EFFECTS OF HYDROGEN CYANIDE IN CASSAVA (MANIHOT ESCULENTA CRANTZ) FORAGE ON RUMEN METABOLISM AND BODY TISSUES OF SHEEP AND GOATS

MOHD ROSLY SHAARI, D.V.M

FP 2002 20
EFFECTS OF HYDROGEN CYANIDE IN CASSAVA (*MANIHOT ESCULENTA CRANTZ*) FORAGE ON RUMEN METABOLISM AND BODY TISSUES OF SHEEP AND GOATS

By

MOHD ROSLY SHAARI, D.V.M

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirement for the Degree of Master of Science

July 2002
DEDICATION

“Dedicated especially to my wife, Dr. Hazilawati Hamzah, my father and mother Shaari Ahmad and Mardiah Omar, my father and mother-in-law Hamzah Yusof and Kelesom Silong and to my brothers whose sacrifice and support has enabled me to complete this study successfully”.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirements for the degree of Master of Science

EFFECTS OF HYDROGEN CYANIDE IN CASSAVA (MANIHOT
ESCULENTA CRANTZ) FORAGE ON RUMEN METABOLISM AND BODY
TISSUES OF SHEEP AND GOATS

By

MOHD ROSLY SHAARI, D. V. M.

July 2002

Chairman:  Associated Professor Dr. Liang Juan Boo

Faculty:  Agriculture

Cassava leaves are good source of protein and have a potential to substitute
grain concentrate in livestock feed. However, a major constraint in using cassava
forage as animal feed is the presence of hydrogen cyanide (HCN). The objectives of
the study were to determine the effects of hydrogen cyanide in cassava forage on
rumen metabolism and body tissues and the tolerance level of sheep and goats. The
first experiment was conducted to determine the total cyanogens in two varieties of
local cassava forages, Black Twig (BT) and MARDI 92 (MM 92); and to determine
the practical processing techniques in reducing the cyanide content to a safe level for
animal feeding. Fresh BT contained high level of cyanide (1273 ppm) as compared to
MM 92 (850 ppm). Slow drying as in under shade and sun drying, were found to be
more effective in reducing cyanide content than rapid drying in forced draught oven.

The second experiment was conducted to determine the effects of HCN and its
tolerance level in sheep and goats. Nine male Dorset crossbred sheep and nine
Kambing Katjang goats of similar sex, weighing an average of 21.7 ± 1.1 kg each, were used. Three animals of each species were assigned to each of the three treatment groups namely control, HCN 4mg (4 mg HCN/ kg body weight) and HCN 7mg (7 mg HCN/ kg body weight) in a Complete Randomised Design (CRD) experiment. The animals except in control group were fed in addition to hay, pelleted MM 92 cassava leaves containing 311.7 ppm HCN (DM basis), to the required HCN levels. The serum and urine thiocyanate (SCN) in sheep and goats of both HCN treatment groups were significantly (p<0.05) higher as compared to the control group. The average detoxification rate of cyanide to thiocyanate was 3.6 and 3.0 ppm/hr for HCN 7mg group and 2.1 and 2.3 ppm/hr for HCN 4mg group in sheep and goats, respectively. Thiocyanate was shown to have a goitrogenic action that resulted in significant (p<0.05) reduction in thyroxine (T4) level (1.5 μg/dl), increased in thyroid stimulating hormone (TSH) level (1.2 μIU/mL) and development of hyperplastic goitre in goats, while sheep were not severely affected. The serum aspartate aminotransferase (AST) activities were significantly (p<0.05) increased in both species, which were related with the presence of periportal necrosis of the liver. Mild nephrosis of the kidney was also observed. The presence of cyanide in the rumen had no significant effects (p>0.05) on the volatile fatty acids (VFA) production in the rumen. However, at HCN 7mg treatment rumen microbial productions particularly in goats decreased by 16.7% (p<0.05). It could concluded that at the MLD of 7 mg HCN/kg body weight, there were significant toxicity effects to sheep and goats, while at the MLD of 4 mg HCN/kg body weight the adverse effects were restricted to the serum and urinary thiocyanate concentrations only. Based on the thyroid hormones and histology, sheep are more tolerance to cyanide as compared to goats.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Mater Sains

KESAN HIDROGEN SIANIDA DALAM FURAJ UBI KAYU (MANIHOT ESCULENTA CRANTZ) KE ATAS METABOLISMA RUMEN DAN TISU BADAN BEBIRI DAN KAMBING

Oleh

MOHD ROSLY SHAARI, D. V. M.

