descent 
MCC Microcrystalline cellulose 
ODE Ordinary differential equation 
PBM Population balance model 
PSO Particle swarm optimisation  
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studied. Their population balance model featured six ordinary differ-
ential equations (ODEs) and they estimated the constants for each Case 
by optimising the least-squares fit in Microsoft Excel. 

Wang et al. observed noticeable changes in pellet shape during the 
breakage stage in their tests, conducted with initially identical rods. 
They did not include any effect of shape in their breakage model. Lau 
et al. [5] and Bryan et al. [6] also reported changes in pellet shape at the 
early stage of spheronisation, indicating that rounding and breakage 
occur simultaneously: we postulate that some shapes undergo rounding 
rather than break as a result of a collision, which will in turn determine 
the duration of the breakage stage (in which most collisions result in a 
change of number of pellets) as well as the resulting AR distribution. 
This paper reanalyses sets of the images collected by Wang et al. to 
determine the evolution of size and shape during the breakage stage and 
thereby provide insights into breakage mechanisms which could be 
employed to tailor the speed or protuberance pattern to optimise the (ni,

ARfin) distribution for subsequent rounding. Zhang et al. [13] investi-
gated the effect of protuberance geometry on final pellet shape, and 
their work could be extended to the breakage stage using the methods 
presented here. 

A two-dimensional population balance model (PBM) is thus pre-
sented here, quantifying the evolution of size and shape, extending the 
kinetic scheme of Wang et al. To the authors’ knowledge this has not 
been attempted previously. 

1.1. Pellet shape and characterisation 

The experimental protocols used to generate extrudates were re-
ported in [12]. In short, MCC-water paste was ram-extruded through a 2 
mm diameter 316 stainless steel die and the cylindrical extrudates 
promptly cut to a common initial length, L0 = 20 mm (giving AR0 = L0/

D = 10). The desired number, N0, was loaded into a Caleva 120 
Spheroniser (see Fig. 1) fitted with a 120 mm 316 stainless steel friction 
plate and spheronised at constant speed for a set time. The pellets were 
then either removed and photographed, or photographed in situ before 
restarting the spheroniser. Both methods gave compatible results. 
ImageJ (National Institutes of Health, USA) was used to determine the 
length L, width W, AR and circularity χ (χ ≡ 4πAproj/P2, where P is the 
perimeter length) of each pellet. 

Visual inspection was used to assign pellets into the eight shape 
categories shown in Table 2 on the basis of the shape of each end. This 
required analysis of 17,666 pellets and was subject to cross-checking for 
a sub-set of images. Some pellets did not lend themselves readily to 
classification, either because of their irregular shape, roughness (both 
being exacerbated by fines adhering to the surface) or bending: auto-
mation of this task using deterministic and machine learning approaches 
is the subject of a separate paper (manuscript in preparation). Fig. 2 
shows an example of the results obtained from Case IIIa, where the data 
for each pellet type are plotted on a χ-AR− 1 map as reported by Lau et al. 
(2014). Similar distributions were obtained for other Cases. With the 
exception of spheroids (Fig. 2(h)), the data sets overlap and occupy a 
broad band below the locus for an ideal half-cigar (Table 2). The ma-
jority of spheroids feature AR− 1 values >0.8, corresponding to the 
general observation reported above that round pellets are associated 

with AR≲1.2. Curiously, the shapes featuring bulbous ends, namely 
flasks, dumb-bells and bulbs (Figs. 1(d), (e) and (f), respectively) lie 
mostly between the loci for an ideal half-cigar and a rod. Circularity does 
not, therefore, support reliable differentiation between the categories, as 
reported by Bryan et al. (2015). Other quantitative measures were also 
considered, including machine learning approaches, but these were no 
more effective than visual inspection, as determined by peer review by 
up to 6 individuals. These comparisons were performed by using the 
categorisation data from one individual as the standard (for a number of 
cases). The data set was split into a training fraction (up to 80%) and a 
test fraction, and categorisation performed either by the other in-
dividuals or by the automated methods. The agreement was summarised 
in success matrices (data not reported). Manual categorisation had a 
higher successful categorisation rate, especially for shapes which were 
less prevalent in the population, and was used to categorise the end 
shape combinations in Table 2. 

Table 3 summarises the occurrence of the different shapes for each 
pellet length and Case. The data sets exhibit a matrix form, with zero and 
non-zero entries, and follow a similar sparsity pattern, viz. zero entries 
in the left-hand lower quadrant, below a common diagonal, and the 
largest entries appearing in the right-hand upper quadrant. Features 
common to all Cases include: 

Table 1 
Operating conditions in Wang et al. studies [12]. Nfin is the number of pellets at 
the end of the test, where τ = 3.5 × 107 s− 2.  

Case ω 
/rpm 

Rim speed 
/ m s− 1 

N0 

/−
Nfin 

/−
Repeats 

I 288 1.81 20 110.3 ± 7.4 4 
II 431 2.71 20 119.7 ± 1.2 4 
IIIa 575 3.61 20 104.6 ± 5.4 5 
IIIb 575 3.61 80 355 ± 16 4 
IV 1150 7.23 20 109.7 ± 3.3 3  

Fig. 1. (a) Schematic and (b) photograph, plan view, illustrating spheroniser 
operation. Identical cylindrical extrudates of length L0 and diameter D are 
added to the spheroniser plate of radius R which spins at angular velocity ω. 
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(i) Shapes R, H and C, occur for all pellet lengths (apart from three 
zero entries in Case IV, one in Case I and one in Case IIIb).  

