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Friction drilling is a new progressive hole-making method. The interaction of the 
rotating conical tool and the thin workpiece produces heat allowing penetration 
of the tool and soften the work-piece forming a hole and bush in one process. 
The process is environmentally friendly since bush formation creates no 
material wastage and requires no coolant fluid during the machining process. 
However, performing the machining process with a worn tool can increase the 
friction between the tool-workpiece and the late replacement of the worn tool 
may cause an unpredictable machine breakdown. The focus of the present 
study is to develop an AI-based expert system for tool condition monitoring 
(TCM) in the friction drilling process. Thus, the TCM was developed by 
detecting the machining signals through signal processing and pattern 
recognition. Subsequently, the tool condition was predicted by the artificial 
intelligence (AI) approach. A tungsten carbide tool was used in this experiment 
of friction drilling on medium carbon steel AISI 1045. As preliminary 
experiments, to determine optimal processing parameters in the friction drilling 
process by considering multi-performance characteristics (i.e., bush length and 
roundness error), an effective grey relational analysis (GRA) approach has 
been used. Tool wear characteristics were quantified of friction drilling by 
analyzing the changes in tool shape and weight reduction. TCM in the friction 
drilling process was developed based on the vibration signal collected through 
accelerometer sensors of the machining signals through a low-pass filter. 
Three approaches AI-model such as Artificial Neural Network (ANN), Fuzzy 
Logic (FL), and Adaptive Neuro-Fuzzy Inference System (ANFIS) used to boost 
the efficiency of the prediction system to anticipate the state of the tool in terms 
of the tool length and angle. The outcomes of the established models were 
compared in terms of prediction accuracy to find the best performing model. 
Therefore, real-time condition monitoring took part to verify the TCM system for 
the friction drilling process. The GRA obtained 3000 rpm of spindle speed and 
50 mm/min of feed rate the best combination of processing to achieve a greater 
bush length and lower roundness error. The tool wear characteristic can be 