Julai 2002

Pengerusi: Profesor Madya Dr. Liang Juan Boo

Fakulti: Pertanian

Daun ubi kayu adalah sumber protin yang baik dan berpotensi untuk menggantikan konsentrat bijirin dalam makanan ternakan. Halangan dalam penggunaannya sebagai makanan haiwan adalah kehadiran hidrogen sianida (HCN). Tujuan ujikaji ini dijalankan adalah untuk menentukan kesan hidrogen sianida dalam furaj ubi kayu ke atas metabolisma rumen dan tisu badan dan toleransinya pada bebiri dan kambing. Eksperimen pertama telah dijalankan untuk menentukan jumlah sianida di dalam dua jenis furaj ubi kayu tempatan, Black Twig (BT) dan MARDI 92 (MM 92); dan menentukan teknik pemprosesan yang praktikal untuk mengurangkan kandungan sianida ke paras yang selamat untuk makanan haiwan. BT segar mengandungi paras sianida yang tinggi (1273 ppm) berbanding MM 92 (850 ppm). Pengeringan perlahan seperti di bawah teduhan dan matahari, didapati lebih berkesan dalam mengurangkan kandungan sianida berbanding pengeringan cepat di dalam oven. Eksperimen kedua telah dijalankan untuk menentukan kesan-kesan sianida dan
tahap toleransinya pada bebiri dan kambing. Sembilan ekor bebiri jantan Kacukan Dorset dan sembilan ekor Kambing Katjang jantan, dengan purata berat 21.7 ± 1.1 kg seekor, telah dipilih untuk kajian ini. Tiga ekor haiwan dari setiap spesis telah dibahagikan kepada tiga kumpulan rawatan iaitu kawalan, HCN 4mg (4 mg HCN/kg berat badan) dan HCN 7mg (7 mg HCN/kg berat badan) dalam ekperimen dengan Rekabentuk Rawakan Lengkap (CRD). Ternakan kecuali dalam kumpulan kawalan diberi makan pelet daun ubi kayu MM 92 mengandungi 311.7 ppm HCN (bahan kering), ke paras-paras HCN yang dikehendaki. Tiosianida (SCN) serum dan urin bagi bebiri dan kambing dalam kedua-dua kumpulan rawatan adalah lebih tinggi (p<0.05) berbanding kawalan. Purata kadar detoksifikasi sianida ke tiosianida masing-masing adalah 3.6 dan 3.0 ppm/jam untuk kumpulan HCN 7mg, dan 2.1 dan 2.3 ppm/jam untuk kumpulan HCN 4mg, pada bebiri dan kambing. Tiosianida didapati mempunyai tindakan kebegukan yang menyebabkan penurunan (p<0.05) paras T₄ (1.5 μg/dl), peningkatan paras TSH (1.2 μIU/mL) dan pembentukan beguk hiperplastik pada kambing, manakala bebiri pula tidak teruk terjejas. Aktiviti AST serum meningkat (p<0.05) dalam kedua-dua spesis, berkaitan dengan kehadiran nekrosis periportal hati. Neprosis ringan pada buah pinggang juga diperhatikan. Kehadiran sianida dalam rumen tidak menyebabkan kesan (p>0.05) pada produksi asid lemak meruap (VFA) rumen. Pada rawatan HCN 7mg produksi mikrob rumen kedua-dua spesis menurun sebanyak 16.7% (p<0.05). Kesimpulannya, pada MLD 7 mg HCN/kg berat badan, sianida menyebabkan kesan-kesan keracunan signifikan pada kambing dan bebiri, sementara itu pada MLD 4 mg HCN/kg berat badan kesan-kesan bahaya sianida hanya terhad pada tiosianida serum dan urin sahaja. Berdasarkan hormon tiroid dan histologi, bebiri adalah lebih toleran terhadap sianida berbanding kambing.
ACKNOWLEDGMENTS

I would like to express my most sincere thanks and deepest appreciation to my supervisors, Assoc. Prof. Dr. Liang Juan Boo for his excellent supervision, thoughtful instructions and constant encouragement throughout the period of this study. I also would like to thank my supervisory committee members, Assoc. Prof. Dr. Noordin Mohamed Mustapha, Dr. Mohamad Nazrul Hakim Abdullah and Assoc. Prof. Dr. Zainal Aznam Mohd Jelan for their help, continuous advice and encouragement to complete the project.