(ii) Shapes F, U, D, B and S do not occur for pellet lengths >3.  
(iii) For shapes R and H, the highest proportion occurs for pellet 

lengths of 1 and 2.  
(iv) For shapes C, U and D, the highest proportion occurs for a pellet 

length of 2.  
(v) For shapes B and S, the highest proportion occurs for a pellet 

length of 1. 

There is some evidence that for the increased loading (Case IIIb) and 
highest rotational speed (Case IV) there are more zero data entries in the 
left-hand lower quadrant, with a subsequent ‘shifting’ of the non-zero 
values to the right-hand upper quadrant. It appears that rotational 
speed and loading may have some influence on the size and shape dis-
tribution of the final product, as per the analysed classifications, 
although further experimentation would be required to confirm this. 
Further investigations, generating thousands of pellet images per test, 
would be facilitated by the development of automated shape classifi-
cation, which is the subject of current work. The above observations 
were used to set some of the kinetic parameters in the 2-D PBM to zero. 

Fig. 3 summarises the change in pellet length and shape over time. 
Fig. 3(a) shows the trend reported in [12], namely the rapid initial 
disappearance of long rods; the generation of appreciable number of 
pellets of length 3 and 2; followed by the fast depletion of the former and 
the slow decay in the latter. For this Case, only pellets of length 1 and 2 
were present at the end of the test (τ = 3.5 × 107 s− 2). The corresponding 
shape data are presented in Fig. 3(b). The initial batch of rods is con-
verted to smaller numbers of rods as a result of breakage and these tend 
to become half-cigars or cigars, forming a pool of about 60 pellets, from 
which more complex shapes appear. With the exception of the rods (see 
above) and spheroids, which exhibit a steadily increasing trend, each 
category exhibits birth followed by decay. The loci on the plots show the 
trends predicted by the 2D PBM population balance model and serve as 
guides to the eye. Similar trends were observed for the other Cases [see 
Supplementary Information S2]. 

Fig. 4 presents the classification data together for Cases IIIa (N0 =

20) and IIIb (N0 = 80). Similar trends are evident: the larger number of 
pellets in the latter case results in less granular distributions. Relatively 
few pellets of length 5 and 4 are formed, as noted in Table 3, indicating 
that they, like the length 6 rods, tend to break rapidly. The population of 
length 3 pellets persists for longer, indicating that the breakage rate is 
related to length, as discussed in [12]. For this Case, at scaled times 

beyond τ ~ 107 s− 2 the pellets are mostly of length 1 and 2, and while 
there is some breakage (associated with a change in the number of 
pellets) after this time, most of the transitions are associated with 
rounding-induced changes in shape. The corresponding plots for I, II and 
IV are provided in Supplementary Information S3. 

2. Population Balance 

The two-dimensional population balance scheme is presented in 
Fig. 5(a). It is based on a branching-paths model which captures the 
evolution of each end independently, without inferring a principal or 
preferred path for shape evolution. Discretising pellet length into 6 
equal width bins, as used by Wang et al. [12], yields the system of 48 
coupled ODEs in Appendix 1. The following assumptions were made:  

(i) Shape evolution does not affect the pellet length, e.g. rounding of 
a cigar of length i does not generate a dumbbell of length i-1.  

(ii) Each end evolves independently.  
(iii) Bispheroids and spheroids do not break. Inspection of the pellets 

did not reveal any shapes which would have been caused by 
breakage of a bispheroid or a spheroid.  

(iv) Breakage yields two daughter pellets, each with a square end and 
the other corresponding to one of the ends of the parent pellet. 
Breakage induced by bending is expected to give two fragments 
with straight fracture planes, the length of which is determined 
by the maximum bending stress. No experimental observations 
supported an alternative breakage mode, e.g. one yielding three 
fragments.  

(v) The kinetic constant for a breakage event does not depend on the 
outcome, i.e. the distribution of ends between the daughter pel-
lets. For example, a half-cigar of length 5 could break to give a 
half cigar of length 1 and a rod of length 4, or a rod of length 1 and 
half-cigar of length 4 (Fig. 5(b)). The probability is assumed to be 
the same, and the rate is written as − 2k5H,4H,1Rn5H in the dn5H/dτ 
balance, i.e. k5H,4H,1R = k5H,4R,1H. 

Assumption (i) represents a simplification, and is valid when 
breakage is rapid. Otherwise, conservation of volume requires that the 
transition from a rod or cigar to a dumbbell, for example, must be 
accompanied by a reduction in length, and this will result in the pellet 
being allocated to the next size category. The trajectories in χ – AR− 1 

space (Fig. 2) associated with several of these transitions were calculated 
but the results offered little insight and are not reported. 

Table 2 
Pellet shape classification. End labels: s – square; r – rounded (radius similar to initial pellet); b – bulbous (rounded, radius greater than initial pellet. The χ-AR− 1 

relationships for rods, cigars and half-cigars are plotted in Fig. 2. Relationships marked † are not reported as these were found to offer little insight.  