© C
OPYRIG

HT U
PM

ii 

confirmed that the abrasive wear revealed in the conical region with circular 
grooves. The adhesive wear was observed at the tool centre and conical 
regions, and oxidation wear was identified with a dark burned appearance at 
the tool surface. The development of the AI-model model shows excellent 
performance, which the R-squared correlation shows the ANFIS model was 
97.2% and 97.1% for tool length, and the angle at the training phase seen an 
increase to 98.4% and 98.2% in the testing phase. It was verified in the real-
time TCM experiments that the ANFIS-based expert system was successfully 
developed and utilized in monitoring the tool condition by categorizing the level 
of condition into three distinct categories, i.e., good, half-life, and worn-out 
conditions. 
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Penggerudian geseran adalah kaedah pembuatan lubang progresif baru. 
Interaksi alat kerucut berputar dan bahan kerja nipis menghasilkan haba yang 
memungkinkan penembusan alat dan melembutkan bahan kerja membentuk 
lubang dan sendal dalam satu proses. Prosesnya mesra alam kerana 
pembentukan sendal tidak menghasilkan pembaziran bahan dan tidak 
memerlukan cecair penyejuk semasa proses pemesinan. Walau 
bagaimanapun, melakukan proses pemesinan dengan alat yang sudah usang 
dapat meningkatkan geseran antara benda kerja alat dan penggantian alat 
yang haus lambat boleh menyebabkan kerosakan mesin yang tidak dapat 
diramalkan. Fokus kajian ini adalah untuk mengembangkan sistem pakar 
berasaskan AI untuk pemantauan keadaan alat (TCM) dalam proses 
penggerudian geseran. Oleh itu, TCM dikembangkan dengan mengesan 
isyarat pemesinan melalui pemprosesan isyarat dan pengecaman corak. 
Selepas itu, keadaan alat diramalkan oleh pendekatan kecerdasan buatan (AI). 
Alat karbida tungsten digunakan dalam eksperimen penggerudian geseran 
pada keluli karbon sederhana AISI 1045. Sebagai eksperimen awal, untuk 
menentukan parameter pemprosesan yang optimum dalam proses 
penggerudian geseran dengan mempertimbangkan ciri-ciri pelbagai prestasi 
(panjang sendal dan ralat kebulatan), pendekatan analisis relasi kelabu (GRA) 
yang berkesan telah digunakan. Ciri kehausan alat dihitung dari penggerudian 
geseran dengan menganalisis perubahan bentuk alat dan penurunan berat 
badan. TCM dalam proses penggerudian geseran dikembangkan berdasarkan 
isyarat getaran yang dikumpulkan melalui sensor getaran yang mengumpulkan 
isyarat pemesinan melalui saringan lulus rendah. Tiga pendekatan model AI 
seperti Rangkaian Neural Buatan (ANN), Logik Fuzzy (FL), dan Sistem 
Inferensi Neuro-Fuzzy Adaptif (ANFIS) yang digunakan untuk meningkatkan 
kecekapan sistem ramalan untuk menjangkakan keadaan alat dari segi 
panjang dan sudut alatan. Hasil dari model yang ditetapkan dibandingkan 
dengan ketepatan ramalan untuk mencari model yang berprestasi terbaik. Oleh 
itu, pemantauan keadaan masa nyata mengambil bahagian untuk 
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mengesahkan sistem TCM untuk proses penggerudian geseran. GRA 
memperoleh kelajuan gelendong 3000 rpm dan kadar suapan 50 mm/min 
gabungan pemprosesan terbaik untuk mencapai panjang sendal yang lebih 
besar dan ralat kebulatan yang lebih rendah. Pada kehausan alat, ciri dapat 
disahkan bahawa haus kasar muncul di kawasan kerucut dengan alur bulat. 
Haus pelekat diperhatikan di pusat alat dan kawasan kerucut, dan keausan 
pengoksidaan dikenal pasti dengan penampilan yang terbakar gelap di 
permukaan alat. Perkembangan model AI menunjukkan prestasi yang sangat 
baik, dimana korelasi R-kuadrat menunjukkan model ANFIS adalah 97.2% dan 
97.1% untuk panjang alat, dan sudut pada fasa latihan menyaksikan 
peningkatan menjadi 98.4% dan 98.2% pada fasa ujian. Hal ini disahkan dalam 
eksperimen TCM masa nyata bahawa sistem pakar yang berbasis ANFIS 
berjaya dikembangkan dan digunakan dalam memantau keadaan alat dengan 
mengkategorikan tahap kondisi menjadi tiga kategori yang berbeza, yaitu 
keadaan baik, separuh baik, dan usang. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1  Background and motivation 
 

The hole-making process is one of the most important operations in the 
manufacturing industry. It is a class of machining operations that specifically 
used to removes material and creates a hole. Drilling is a major hole-making 
process and takes up a large part of the manufacturing process. Also, it is 
stated that all the existing mechanical parts contain holes, and it represents 
approximately 40% of all cutting operations performed in the industry (Guiotoko 
et al., 2017). Drilling requires a rotating cylindrical tool bit that has two cutting 
edges at the working end and feeds into the solid materials or enlarges existing 
holes using multi-tooth cutting, metal is extruded by the edge of the chisel, and 
shear cutting is carried out by the lips of the tool (Sun et al., 2018; Tolouei and 
Shah, 2012). The various types of cutting tools are available for drilling, but the 
most common tool is the twist drill. The drilling process needs to consider the 
machine, tool, work material, and cutting conditions such as feed force and 
velocity (Kudla, 2001). Therefore, a machined hole can be characterized by 
several different parameters or features that determine the hole-making 
operation and tool required, such as diameter, tolerance, thread, and depth. 
 

The low durability of conventional drilling tools and required a coolant to 
prolong the service life of the drilling tool (Guiotoko et al., 2017). However, 
cutting fluids cause serious health troubles as well as cost in the field of 
maintenance (Faverjon et al., 2015). Recent technological development over 
conventional drilling is friction drilling. Friction drilling is a new trend of hole-
making without chips, with a maximum thin-walled structure of 12 mm 
thickness of the material (Alphonse et al., 2017). Moreover, the durability of the 
tool is not required any cutting fluid in the friction drilling process. Therefore, 
this technique is the most recent trend in hole making which is currently applied 
in all major mechanical industries. Thus the durability of a friction drilling tool for 
non-conventional drilling has been used for this research. 
 