My sincere appreciation and gratitude also go to Mr. Ibrahim Mohsin and Mr. Saparin Demin of the Nutrition Laboratory, and also to Mr. Zakaria Musa, Mr. Jamiuddin Jamaluddin and Mr. Baharun Utar of Field II, Department of Animal Science, Universiti Putra Malaysia for their technical assistance and guidance throughout the study. I am also particularly thankful to the Head of Endocrine Unit, Institute for Medical Research Dr. Wan Nazaimoon Wan Mohamud and Mr. Balakrishnan for granting the permission to use their gamma counter and technical assistance for my radioimmunoassay work. I also extend my thanks to Assoc. Prof. Dr. Raseede Abdullah for allowing me to use the Clinical Pathology and Haematology Laboratory, Faculty of Veterinary Medicine, UPM.

I also wish to thank the other post graduate students particularly Dr. Opart Pimpa, Dr. Konimba Bengaly, Mr. Pramote Paengkoum, Mr. Che Ming
Tung and Mr. Bodee Khamseekhiew for their support, assistance and humorous jokes which we shared together during the course of my study.

Sincere gratitude is also conveyed to the Ministry of Science, Technology and the Environment of Malaysia for the provision of the IRPA grant (06-02-04-0071). Last but not least, the consistent moral and technical support, patience and understanding of my loving wife, Dr. Hazilawati Hamzah throughout the course of the study will always be remembered and appreciated.
I certify that an Examination Committee met on 25 July 2002 to conduct the final examination of Mohd Rosly Bin Shaari on his Master of Science thesis entitled "Effects of Hydrogen Cyanide in Cassava (Manihot esculenta Crantz) Forage on Rumen Metabolism and Body Tissues of Sheep and Goats" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Abdul Razak Alimon, B.Sc., M.Sc., Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Liang Juan Boo, B.Sc.Agric., M.Sc., Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Noordin Mohamed Mustapha, D.V.M., M.S., Ph.D.
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohamad Nazrul Hakim Abdullah, D.V.M., Ph.D.
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Zainal Aznam Mohd Jelan, D.V.M., M.Sc., Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

SHAMSHER MOHAMAD RAMADALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 0 SEP 2002
This thesis submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

**Liang Juan Boo, B.Sc.Agric., M.Sc., Ph.D.**  
Associate Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Chairman)

**Noordin Mohamed Mustapha, D.V.M., M.S., Ph.D.**  
Associate Professor  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Member)

**Mohamad Nazrul Hakim Abdullah, D.V.M., Ph.D.**  
Lecturer  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Member)

**Zainal Aznam Mohd Jelan, D.V.M., M.Sc., Ph.D.**  
Associate Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

---

**AINI IDERIS, Ph.D.**  
Professor/Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Mohd Rosly Shaari, D.V.M.

Date: 18 Sept 2002
## TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

### CHAPTER

#### I INTRODUCTION

1

#### II LITERATURE REVIEW

3

The Cassava Plant

3

Botanical Description

3

Origin, Spread and Adaptation

4

Cassava Production

6

Nutritive Value of Cassava

6

Cassava Roots

7

Cassava Leaves

8

Toxic Principles in Cassava

10

Cyanogenic Glycosides

10

Physiological and Biochemical Effects of Cyanide

14

Cassava Processing

21

Processing of Cassava Leaves

21

Cassava in Animal Feed

22

Cassava Leaf Meal in Ruminant Nutrition

22

#### III TOTAL CYANOGENS AND DRYING TECHNIQUES TO REDUCE CYANIDE CONTENT IN LOCAL CASSAVA FORAGE

25

Introduction

25

Materials and Methods

26

Experimental Design

26

Cassava Preparation and Sampling

27

Chemical Analysis

27

Statistical Analysis

28

Results

29

Total Cyanogens

29

Moisture Content

31

Discussion

31
IV DETOXIFICATION OF HYDROGEN CYANIDE TO
THIOCYANATE IN SHEEP AND GOATS FED ON CASSAVA
FORAGE 36
Introduction 36
Materials and Methods 37
   Animals and Management 37
   Preparation of Feed Samples 38
   Feeds and Feeding 38
   Experimental Design 38
   Blood, Urine and Tissue Sampling 39
   Chemical Analysis 40
   Statistical Analysis 41
Results 41
   Serum Thiocyanate 41
   Urinary Thiocyanate 45
   Organ Thiocyanate 47
Discussion 49