Shape Label Image End pair χ-AR relationship 

Rod R s-s χR =
( π

AR

) 1
(

1 +

(
1

AR

))2 

Cigar C r-r 
(AR > 2) χC =

( π
AR

)

[

1 +

(
1

AR

)(π
4
− 1

) ]

[

1 +

(
1

AR

)(π
2
− 1

)]2 

Half-cigar H r-s 

χH =
( π

AR

)

[

1 +

(
1

AR

)(
π
8
−

1
2

)]

[

1 +
π
4

(
1

AR

)]

Flask F b-s †

Bulb U b-r †

Dumbbell D b-b †

Bispheroid B b-b †

Spheroid S r-r (AR ~ 1) ~1  
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(c) Cigars

N = 2024
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(e) Flasks

N = 129

(f) Bulbs

N = 253

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(g) Bispheroids

N = 412

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(h) Spheroids

N = 344

−1 −1

Fig. 2. Example of classification of pellets for Case IIIa, sorted into the categories in Table 2 by visual inspection. AR is equivalent to pellet length. Loci show the 
analytical χ – AR− 1 relationships in Table 2 for: rod – solid line; half-cigar – dashed; cigar – dotted. 
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Fig. 5(b) shows the combination of outcomes for a half-cigar of 
length 5, with number n5H at time τ. The ODE describing the evolution of 
n5H is   

Prior to simplification, the model had over 130 unknown kinetic 
constants. Employing a finer discretisation scheme (e.g. 10 bins, each of 
interval width D) would increase this number further, and also result in a 
sparse distribution where more bins had few pellets assigned to them. 

3. Numerical methods 

The ODEs were solved numerically via the 4th order Runge-Kutta 
method using Matlab2022a with a scaled time-step size of 0.05 × 107 

s− 2 in most cases. The Matlab code is provided as Supplementary Ma-
terial S4. Identifying the values of the kinetic constants is an 

optimisation problem. The objective function was the sum of the square 
of the differences between the predicted and measured number of pellets 
in each category (or set of categories) across all the time intervals 
measured. A three-step approach was used:  

(i) The one-dimensional PBM of Wang et al. (Supplementary S1), 
with 9 kinetic constants, was solved to identify the sum of the 
breakage constants for each size fraction. Different optimisation 
methods were used in this work to that used previously, so the 
values were expected to differ to some extent. The range of 
allowable values was constrained at 0–20 × 10− 7 s2, based on the 
largest value of kinetic constant reported in [12]. Genetic algo-
rithms (GA) and boundary constraint algorithms (BCA) were both 
considered, with the latter proving more robust (better goodness 
of fit, result almost independent of starting set). The settings for 
each algorithm are reported in Table 4. The improvement in 
goodness of fit, R2, for the five Cases is reported in Table 5. This 

Table 3 
Frequency of shapes for each pellet size, reported as percentage of each category as a fraction of the total number of pellet images studied over all time intervals, Nall.   

Pellet size 
Shape, label 

6 5 4 3 2 1 

Case I R - Rod 3.9 0 0.3 0.3 3.9 14.7 
Nall = 2541 H - Half-cigar 1.6 0.1 0.5 1.4 12.2 15.2  

C- Cigar 3 0.1 0.3 0.8 19.3 2.9  
F - Flask 0 0 0 0 0.3 2.1  
U - Bulb 0 0 0 0 3.4 1.3  
D - Dumbbell 0 0 0 0 3.3 1.1  
B - Bispheroid 0 0 0 0 0 2  
S - Spheroid 0 0 0 0 0 5.9 

Case II R 3 0.1 0.3 1 6.3 12.4 
Nall = 2502 H 1 0.1 0.6 2 19.7 18.2  

C 1.1 0.1 0.4 2.2 16.8 2.8  
F 0 0 0 0 0.4 1.8  
U 0 0 0 0 2.2 0.6  
D 0 0 0 0 1.1 0.4  
B 0 0 0 0 0 1.2  
S 0 0 0 0 0 4.2 

Case IIIa R 2 0.1 0.6 1.7 4.3 5.7 
Nall = 6145 H 0.9 0.2 0.9 3.6 12.9 13.1  

C 1 0.2 0.7 3.3 17.7 7.4  
F 0 0 0 0 0.6 1.2  
U 0 0 0 0.1 3 0.7  
D 0 0 0 0.2 6.2 0.7  
B 0 0 0 0 0.7 5.1  
S 0 0 0 0 0 5 

Case IIIb R 3.9 0 0.7 2.6 18.3 9.8 
Nall = 4060 H 0.3 0.2 1.6 6 25.3 4.6  

C 0.4 0.2 1.2 5.2 13.2 0.6  
F 0 0 0 0 0.8 0.4  
U 0 0 0 0 1.1 0.1  
D 0 0 0 0 0.1 0  
B 0 0 0 0 0.1 0.3  
S 0 0 0 0 0 2.9 