The thin-walled structure has a specific function in lightweight construction. 
Using detachable joints in a thin-walled structure can be noticed as a unique 
advantage for lightweight construction (Biermann and Liu, 2014). Friction 
drilling is a new alternative process that mainly used to create a hole, and also 
possible for joining thin-walled structures by making a screw thread (Milan et 
al., 2014) compared to the conventional drilling methods that required 
additional nut or stud welding to join thin-walled structures together as shown in 
Figure 1.1. As a new progressive of the non-conventional hole-making method, 
the friction drilling process utilizes the heat generated from the drilling tool's 
rotational friction to soften the thin-walled workpieces. Subsequently, 
simultaneous, it forms the bush and boss on the bottom and top sides of the 
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workpiece, respectively, after the process completed, as shown in Figure 1.2 
(Miller et al., 2005; Miller et al., 2006b; Boopathi et al., 2006). The thickness of 
the bush observed two times the workpiece thickness (Krishna et al., 2010). 
The bushing aims to increase thickness for threading and available clamp load 
(Miller et al. 2006a). Unlike traditional chip removal processes, the main 
mechanism is that no cutting fluid was required, and no chip was produced 
(Chow et al., 2008). Therefore, friction drilling can develop high efficiency, 
better surface quality, and a green machining process without environmental 
impact (Miller et al., 2006a). 
 

 
Figure 1.1: Comparison between (a) conventional drilling, (b) friction 
drilling and (c) screw threading on thin-walled structure after friction 
drilling 
 

 
Figure 1.2: Stages of friction drilling process 
 

Nowadays, most process parameters are done by trial-and-error. This is time-
consuming, costly, highly subjective, and machine- and material-specific, and 
subsequently affected the product quality. Due to unknown cause-and-effect 
relationships between the manufacturing process parameter settings, including 
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tool wear and process characteristics, the resulting quality is highly variable 
and creates significant limitations. In manufacturing industries, the tool life 
features can be determined by how well the tool's condition is maintained. To 
maintain a reasonable production rate, usually cutting speed and feed rate are 
increased. However, the increase in these cutting conditions may lead to 
increased tool wear and a rougher surface finish. The tool wears a time-
dependent process, deteriorates the surface finish and induces burr formation 
(Matsumura et al., 2010; Katz and Li, 2004). The tool wear depends on the 
cutting force, cutting temperature, and velocity (Ariffin et al., 2014). Tool life 
and wear addressed to summarize the wear mechanisms and types in different 
tools and workpiece materials and tool geometry, aiming to improve tool life 
(Pereira et al., 2017). Tolouei and Shah (2012) mentioned that the choice of 
tooling and cutting conditions depends upon many factors that include 
workpiece and cutting tool materials, workpiece, and cutting tool geometry. 
 

The machining vibration is a crucial factor in the investigation of tool wear 
according to the relative motion between tool and workpiece. The amount of 
pressure with the type of material being drilling, especially spindle speed and 
feed rate, which had the most influence on the vibration, so an adaptive system 
to monitor this vibration and at the same time lead to a better product. Many 
researchers investigate the tool wear based on vibration signal analysis for 
other conventional machining processes that include drilling (Hassan et al., 
2018), milling (D’ Addona et al., 2016), turning (Zhang and Chen, 2008) and 
grinding (Chen and Li, 2007) processes. Therefore, the tool condition 
monitoring (TCM) framework needs to be developed and implemented to 
ensure that it is carried out with the desired condition. In a real-time method, 
this device was ideally able to calculate the condition of the instrument. These 
should give immediate feedback on the tool condition to be used to maintain 
the desired results. 
 