V EFFECTS OF HYDROGEN CYANIDE IN CASSAVA FORAGE
ON HORMONES, ENZYME AND TISSUE MORPHOLOGY OF
SHEEP AND GOATS 56
Introduction 56
Materials and Methods 57
   Animals and Management 57
   Blood and Tissue Sampling 58
   Chemical Analysis 58
   Statistical Analysis 59
Results 60
   Thyroxine 60
   Thyroid Stimulating Hormone 60
   Aspartate Aminotransferase 63
   Pathology 65
Discussion 71

VI EFFECTS OF HYDROGEN CYANIDE ON RUMEN MICROBIAL
ACTIVITY 79
Introduction 79
Materials and Methods 80
   Animals and Management 80
   Urine and Rumen Fluid Sampling 80
   Chemical Analysis 81
   Statistical Analysis 81
Results 82
   Volatile Fatty Acids 82
   Purine Derivatives Excretion and Microbial Nitrogen
   Production 84
   Discussion 86
VII GENERAL DISCUSSION AND CONCLUSIONS 91

BIBLIOGRAPHY 95
APPENDICES 110
BIODATA OF THE AUTHOR 126
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nutritive value of cassava leaves compared with some common tropical fodder crops</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>The mean thiocyanate (SCN) concentrations ($\mu$g/mL/g tissue) in various organs of sheep and goats in the different HCN treatment groups</td>
<td>48</td>
</tr>
<tr>
<td>5.1</td>
<td>The mean thyroxine ($T_4$) concentrations ($\mu$g/dL) of sheep and goats in the different HCN treatment groups over three weeks</td>
<td>61</td>
</tr>
<tr>
<td>5.2</td>
<td>The mean thyroid stimulating hormone (TSH) concentrations ($\mu$IU/mL) of sheep and goats in the different HCN treatment groups over three weeks</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>The mean aspartate aminotransferase (AST) concentrations ($U/L$) of sheep and goats in the different HCN treatment groups over three weeks</td>
<td>64</td>
</tr>
<tr>
<td>5.4</td>
<td>The mean scoring of lesions (%) in the various tissues of sheep and goats in the different HCN treatment groups at necropsy (100 fields)</td>
<td>66</td>
</tr>
<tr>
<td>6.1</td>
<td>Total VFA concentrations (mM), molar proportions of VFA (%) and pH of rumen fluids in sheep and goats in the different HCN treatment groups</td>
<td>83</td>
</tr>
<tr>
<td>6.2</td>
<td>The total purine derivatives excretions (mmol/d) and microbial nitrogen productions (gN/d) of sheep and goats in the different HCN treatment groups (Mean ± SD)</td>
<td>85</td>
</tr>
</tbody>
</table>
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The basic processes involved in the metabolism of cyanide</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Changes in cyanide and moisture contents of two varieties of cassava leaves, MM 92 and BT under different drying regimes</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>The serum thiocyanate (SCN) concentrations (μmol/mL) of sheep and goats in the different HCN treatment groups</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>The trend of detoxification rate over three days in sheep and goats that consumed 7 mg HCN/kg body weight and 4 mg HCN/kg body weight</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>The urinary thiocyanate (SCN) concentrations (μg/mL) of sheep and goats in the different HCN treatment groups</td>
<td>46</td>
</tr>
</tbody>
</table>
# LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Photomicrograph of the liver of goats in the control group. [H&amp;E, x100]</td>
<td>67</td>
</tr>
<tr>
<td>5.2</td>
<td>Photomicrograph of the kidney of goats in the control group. [H&amp;E, x100]</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>Photomicrograph of the thyroid gland of goats in the control group. [H&amp;E, x200]</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Photomicrograph of the liver of goats in the HCN $7_{mg}$ group. Swelling and necrotic hepatocytes at the periportal area. [H&amp;E, x100]</td>
<td>69</td>
</tr>
<tr>
<td>5.5</td>
<td>Photomicrograph of the kidney of goats in the HCN $7_{mg}$ group. Necrosis of the epithelial cells of proximal convoluted tubules. [H&amp;E, x100]</td>
<td>69</td>
</tr>
<tr>
<td>5.6</td>
<td>Photomicrograph of the thyroid gland of goats in the HCN $7_{mg}$ group. Colloid rupture (CR), vacuolated colloid (V), protruding of follicular cells in the lumen due to endocytosis and depletion of colloid. Increased number of cells (H). [H&amp;E, x200]</td>
<td>70</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association Official Agricultural Chemists</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>BT</td>
<td>black twig</td>
</tr>
<tr>
<td>CK</td>
<td>creatinine kinase</td>
</tr>
<tr>
<td>CN</td>
<td>cyanide</td>
</tr>
<tr>
<td>CNO</td>
<td>cyanate</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CRD</td>
<td>complete randomised design</td>
</tr>
<tr>
<td>DIT</td>
<td>diiodotyrosine</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organisation</td>
</tr>
<tr>
<td>HCN</td>
<td>hydrogen cyanide</td>
</tr>
<tr>
<td>HCN₄₄mg</td>
<td>4 mg HCN/kg body weight group</td>
</tr>
<tr>
<td>HCN₇₇mg</td>
<td>7 mg HCN/kg body weight group</td>
</tr>
<tr>
<td>H &amp; E</td>
<td>haematoxylin &amp; eosin</td>
</tr>
<tr>
<td>HNL</td>
<td>hydroxynitrilysye</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>IRMA</td>
<td>immunoradiometric assay</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysia Agriculture and Research Development</td>
</tr>
<tr>
<td>MIT</td>
<td>moniodotyrosine</td>
</tr>
<tr>
<td>MLD</td>
<td>minimum lethal dose</td>
</tr>
<tr>
<td>MN</td>
<td>microbial nitrogen</td>
</tr>
<tr>
<td>NFE</td>
<td>nitrogen free extract</td>
</tr>
<tr>
<td>NPN</td>
<td>non protein nitrogen</td>
</tr>
<tr>
<td>PD</td>
<td>purine derivatives</td>
</tr>
<tr>
<td>PPM</td>
<td>part per million</td>
</tr>
<tr>
<td>RIA</td>
<td>radioimmuno assay</td>
</tr>
</tbody>
</table>