Case IV R 2.6 0.1 0.4 2.4 16.5 14.2 
Nall = 2418 H 0 0.1 0.2 1.9 18.8 10.5  

C 0 0 0.2 0.8 16 5.9  
F 0 0 0 0 1.2 0.4  
U 0 0 0 0 2 0.3  
D 0 0 0 0 0.9 0.3  
B 0 0 0 0 0 0.5  
S 0 0 0 0 0.2 3.6  

dn5H

dτ = − n5H

⎛

⎜
⎝2k5H,4H,1R + 2k5H,3H,2R
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

breakage

+ k5H,5C + k5H,5F
⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

rounding

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
destruction

⎞

⎟
⎠ + n5Rk5R,5H

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
rounding

+ n6Ck6C,5H,1H + n6Hk6H,5H,1R + n6Bk6B,5H,1H
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

breakage

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
formation

(2)   
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step provided values of the combined breakage kinetic constant 
for pellets of length i, bi, Eq. (3), that were used as constraints in 
step (ii). For example, the change in the number of pellets of 
length 6 is written as 

dn6

dτ = −
(
k6,5 + k6,4 + k6,3

)
n6 = − b6n6 (3)    

(ii) In the 2-D PBM, a two-step approach was used to identify the 
kinetic parameters. In the first step, the breakage constants were 
identified by matching the instantaneous net rates of breakage 

with those given by the 1-D model. In time interval q the 1-D net 
breakage rate of pellets of length i, Bi,1D, is given by 

Bi,1D(q) = bini(q) −
∑

m>i
km,inm(q) (4)  

where the number of pellets in length class i, ni, is given by 
summing across all shapes of length i: 

ni(q) =
∑

s=R,H,..,S
ni,s(q) (5) 

Fig. 3. Evolution of pellet (a) length and (b) shape for Case IIIa. Loci show the trajectories for the 2D PBM with parameters obtained by fitting to the data set. Vertical 
dashed line indicates limit of experimental data: beyond this the loci show the model extrapolation. The colours in (b) correspond to those in Fig. 2. 
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Fig. 4. Evolution of pellet length and shape for (a) Case IIIa and (b) Case III. Note non-linear scaled time axis. Colour indicates category. Loci in show.  
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Fig. 5. Two-dimensional population balance model. (a) Schematic of shape and size evolution. Solid arrows indicate shape transitions (rounding); dashed arrows 
indicate size transition (breakage). (b) Example: pellets formed from a half-cigar of length 5. 

Table 4 
Optimisation algorithm settings.  

Algorithm Parameter  Value 

Genetic algorithm (GA) Population  10,000  
Number of generations  25  
Tournament size  256  
Mutation rate  1%  
Number of elites  1 

Boundary constraint (BCA) Population  1000  
Iterations  100  
Generations breakage 25   

breakage & rounding 100 
Particle swarm (PSO) Number of candidate solutions 10,000  

Cognitive learning factor 0.1  
Social learning factor 0.1  
‘Momentum of particle’ or ‘inertia weight’ 0.8  
Generations breakage 25   

breakage & rounding 100  
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The 2-D breakage of pellets in a given length class at time interval 
q is given by  

where the RHS includes all the permitted shape combinations. 
The experimental values of ni,s1 and nm,s1 were used to evaluate 
Bi,1D and Bi,2D for each interval. The 2-D kinetic constants were 
then determined by an optimisation (using the Microsoft Excel® 
inbuilt Solver function) to identify the most likely set of values, 
with objective function 

Obj =
∑

q=1,end

∑6

i=1

(
Bi,2D − Bi,1D

)2

(
Bi,2D − Bi,1D

)2 (7)  

where Bi,1D is an average of the 1-D breakage rates for size frac-
tion i, and the denominator serves to scale the contributions from 
each fraction.  

(iii) In the second step, the remaining 57 kinetic constants for 
rounding were identified by fitting the 2D PBM to the data sets, 
the breakage constants having been determined in (ii). A particle 
swarm optimisation (PSO, settings in Table 4) approach was 
found to give robust performance.  

(iv) Steps (ii) and (iii) yielded a solution which is likely to be near a 
local optimum. The solution was improved by fitting the full 
PBM, with all 96 kinetic constants as variables, to the data using a 
gradient descent (GD) algorithm. The values identified in (ii) and 
(iii) were used as the starting set. The GD approach is more effi-
cient in identifying a local optimum, while the PSO serves to find 
a better estimate of a global optimum across the full parameter 
space. The improvement in R2 given by the GD step was 
approximately 6.5%. 

4. Results and discussion 

4.1. Shape and size trends – 1D PBM 

Plots such as Fig. 3 show that the long pellets (of length 5 and 6) 
undergo rapid breakage and therefore have little time to undergo 
rounding, while Fig. 4 details how pellets of length 2–4 undergo more 
appreciable rounding as the rate of breakage decreases with pellet 
length. Fig. 3 also shows that the ω3t scaling collapses the data to a 
similar timescale. The loci in Fig. 3 are similar to those reported in [12], 
and Fig. 6 compares their breakage constants with those obtained for the 

1-D PBM obtained by the BCA. Table 5 compares the goodness of fit for 
the two approaches and reports the number of pellets in each length 
category. The BCA improved the fit for all pellet sizes. The improvement 
of fit for pellets of length 5 is still associated with a negative value of R2, 
indicating that the reliability of the description is poor. Table 5 shows 
that there were relatively few pellets of length 5 (33, compared to 151 of 
the next most frequent, of length 4). The two approaches yield notice-
ably different results for length 5 pellets, with the BCA setting k6,5,1 to 
zero, in effect predicting that length 6 pellets will not break to form ones 
of length 5. Furthermore, the large BCA value for k5,3,2 indicates that any 
length 5 pellets formed would break rapidly. In short, the BCA has 
accepted the penalty associated with poor prediction of n5 in order to 
optimise the global performance. This could be overcome by attaching a 
weighting to some of the n5 values. This represents one of the areas in 
which the optimisation calculation could be improved. In steps (ii) and 
(iii) breakage to form length 5 pellets was allowed. 