Since friction drilling is not a material removal process and all drilled-hole 
materials transformed to form bush and boss, it considered a physically 
complex, non-linear, and dynamic process. Moreover, the heat generation 
between tool and workpiece changes the material properties and 
microstructural characteristics (Chow et al., 2008), not only to the workpiece 
but also to the drilling tool. Therefore, the tool wear has significant effects on 
the quality and quantity of the process (Somasundaram et al., 2012). These 
motivate the development of the TCM system to sustain the friction drilling 
process's performance without interruption of the drilling operation, under 
minimum human supervision. TCM capability of identifying and locating 
machining system defects is essential for machining without an operator. 
 

A significant factor affecting the machined surface features is tool wear. In any 
metal cutting process, tool wear means the gradual failure of cutting tools due 
to regular operation. Over the years, many techniques used to monitor and 
detect tool wear in metal cutting in general. As cutting proceeds, the tool wear 
increases, directly affecting the tool life (Ambhore et al., 2015). Tool wear 
processes generally occur depending upon the cutting conditions, workpiece 
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and tooling material, and the tool inserted geometry. Cutting processes can 
naturally generate vibration due to the fluctuation of cutting forces. Moreover, 
the tool's wear brings additional components to the vibrations (Kilundu et al., 
2011). 
 

In developing a TCM system, the optimum parameter is important to develop 
for improving performance and reduce tool wear. Hence, prolong the life of the 
drilling tool needs to be considering in this TCM. The tool life is important to 
improve the cutting performance (Matsumura and Shirakashi, 2010) and to 
achieve this, the subdivision of the drilling cycle is divided into sections and 
only monitoring those sections in which the most significant change occurs 
over the tool life (Heinemann and Hinduja 2012). It is possible to identify the 
final tool life stage and replace the worn-out tool shortly before a fracture 
occurs, thus improving the overall tool utilization. Therefore, the TCM system 
was able to utilize the prolonged tool life. 
 

An artificial intelligence (AI) technique is a part of TCM that can predict the tool 
condition during the machining process, with minimum changes to the tool, 
significantly reducing the machining time and cost (Tolouei and Shah, 2012). 
The prediction model plays a vital role in TCM systems. It provides a decision-
making system that uses all sensor signal data features to predict the tool wear 
states (Siddhpura and Paurobally, 2013). Conventional models and AI-based 
models have been widely applied to tool wear prediction over the past decades 
(Adnan et al., 2015). An effective prediction of the tool condition depends on 
the different models developed and evaluated for tool wear analysis. AI-based 
model is an effective and efficient strategy to developed and determine tool 
wear condition monitoring (Kaya et al., 2011). It is an attractive and powerful 
soft computing approach that establishes a machine learning technique (Kumar 
and Hynes, 2020). Compared to the conventional model for achieving better 
prediction accuracy in the conventional model, many researchers made efforts 
to improve the models' structure or combine them with other advanced 
methods (Wei et al., 2019). Accordingly, to predict tool wear accurately and 
reliably under different cutting conditions, many improved conventional models 
and conventional hybrid models are generated (Peng et al., 2019). 
 

Some previous research in monitoring various machining processes using AI-
based models has been done. Li et al. (1996) proposed an AI-based algorithm 
in the drilling process. The system has excellent performance with the tests is a 
fast, effective, and simple method for dealing with multi-sensor, multi-class, and 
overlapped classification problems. The monitoring system of tool wear in the 
turning process based on the methodology proved reliable and practical 
through the AI-based model (Gao and Xu, 2005). Furthermore, an expert 
system model has been applied to predict surface roughness in thermal friction 
drilling (Kumar and Hynes, 2020). A high degree of closeness with 99.23% is 
observed between the experimental and predicted results. The AI-based model 
can be utilized as an appropriate method for the smart classification of various 
milling tool wear states and offers a good performance of the designed tool 
wear monitoring system (Khajavi et al., 2016). Therefore, the expert system 
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has proven as a promising approach for monitoring the tool condition and 
machining process. 
 