xviii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SCN</td>
<td>thiocyanate</td>
</tr>
<tr>
<td>S-SCN</td>
<td>serum thiocyanate</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid stimulating hormone</td>
</tr>
<tr>
<td>T₄</td>
<td>thyroxine</td>
</tr>
<tr>
<td>T₃</td>
<td>triiodothyronine</td>
</tr>
<tr>
<td>U-SCN</td>
<td>urinary thiocyanate</td>
</tr>
<tr>
<td>VFA</td>
<td>volatile fatty acids</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Cassava (Manihot esculenta Crantz) also known as tapioca or manioc, is one of the major tuber crops grown in more than 80 countries in the humid tropics. It is a high-energy food obtained with low nutrient inputs. It is either a main or a secondary staple food (Cock, 1985) for the people in the tropics. Besides its important role in human nutrition, cassava has also been used as a feedstuff for livestock (Maner and Gomez, 1973).

The cassava leaves and shoots are rich nutritionally in protein and vitamins (Lancaster and Brooks, 1983). Research has shown that cassava leaves have protein content ranging from 16.7 to 39.9% with almost 85% of the crude protein fraction present as a true protein (Ravindran, 1991). Wanapat et al. (1997) showed that cassava hay fed either as a whole ration or as a supplement in crop-residue based diets is a good feed for ruminant. Recently, Che (2001) reported that the ruminal degradability of cassava fodder was as high as that of grain concentrates such as maize and soy bean meal at the same outflow rates. Therefore, cassava fodder can be used as protein supplement to substitute grain concentrates up to 50% in ruminant diet.