It is also noticeable that both modelling approaches set k5,4,1 to zero, 
suggesting that longer pellets will break nearer their midpoint rather 
than at an end. Fig. 6 shows similar values for the breakage constants for 
the shorter pellets (k4,2,2, k3,2,2 and k2,1,1). 

Owing to the nature of the fitting function and the large number of 
ODEs and constants involved, there is a strong likelihood of the 
parameter set identified constituting an ‘over-fit’ [14]. Minimising the 
number of constraints imposed on the model was considered to be 
preferable, to reduce bias in the fitting. The interpretation of the results 
consequently focuses on the general trends. Given the intrinsically 
random nature of breakage, an extensive experimental programme 
would be required in order to generate the large body of data required to 
reduce over-fitting. 

4.2. 2-D PBM: breakage 

The parameterisation procedure yielded 5 sets of kinetic constants, 
the values of which are provided as Supplementary Material S5. Fig. 7(a) 
shows that the sum of breakage constants (e.g. Eq. (5)) increased with 
pellet size, as reported by Wang et al. for their 1D PBM. A Friedman test 
performed on the ranked order of the likelihood of breakage for each 
pellet for the five Cases at the 5% significance level indicated that the 
plate rotational speed had no effect on the ranking for each pellet length. 
This indicates that there was no bias with rotational speed and again 
indicates that the ω3t scaling has captured the influence of this process 
parameter. The confidence in this result is not high owing to only five 
Cases being considered. Cases IIIa and IIIb featured a four-fold differ-
ence in the initial number of pellets. The sum of breakage constants in 
Fig. 7(a) lies within the scatter obtained with the other Cases, which is 
consistent with the breakage mechanism being determined by pellet- 
pelletiser (wall or plate) collisions with little contribution from pellet- 
pellet collisions. 

Fig. 7(b) presents the distribution of breakage constants for each 
pellet length. The likelihood of breakage of a length 2 pellet is consis-
tently smaller than the other values for each Case, indicating that most 
pellets form a pellet of length 2, which then are then slowly converted to 
length 1. These results indicate that the transition between breakage and 
rounding is associated with the formation of pellets of length 2. This is 
consistent with Wang et al.’s findings. 

Table 5 
Comparison of goodness-of-fit for Case IIIa the 1D PBM (length alone, not shape) 
with the constants (i) reported by Wang et al. [12] and (ii) obtained with the 
BCA.  

Pellet length Number of pellets in fit R2 Change 

– – Wang et al. BCA  

1 2498 0.908 0.961 0.053 
2 2961 0.884 0.946 0.062 
3 591 0.806 0.911 0.105 
4 151 0.800 0.897 0.097 
5 33 − 13.09 − 0.376 12.72 
6 181 0.757 0.940 0.183 
all 6415 0.941 0.976 0.035  

Bi,2D(q) =
∑l≥i/2

l=i− 1,i− 2,…

∑

s1,s2,s3∈R,H,…,S
kis1,ls2,(i− l)s3ni,s1 (q) −

∑m>i

m=6,5..

∑

s1,s2,s3∈R,H,…,S
kms1,is2,(m− i)s3nm,s1 (q) (6)   
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4.3. Rounding 

The sum of rounding kinetic constants is reported in Fig. 8(a). There 
is noticeable scatter between Cases, as with the breakage constants in 
Fig. 7. The values lie in a similar range, again suggesting that the ω3t 
scaling captures the influence of rotational speed. There is no strong 
contribution from pellet length on rounding with the exception of pellets 
of length 1, associated with the generation of bispheroids and spheroids. 
Statistical analysis, namely p-tests at the 5% significance level, indicated 
that the overall likelihood of rounding for a particular Case did not 
deviate significantly from the mean of all the Cases. 

The type of rounding transition is compared in Fig. 8(b). The values 
of kR,H and kH,C are similar, which is expected as the transition involves 
the rounding of a square end to a spherical one. The values of kH,F and kC, 

U, are likewise similar, involving the generation of a bulbous end. The 
values of kF,U and kU,D do not follow the trends in these pairs. This may 
be due to the fitting procedure not capturing the later stages of rounding 
reliably, or it being relatively insensitive to these steps as the number of 
pellets associated with the transitions is low: <2% of the total number of 
pellets were classified as flasks, while 4% were ‘bulbs’. The figure sug-
gests that the likelihood of a square end forming a round end is higher 
than a rounded end forming a bulbous one, as follows: less plastic 
deformation work is expected for the former transition, so fewer colli-
sions would be required to provide the kinetic energy: if the rate of 
collisions is independent of shape, this would translate into a larger rate 
constant. 

The likelihoods of the final stages of rounding – the flask to bulb, 
bulb to dumb-bell and dumb-bell to bispheroid transitions – are all 

larger than those for the initial stages. With the exception of Case IIIb 
(N0 = 80) the dumb-bell to bispheroid constant is larger than the cor-
responding bispheroid to spheroid constant, which is consistent with the 
final rounding stage being rate limiting, as suggested by Eq. (1). 