1.2  Problem statement  
 

The process of a hole forming in friction drilling is thermal softening, and the 
penetration into the workpiece by the drilling tool is followed. The tool is spin at 
high speed to establish an adequate temperature, and thrust is applied to form 
a hole. It generates high temperatures, and during the drilling process, it affects 
the characteristics and tolerances that are achievable (Miller et al., 2006b). 
Therefore, the drilling tool becomes dull and leads to a shortened service life 
(Kaya et al., 2014). Tool wear in friction drilling is a crucial factor that may 
affect the desired hole diameter's characteristics and tolerances. It has been 
generated by the high temperature and forces generated where the tool nearly 
penetrates the workpiece. The stress is high inside the hole, causes material 
compression, and requires the highest thrust to penetrate the workpiece 
process (Dehghan et al., 2017). The increasing cutting force is caused by tool 
wear; the increased cutting force may intensify the tool's wear. (Wang et al., 
2016).In the meantime, the excessive heat produced in the cutting zone results 
in high energy concentrations on the workpiece's surface. (Sharma and Sidhu, 
2014). The machining parameters' effect on machined parts is not always 
precisely known and plays a very important role in the efficient use of machine 
tools and directly affects the quality of the product. (Wong and Hamouda, 
2002). Thus, it becomes difficult to recommend the machining process's 
optimum machinability data, and the selection of these parameters needs to be 
monitoring. 
 

Method parameters such as feed rate, spindle speed, the drilling tool's 
geometry, workpiece and drilling tool material properties, and workpiece 
thickness affect the friction drilling tool's performance characteristics. (Ku et al., 
2011). The most important and critical parameters in the friction drilling method 
are feed rate and spindle speed. Both parameters are very important to provide 
the highest yields of friction to be generated, which can largely affect the value 
of axial thrust force and torque during the friction drilling process (Ku et al., 
2011), and tool wear (Dehghan et al., 2018). The drilled hole quality and bush 
length can indicate the friction drilling process's efficiency (Miller et al., 2006b). 
The bushes and holes generated by this process could be applied to increase 
the workpiece's thickness for threading. Therefore, since many process 
parameters are required for fabricating the high quality of the drilled hole, it is 
crucial to improve the process performance by determining the friction drilling 
process's optimum process parameters. 
 

The ability to monitor the machining process's behaviour is important from a 
research perspective and in industrial applications such as condition 
monitoring, process optimization, and adaptive control. The main reasons for 
such applications are to reduce production losses due to machining running 
failure and reduce maintenance hence decreasing production costs in an 
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automated manufacturing environment. Performing the machining process with 
a worn tool can increase the friction between the tool-workpiece and degrade 
product quality (Ambhore et al., 2015). Moreover, the worn tool may increase 
power consumption, and late replacement of worn tools may cause 
unpredictable machine breakdown at any time (Yumak et al., 2006). In order to 
accomplish these objectives, it is very important to measure the condition of the 
tool in the process so that when the tool profile is lost or does not comply with 
the specified form, the tool can be replaced, resulting in an increase in the total 
cost of production due to an increase in product scrap or rejection. 
 

Tool condition monitoring and life prediction play an important role in improving 
machine productivity, maintaining the machined part's quality and integrity, 
minimizing material waste, and reducing cost for sustainable manufacturing 
(Wang et al., 2013). Over the years, several approaches have been used in 
metal cutting to track and diagnose tool wear. For the intelligent prediction of 
tool wear, the ANN method was often used. It is necessary to improve an 
ANN's performance since the precision of the multi-sensor integration method 
depends on the precision of pattern recognition (Kuo et al., 1999). The 
backpropagation neural network is typically the most widely used neural 
network in manufacturing-related research (BPNN). BPNN needs to practice for 
a long period of time, however, so its application is constrained. Besides, ANNs 
do not seem to be more sensitive. In some cases, they may be less sensitive 
than the other sensor integration schemes considered to deterministic sensor-
based information errors (Kuo et al., 1999). 
 

O’Donnell et al. (2001) underline the high noise level in vibration and acoustic 
signals as an additional difficulty for TCM. The sensor fusion method for TCM; 
its effect is limited at present (Zhang et al., 2015). Baruah and Chinnam (2007) 
study the drilling process's prognostic problem and applied the Hidden Markov 
model (HMM) to build the prognostic system. However, this model is difficult to 
generalize cutting conditions, which is not present in the training set. Lin and 
Makis (2003) predict the probability of failure by using recursive filters. 
However, the calculation time is long and might not apply to TCM applications. 
They noticed that a reliable tool wear evaluation could be obtained based on 
one signal feature using conventional statistical methods. However, its 
measured feature depends not only on tool wear but also on various other 
process parameters and random disturbances. 
 