However, its widespread use as animal feed is limited by the presence of hydrogen cyanide (HCN), which has to be properly reduced to a safe level. It is well
established that the toxicity of cassava is due to the release of free cyanide from cyanogenic glycosides, linamarin and lotaustralin. Level of cyanide in plant material in excess of 200 ppm is potentially dangerous to livestock (Buck and Osweiler, 1976). Frequent intake of cassava would lead to the ingestion of small quantities of cyanide. Reliable information on the toxicity to sheep and goats caused by the cumulative effects of ingested cyanide is very limited (Nambisan, 1994). In addition, information on the comparative tolerance to the cyanogenic compound in ruminant livestock such as sheep and goats has not been reported.

Experiments reported in this thesis were conducted to substantiate information on the utilisation of cassava forages as a protein supplement in small ruminants. Therefore, the objectives of the experiments were:

i). to determine the cyanide content in two varieties (MM 92 and BT) of cassava forages

ii). to evaluate the effect of practical processing technique to reduce the cyanide content

iii). to compare differences between sheep and goats in the level of tolerance to cyanide ingestion

CHAPTER II

LITERATURE REVIEW

The Cassava Plant

Cassava belongs to the family Euphorbiaceae, which includes rubber (*Havea brasiliensis*) and castor bean (*Ricinus communis*). It is one of the most widely cultivated tuber crops serving as the major staple food of more than 300 million people in the tropics (Cock, 1982).

Botanical Description

Cassava is a perennial woody shrub producing enlarged tuberous roots and variously branched stems. The height, spread and other characteristics vary among cultivars. Usually cassava attains a height varying from 1 to 5 m. The shrubs of cassava may be multi branched or unbranched (Cock, 1985). In the branching types of cassava, branching may occur at the base, midway, or at the top of the stem. The number of branches varies from 1 to 6 depending on the variety. The stem of the cassava plant is tall, thin and straight and has a number of nodes. The colour of the stem usually varies from red-brown to grey. The leaves of cassava are palmate possessing 3 to 11 lobes. The primary leaves of seedlings are unlobed whereas secondary leaves are 3-lobed (Balagopalan *et al.*, 1988).
Commercially, cassava is grown by planting a cutting taken from the woody part of the stem. The growth cycle of a typical cassava crop is close to 1 year. The roots start bulking about 3 months after planting and continue to increase in weight until 9 to 15 months after planting when the crop is usually harvested.

**Origin, Spread and Adaptation**

Cassava is native of tropical America, until recently Brazil was considered to be the place of origin for cassava. In Africa, cassava was introduced in the 16th century. The Portuguese introduced cassava to India in 1840. In Java it was introduced around 1810. The first official record of cassava introduction into Malaysia was in 1886, through the Singapore Botanic Gardens (Cock, 1985); however cassava was widely grown in Malaysia before that, probably after introduction from India or Indonesia.

The cassava crop is cultivated under different climatic and soils conditions, for example, in the high rainfall areas of the Andes to the acid infertile soils of the Savannas. Although different varieties and agronomic practices are used, the fact that the species can be grown under these varied conditions demonstrates its broad adaptability.

**Climate**

Cassava is grown almost exclusively in the hotter lowland tropics and is never
grown as crop further from the equator then 30°N or 30°S (Cock, 1985). It is grown at altitudes up to 2000 m, but can be grown profitably at lower altitudes in areas ranging from humid (more than 2000 mm annual rainfall) to semiarid (500 to 750 mm) conditions. The optimum temperature range for the growth of cassava is between 18 to 30°C.

It is a drought tolerant crop and can be grown in areas where there are occasionally prolonged spans of drought. During a drought period the plant regulates transpiration rate and enters a dormant state, shedding older leaves and putting forth fewer new leaves. With the onset of rains, reserves carbohydrates from the roots and stem are utilised and the plant become active again. Cassava is basically adapted to a tropical environment and yield well under full sunlight when the soil moisture is not limiting.

Soils

Cassava can tolerate a wide range of soil conditions (Balagopalan et al., 1988). It grows well in soils of low fertility status and produces a satisfactory yield. A well-drained loamy or sandy loam with sufficient organic matter is the best soil for the cultivation of cassava. Proper tuber formation takes place only in those soils that are loose and friable. On heavy clay and rocky soils, the yield will be poor due to restricted tuber development. Poor drainage and water logging are also unfavourable for growing cassava. The optimum pH of the soil for cultivation is from 6.0 to 7.5, but it is grown under the wide range of pH in many parts of the world. In Malaysia,