Fig. 9 summarises the inferred behaviour patterns, comparing the 
estimated likelihoods of breakage and rounding for each Case. The net 
likelihood of breakage per collision is given by 

pB,i =
bi − ri

bi + ri
(8)  

where bi is the sum of breakage kinetic constants for pellets of length i 
and ri is the corresponding likelihood of rounding. For tests with N0 = 20 
(Cases I-IIIa, IV) breakage dominates for pellets of length 3 and greater. 
For Case IV, with N0 = 80, the changeover is not so clear and rounding 
dominates for pellets of length 1 (AR < 1.66). Both outcomes are 
consistent with Evers et al.’s observation of AR0 values in the range 
1.4–2.4 [11]. They reported AR0 values after 30 s, for loadings of 
16–100 kg m− 3. At lower speeds, AR0 did not vary much consistently 
with loading. Their AR0 values for dp = 0.12 and 0.25 m after 30 s 
(corresponding to τ  > 20 × 107 s− 2, i.e. well into the rounding stage) 
decreased with loading and thus the expected number of pellet-pellet 
collisions. 

At higher loadings, there are more pellets in the toroidal bed (see Nfin 
in Table 1) and pellet-pellet collisions are expected to become more 
important. The assumption of a first order kinetic scheme would require 
revisiting for detailed modelling of tests with higher loadings as the first 
order treatment assumes that the frequency of collisions is independent 
of the number of other pellets. Introducing collisions with other pellets 

Fig. 6. Comparison of 1D PBM model breakage kinetic constants with those reported by Wang et al. [12].  
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Fig. 7. Breakage constants obtained for the 2D PBM. (a) Effect of pellet length on the sum of all breakage constants for pellets of that length: (b) Sum of breakage 
constants for each pellet breakage combination, ordered in sequence of events. 
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Fig. 8. Rounding constants obtained for the 2D PBM. (a) Effect of pellet length on the sum of all rounding constants for pellets of that length: (b) Sum of rounding 
constants for each combination, ordered in sequence of events. 
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as opposed to collisions with the wall or friction plate suggest a second 
order process. This represents a topic for future work. 

4.4. Discussion 

This study represents an initial attempt to capture the simultaneous 
evolution of pellet size and shape during the initial stages of spheroni-
sation. There are several facets in which the calculations could be 
improved, such as the use of more robust optimisation algorithms, better 
suited for sparse data sets, for instance by including weightings as 
mentioned above. The model generates a large number of kinetic con-
stants and in this study is fitted to a relatively small number of data 
points which are subject to noticeable scatter. The latter is expected 
because breakage is inherently a stochastic process. This could be 
addressed by collecting more, larger data sets but this requires a reliable 
shape characterisation tool to be available as otherwise the uncertainty 
in the shape labelling dominates. 

Rounding is presented as a continuous process and this assumption 
may not be correct. Rounding and breakage are assumed to be inde-
pendent and this is also likely to be inaccurate: as repeated collisions 
generate a dumbbell it is likely to become shorter. 

The experiments feature small numbers of extrudates and conse-
quently modest numbers of pellets. The results demonstrate that 
breakage and rounding occur simultaneously, but the small number of 
extrudates meant that collisions were dominated by collisions with walls 
and the spheroniser plate rather than the pellet-pellet collisions that will 
dominate the dynamics of a commercial spheronisation operation. Fig. 8 
shows that case IIIb (with N0 = 80) exhibits more rounding for pellets 
formed later in the process, which would arguably be expected from 
pellet-pellet collisions. Imposing a first order kinetic scheme on the 
process at this stage, when a second order scheme would be more 
appropriate, should be revisited and tested using more data sets. As 
highlighted above, such investigations will require reliable and efficient 
pellet shape characterisation tools. 

5. Conclusions 

A two-dimensional population balance model has been developed, 
which quantifies the evolution of pellet size and shape during the initial 
stages of spheronisation of microcrystalline cellulose/water extrudates. 
Methods to fit the model to experimental data were developed, which 
enabled the extraction of process parameters describing the independent 
mechanisms of breakage and rounding of the pellets. 

The inherently first-order model was based upon an extension of 
previously reported kinetic schemes. Attempts were made to translate 
the large number of kinetic parameters generated into likelihoods of 
pellet breakage and rounding, with varying success. Model fitting and 
elucidation of the kinetic parameters were compounded due to the 
stochastic nature of the pellet breakage mechanism, which manifested in 
scatter for small data sets. These issues could possibly be mitigated by 
incorporating weighting functions for certain data and more rigorous 
fitting algorithms (e.g. [15]). An example of the former would be the 
incorporation of the coefficient of variation, σ/μ, for each experimental 
data point when calculating the coefficient of determination, R2, (viz) 

(
R2)′

= 1 −
∑ (yi − ŷi )

2

(yi − y)2
1

(
σi
μi
+ 1

) (9) 

Including this measure of spread for each point would improve the 
sensitivity to pellets that form fewer times during the process such as 
ones of length 5, flasks and bulbs. 