Tooling is a high cost, ideally, cutting tools should be maximally utilized to 
reduce manufacturing costs; in practice, cutting tools usually are replaced and 
discarded after a certain period of usage to avoid defects caused by tool 
failure, even though the cutters may still be functional. Frequent tool 
replacement is not only adding machining costs but also impairs productivity. 
As such, the importance of tool condition monitoring has been recognized for 
manufacturing industries to operate at productivity achievement. However, 
most TCM is developed for conventional machining such as drilling, turning, 
grinding, etc. But for the friction drilling process, the TCM system has not yet 
been developed, due to a lack of research on non-conventional machining. 
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According to the issues mentioned above, the fundamental study on friction 
drilling, parametric optimization and artificial intelligence approach to 
monitoring tool wear is needed to be carried out. In sequence, the issue needs 
to be given high considerations in this research are listed below: 
 

1. Prolong the life of the drilling tool needs to be considered in the machining 
process, hence the optimum parameter is important to develop for improving 
performance and reduce tool wear.  
 

2. The nature of the frictional between drilling tool and workpiece generates 
heat and leads to the wear on drilling tool. A study on characterizations of tool 
wear in friction drilling is important to be investigated.  
 

3. Since the high thrust force and high speed rotational generate heat, 
machining with worn tools also produced a high vibration that affects the 
workpiece's quality. Thus, the study on the vibration analysis is conducted with 
the statistical data. 
 

4. The AI-based algorithm can anticipate an output parameter with high 
accuracy. Therefore, the AI-based algorithm effectively develops an offline and 
online predictive model for monitoring tool wear and a tool condition 
classification. 
 

1.3  Research objectives  
 

The main objective of this research work is to develop an AI-based expert 
system for TCM in the friction drilling process. To achieve this aim, the present 
research objectives can be listed as follows:  
 

1.  To determine the optimize process parameters in friction drilling by 
evaluating the bush length and roundness error. 
 

2. To characterize the tool wear in the friction drilling process and its effects to 
drilled hole diameter.  
 

3. To develop the AI-based expert system by processing the vibration signals 
for TCM in friction drilling process.  
 

4. To verify the developed AI-based expert system of in-process vibration 
sensing in real-time TCM for friction drilling process.  
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1.4  Significance of the study  
 

In metal cutting operations, one of the significant obstacles to realizing full 
automation is cutting tool-state prediction, where tool-wear is an important 
factor in productivity and manufacturing efficiency. From a process automation 
viewpoint, a sensing system must be devised to detect the progress of tool 
condition during cutting operation so that tool failures can be identified and 
replaced at that time (Xiaoli et al., 1997). Tool wear monitoring is one of the 
most crucial and inevitable processes in present-day manufacturing systems. 
In the manufacturing industry, 20% of downtime attributed to tool failures 
(Kurada and Bradley, 1997). The tool condition could be monitored through 
process monitoring. Therefore, the combined decision is better than using only 
one kind of signal for both classifications of tool wear condition and prediction 
of tool wear quantity (Zhang et al., 2015). A worn tool is directly affected by the 
quality of the product. Thus the tool condition monitoring is strongly required 
(Ertunc et al., 2001). 
 

Tool life prediction is an integral part of achieving sustainable production by 
improving a computer system's overall efficiency, so a thorough and systematic 
study is required. Several attempts have been made over the past two decades 
to improve instrument state tracking and life prediction techniques (Rehorn et 
al., 2005; Teti et al., 2010). The tool wear or life prediction model is one 
common approach for evaluating machining efficiency. Tool wear condition 
prediction is important to ensure the required surface finish of the component 
and replace cutting tools at the right time (Krishnakumar et al., 2015). Tolouei 
and Shah (2012) reported that properly defined operation sequences and an 
effective algorithm could minimize the time needed for machining, setting-up, 
and tool changing. Hence, to avoid tool failure, there is a real need to monitor 
the cutting tool wear progression from the beginning of the cutting process. 
With an effective monitoring system, the worn tool can be changed in time to 
avoid unexpected downtime (Dimla and Lister, 2000). 
 