The efficacy of applying any higher-order kinetic schemes would 
require further acquisition of properly characterised data sets, where 
pellet size and shape would be classified in an objective and unambig-
uous manner, as well as the incorporation of simultaneous breakage and 
rounding of pellets. The ability to analyse the dynamic behaviour of the 
pellets in terms of collisions between themselves and with the spher-
oniser surfaces would also be beneficial, along with a study of the 
different types of interactive energies involved. 

Once achieved, model validation could be further explored 

Fig. 9. Effect of pellet size on net likelihood of breakage, Eq. (4).  
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employing experimental data for longer spheronisation time periods and 
higher loadings, incorporating random starting lengths of extrudate, i.e. 
similar conditions to those used in industrial applications. Other pa-
rameters, such as spheroniser plate rotational speed and protuberance 
pattern, could also be addressed. 
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Appendix A. Appendix 1 2D Population balance model equations 

The general kinetic scheme is 

dN
dτ = KN  

where N is the column matrix of dimension 48 × 1 

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n6R

n5R

n4R

n3R

n2R

⋮

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(48× 1)

and K is the square matrix of coefficients, dimension 48 × 48 

K =

⎡

⎢
⎣

−
(
k6R,6H + k6R,5R,1R + k6R,4R,2R + k6R,4R,3R

)
⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0

⎤

⎥
⎦ (48× 48)

giving. 
Rods 

dn6R

dτ = − n6R
(
k6R,6H + k6R,5R,1R + k6R,4R.2R + k6R,3R,3R

)

dn5R

dτ = − n5R
(
k5R,5H + k5R,4R,1R + k5R,3R.2R

)
+ n6Rk6R,5R,1R + n6Hk6H,5H,1R + n6Fk6F,5F,1R  

dn4R

dτ = − n4R
(
k4R,4H + k4R,3R,1R + k4R,2R.2R

)
+ n6Rk6R,4R,2R + n6Hk6H,4H,2R + n5Rk5R,4R,1R + n5Hk5H,4H,1R + n6Fk6F,4F,2R + n5Fk5F,4F,1R  

dn3R

dτ = − n3R
(
k3R,3H + k3R,2R,1R

)
+ 2n6Rk6R,3R,3R + n6Hk6H,3H,3R + n5Rk5R,3R,2R + n5Hk5H,3H,2R + n4Rk4R,3R,1R + n4Hk4H,3H,1R + n6Fk6F,3F,3R + n5Fk5F,3F,2R + n4Fk4F,3F,1R  

dn2R

dτ = − n2R
(
k2R,2H + k2R,1R,1R

)
+ n6Rk6R,4R,2R + n6Hk6H,4H,2R + n5Rk5R,3R,2R + n5Hk5H,3H,2R + 2n4Rk4R,2R,2R + n4Hk4H,2H,2R + n3Rk3R,2R,1R + n3Hk3H,2H,1R + n6Fk6F,4F,2R

+ n5Fk5F,3F,2R + n4Fk4F,2F,2R + n3Fk3F,2F,1R 
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dn1R

dτ = − n1Rk1R,1H + n6Rk6R,5R,1R + n6Hk6H,5H,1R + n5Rk5R,4R,1R + n5Hk5H,4H,1R + n4Rk4R,3R,1R + n4Hk4H,3H,1R + n3Rk3R,2R,1R + n3Hk3H,2H,1R + 2n2Rk2R,1R,1R

+ n2Hk2H,1H,1R + n6Fk6F,5F,1R + n5Fk5F,4F,1R + n4Fk4F,3F,1R + n3Fk3F,2F,1R + n2Fk2F,1F,1R 

Half-cigars 

dn6H

dτ = − n6H
(
2k6H,5H,1R + 2k6H,4H,2R + k6H,3H,3R + k6H,6C + k6H,6F

)
+ n6Rk6R,6H  

dn5H

dτ = − n5H
(
2k5H,4H,1R + 2k5H,3H,2R + k5H,5C + k5H,5F

)
+ n6ck6C,5H,1H + n6Hk6H,5H,1R + n6Uk6U,5F,1H + n5Rk5R,5H  

dn4H

dτ = − n4H
(
2k4H,3H,1R + k4H,2H,2R + k4H,4F + k4H,4C

)
+ n6ck6C,4H,2H + n5ck5C,4H,1H + n6Hk6H,4H,2R + n5Hk5H,4H,1R + n6Uk6U,4F,2H + n5Uk5U,4F,1H + n4Rk4R,4H  

dn3H

dτ = − n3H
(
2k3H,2H,1R + k3H,3C + k3H,3F

)
+ 2n6ck6C,3H,3H + n6Hk6H,3H,3R + n5ck5C,3H,2H + n5Hk5H,3H,2R + n4ck4C,3H,1H + n4Hk4H,3H,1R + n6Uk6U,3F,3H + n5Uk5U,3F,2H

+ n4Uk4U,3F,1H + n3Rk3R,3H  

dn2H

dτ = − n2H
(
k2H,1H,1R + k2H,2C + k2H,2F

)
+ n6ck6C,4H,2H + n6Hk6H,4H,2R + n5ck5C,3H,2H + n5Hk5H,3H,2R + 2n4ck4C,2H,2H + n4Hk4H,2H,2R + n3ck3C,2H,1R + n3Hk3H,2H,1R

+ n6Uk6U,4F,2H + n5Uk5U,3F,2H + n4Uk4U,2F,2H + n3Uk3U,2F,1H + n2Rk2R,2H  

dn1H

dτ = − n1H
(
k1H,1C + k1H,1F

)
+ n6ck6C,5H,1H + n6Hk6H,5H,1R + n5ck5C,4H,1H + n5Hk5H,4H,1R + n4ck4C,3H,1H + n4Hk4H,3H,1R + n3ck3C,2H,1H + n3Hk3H,2H,1R + 2n2ck2C,1H,1H

+ n2Hk2H,1H,1R + n6Uk6U,5F,1H + n5Uk5U,4F,1H + n4Uk4U,3F,1H + n3Uk3U,2F,1H + n2Uk2U,1F,1H + n1Rk1R,1H 

Cigars 

dn6c

dτ = − n6c
(
k6c,5H,1H + k6C,4H.2H + k6C,3H,3H + k6C,6U

)
+ n6Hk6H,6C  

dn5c

dτ = − n5c
(
k5C,4H,1H + k5C,3H,2H + k5C,5U

)
+ n5Hk5H,5C  

dn4c

dτ = − n4c
(
k4C,3H,1H + k4C,2H,2H + k4C,4U

)
+ n4Hk4H,4C  

dn3c

dτ = − n3c
(
k3C,2H,1H + k3C,3U

)
+ n3Hk3H,3C  

dn2c

dτ = − n2c
(
k2C,1H,1H + k2C,2U

)
+ n2Hk2H,2C  

dn1c

dτ = − n1ck1C,1U + n1Hk1H,1C 

Flasks 

dn6F

dτ = − n6F
(
2k6F,5F,1R + 2k6F,4F,2R + k6F,3F,3R + k6F,6U

)
+ n6Hk6H,6F  

dn5F

dτ = − n5F
(
2k5F,4F,1R + 2k5F,3F,2R + k5F,5U

)
+ n5Hk5H,5F + n6Fk6F,5F,1R  

dn4F

dτ = − n4F
(
2k4F,3F,1R + 2k4F,2F.2R + k4F,4U

)
+ n4Hk4H,4F + n5Fk5F,4F,1R + n6Fk6F,4F.2R  

dn3F

dτ = − n3F
(
2k3F,2F,1R + k3F,3U

)
+ n3Hk3H,3F + n6Fk6F,3F,3R + k5F,3F.2R + n4Fk4F,3F,1R  

dn2F

dτ = − n2F
(
k2F,1F,1R + k2F,2U

)
+ n2Hk2H,2F + n6Fk6F,4F.2R + n5Fk5F,3F.2R + n4Fk4F,2F.2R + n3Fk3F,2F,1R  

dn1F

dτ = − n1Fk1F,1U + n1Hk1H,1F + n6Fk6F,5F,1R + n5Fk5F,4F,1R + n4Fk4F,3F,1R + n3Fk3F,2F,1R + n2Fk2F,1F,1R + 2n2Bk2B,1F,1F 

Bulbs 

dn6U

dτ = − n6U
(
k6U,6D + 2k6U,5F,1H + 2k6U,4F.2H + 2k6U,3F,3H

)
+ n6ck6C,6U + n6Fk6F,6U  

dn5U

dτ = − n5U
(
k5U,5D + 2k5U,4F,1H + 2k5U,3F.2H

)
+ n5ck5C,5U + n5Fk5F,5U  

dn4U

dτ = − n4U
(
k4U,4D + 2k4U,3F,1H + 2k4U,2F.2H

)
+ n4ck4C,4U + n4Fk4F,4U 
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dn3U

dτ = − n3U
(
k3U,3D + 2k3U,2F,1H

)
+ n3ck3C,3U + n3Fk3F,3U  

dn2U

dτ = − n2U
(
k2U,2D + 2k2U,1F,1H

)
+ n2ck2C,2U + n2Fk2F,2U  

dn1U

dτ = − n1Uk1U,1D + n1ck1C,1U + n1Fk1F,1U 

Dumbbells 

dn6D

dτ = − n6D
(
k6D,5F,1F + k6D,4F.2F + k6D,3F,3F

)
+ n6Uk6U,6D  

dn5D

dτ = − n5D
(
k5D,4F,1F + k5D,3F.2F

)
+ n5Uk5U,5D  

dn4D

dτ = − n4D
(
k4D,3F,1F + k4D,2F.2F

)
+ n4Uk4U,4D  

dn3D

dτ = − n3Dk3D,2F,1F + n3Uk3U,3D  

dn2D

dτ = − n2D
(
k2D,1F,1F + k2D,2B

)
+ n2Uk2U,2D  

dn1D

dτ = − n1Dk1D,1B + n1Uk1U,1D 

Bispheroids 

dn6B

dτ =
dn5B

dτ =
dn4B

dτ =
dn3B

dτ = 0  

dn2B

dτ = − n2Bk2B,1F,1F + n2Dk2D,2B  

dn1B

dτ = − n1Bk1B,1S + n1Dk1D,1B 

Spheroids 

dn6S

dτ =
dn5S

dτ =
dn4S

dτ =
dn3S

dτ =
dn2S

dτ = 0  

dn1S

dτ = n1Bk1B,1S  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.powtec.2024.119465. 
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