This research could answer the questions about the effective parameters, tool 
life, and precise dimension that effectiveness of in-process monitoring for tool 
condition in the friction drilling process. This research's findings are expected to 
contribute a practical technique to analyze the vibration signal with effective 
pattern recognition for development on prediction modelling of tool wear in 
friction drilling. They are also providing a significant approach in the tool 
condition monitoring system to minimize downtime related to tool damaged and 
affected the drilled hole quality. 
 

1.5  Scope and limitation of research 
 

The vibration is a very important factor to evaluate the tool wear in a real-time 
process (Wang et al. 2013). This study used an indirect sensing method via a 
vibration signal during the friction drilling process for a tool condition monitoring 
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(TCM) system. This research's scope is not limited to develop AI-based models 
for tool wear prediction, which has not yet been fully studied in previous 
research works. It also covers the optimization of process parameters and 
characterization of tool wear, which are important before the TCM study. 
 

1. The process parameters used are spindle speed and feed rate only, which 
both are the most significantly influence in producing larger bush length and 
roundness hole drilled in the friction drilling process (El-Bahloul et al., 2015; 
Özek and Demir, 2013).  
 

2. Multi-objective optimization of process parameters is conducted by 
evaluating the bush length and roundness error as multi-output responses 
using grey relational analysis (GRA). It provides an efficient solution to 
uncertainty, multi-inputs and discrete data problem. Subsequently, it can 
develop the relation between machining parameters and performance (Shah et 
al., 2014; Durairaj et al., 2013).  
 

3. An indirect sensing method via a vibration signal is collected using an 
accelerometer-piezoelectric sensor mounted on the spindle head of the CNC 
milling machine to correlate the signal patterns with tool wear. Tool wear was 
evaluated with the dimension change of vibration signals. The vibration 
signatures have significant variations with the tool state (Shankar et al., 2019). 
It was confirmed that utilization of vibration signals was consistent with tool 
wear and is sufficient to develop the correlation (Chuangwen and Hualing, 
2009). 
 

4. The predictive models are developed using an AI-based expert system of 
artificial neural networks (ANN), fuzzy logic (FL), and adaptive neuro-fuzzy 
inference system (ANFIS) to predict the TCM in terms of reduction of tool 
length and changes of tool angle. It is compatible and used in modelling the 
machining process to solve machining problems and can be used successfully 
to establish various tool wear monitoring systems (Salimiasl and Özdemir, 
2016; Roshan et al., 2013; Zain et al. 2010). 
 

1.6  Thesis organization 
 

The thesis presents the research work on TCM of friction drilling process using 
an expert system, and it consists of five chapters are briefly described as 
follows:  
 

Chapter 1 introduces the background and motivation of this research. Problems 
statement, research objectives, significance, and scope of this study are also 
mentioned in this chapter.  
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Chapter 2 reviews the previous works that related to the friction drilling 
process. It includes an overview of the friction drilling process, multi-objective 
optimization, characterization of tool wear, and monitoring and signal 
acquisition. It comprehensively reviews the signal processing and the 
development of AI-based expert system in TCM. 
 

Chapter 3 explain the methodology implemented in this research. It includes 
the materials used and the design of experiments. The main equipment 
employed for experimental work is explained, including the measuring devices 
and engineering software to design and generate the prediction model of tool 
wear. The vibration analysis and feature extraction for signal processing and 
development of AI-based models are also presented. 
 

Chapter 4 discusses the results of experimental, modeling, and verification of 
real-time TCM. Experimental results cover the parametric optimization, 
characterization of tool wear, and signal collection and processing. The 
development of AI-based models is analyzed and compared to define the best 
model for TCM. Then, the TCM model in real-time is verified and discussed. 
 

Chapter 5 presents the overall conclusions of this research work. The main 
contribution of this thesis on the development of the AI-based expert system on 
TCM in friction drilling and some recommendations for future work are stated in 
this chapter. 
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