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Microalgae cultivation is one of the crucial aspects in the commercialization of 
microalgae to produce a high amount of biomass and metabolites. In the 
aquaculture industry, microalgae biomass is used as feed and growth 
enhancers, and it is also considered a renewable and sustainable resource. 
Commercially, Tetraselmis sp. is one of the most commonly used microalgae in 
the aquaculture field. Although there are several studies on the benefits and 
culture conditions of Tetraselmis sp., little information is known about the 
understanding of theoretical and technical knowledge on mass culture, which 
can affect biomass productivity and the quality of microalgae biomass produced. 
The present study aims to obtain key insights of three growth factors considered 
as major contributors on the effect of microalgae growth: (1) ammonium nitrogen 
concentration (chemical parameter), (2) light intensity, and (3) culture 
temperature (physical parameters) for mass production of an indigenous 
species, Tetraselmis tetrathele under tropical conditions. Bubble column 
reactors (BCRs) were used to mimic indoor and outdoor conditions in enhancing 
the growth characteristics of cells, the effect of physiological processes, and the 
composition of metabolites. Overall, this study revealed that although the growth 
performance of T. tetrathele decreased under 35 °C, this indigenous species 
showed excellent self-adaptation capabilities to cope with high ammonium 
nitrogen (0.87 g L-1) and varying light intensities (up to 1,500 µmol m-2 s-1) by 
protecting microalgae from photodamage. These characteristics have significant 
implications for the selection of optimal conditions when designing more efficient 
microalgae culture systems in tropical conditions. The knowledge obtained from 
this work can be useful in assessing the applicability of this strain culture and 
also enhancing the understanding of the physiology of microalgae to sustainably 
maximize microalgae cultivation. Besides, these findings are particularly useful 
for relevant stakeholders to efficiently expand commercialization by selecting 
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high-quality biomass production with specific metabolites of interest in T. 
tetrathele. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMILIHAN KEADAAN PENGKULTURAN MELALUI MANIPULASI 
PARAMETER FIZIKAL DAN KIMIA UNTUK PENGHASILAN METABOLIT 

TINGGI-NILAI DALAM BIOJISIM MIKROALGA MARIN Tetraselmis 
tetrathele (WEST) BUTCHER 1959 

Oleh 

NURUL FARAHIN BINTI ABD WAHAB 

Jun 2021 

Penyelia: Prof. Madya. Natrah Fatin Mohd Ikhsan, PhD 
Institut: Biosains 

Pembiakan mikroalga adalah salah satu aspek yang penting dalam 
pengkomersilan mikroalga untuk menghasilkan biojisim dan metabolit. Dalam 
industri akuakultur, biojisim mikroalga digunakan sebagai bahan makanan dan 
penggalak pertumbuhan, dan ia juga dianggap sebagai sumber boleh 
diperbaharui dan mapan. Secara komersilnya, Tetraselmis sp. adalah salah satu 
daripada spesies mikroalga yang sering digunakan dalam bidang akuakultur. 
Walaupun terdapat banyak kajian mengenai manfaat dan keadaan pengkulturan 
Tetraselmis sp., hanya terdapat sedikit maklumat mengenai pengetahuan 
teknikal dan teori terhadap kultur spesies tersebut yang boleh mempengaruhi 
produktiviti biojisim dan kualiti biojisim mikroalga yang terhasil. Kajian ini 
bertujuan mendapatkan pemahaman penting mengenai tiga faktor pertumbuhan 
yang dianggap sebagai penyumbang utama terhadap kesan pertumbuhan 
mikroalga: (1) kepekatan ammonia nitrogen (parameter kimia), (2) keamatan 
cahaya, dan (3) suhu kultur (parameter fizikal) untuk pengeluaran besar-besaran 
sejenis spesies tempatan, Tetraselmis tetrathele dalam keadaan tropika. 
Reaktor turus gelembung (BCRs) digunakan untuk menyerupai keadaan dalam 
dan luar untuk meningkatkan ciri-ciri pertumbuhan sel, kesan proses fisiologi, 
dan komposisi metabolit. Secara keseluruhannya, kajian ini menunjukkan 
bahawa walaupun prestasi pertumbuhan T. tetrathele berkurang di bawah suhu 
35 °C, namun spesies tempatan ini menunjukkan keupayaan adaptasi kendiri 
untuk menghadapi tahap ammonia nitrogen yang tinggi (0.87 g L-1) dan 
keamatan cahaya yang berubah-ubah (sehingga 1,500 µmol m-2 s-1) dengan 
melindungi mikroalga daripada kerosakan disebabkan oleh cahaya. Ciri-ciri ini 
mempunyai kesan yang signifikan terhadap pemilihan keadaan optimum apabila 
mereka bentuk sistem pengkulturan mikroalga yang lebih berkesan dalam 
keadaan tropika. Pengetahuan yang diperoleh daripada kajian ini berguna untuk 
menilai kebolehgunaan kultur strain ini dan juga meningkatkan pemahaman 
mengenai fisiologi mikroalga untuk memaksimumkan pembiakan mikroalga 
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secara mapan. Selain itu, dapatan kajian ini sangat berguna untuk pihak 
berkepentingan yang berkaitan untuk mengembangkan pengkomersilan secara 
berkesan dengan memilih penghasilan biojisim berkualiti tinggi dengan metabolit 
khusus iaitu T. tetrathele. 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 
1.1 Background of study  
 
 
The rising growth and life expectancy of the global population have increased 
the demand for energy, healthy food, water, drugs, and other resources. This 
has caught the attention of the United Nations Committee on Science, 
Technology, and Innovation to provide scientific grounding to tackle various 
sustainability challenges, in line with the 2030 Agenda for Sustainable 
Development, which includes 17 Sustainable Development Goals (SDGs) 
proposed during the general assembly in September 2015. Microalgae, hailed 
as the “Green Gold”, have emerged as a promising source for innovative and 
sustainable development to solve the global food and energy crisis (Wolkers et 
al., 2011). Microalgae have gained global attention of academicians and 
engineers over the past half-century for numerous reasons. The increase in the 
global demand for microalgae-based products is projected to amount to USD 
53.43 billion by 2026, as compared to USD 32.60 billion in 2017 (Rahman, 2020). 
The growing market demand has resulted in mass microalgae cultivation for use 
in several applications, such as food and animal feed production (Lim et al., 
2017), pharmaceuticals (Ambati et al., 2019), wastewater treatment (Schulze et 
al., 2017), and bioenergy production (Chia et al., 2018; Qu et al., 2020). Owing 
to the increasing market demand for microalgae, microalgae cultivation becomes 
one of the crucial aspects to be focused on for commercialization by producing 
a high amount of biomass and metabolites to fulfill the demands.  
 
 
The environmental conditions, such as nutrients, light, and temperature, are 
some of the main basic requirements for microalgae growth, which subsequently 
affect the quality of biomass produced. Microalgae biomass consists of 
numerous beneficial compounds that are useful in various markets. Microalgae 
are known to produce carotenoids, which are responsible for light harvesting in 
photosynthetic metabolism. Carotenoids play an important role in alleviating 
certain cancers, premature aging, cardiovascular disease, and arthritis (Ambati 
et al., 2019), and also as a coloring agent in chewing gums, candies, and 
beverages (Adarme-Vega et al., 2012). Besides, carotenoids also have 
antiaging, antiobesity, and antioxidant properties, which are considered as better 
alternatives for synthetic compounds (Gong and Bassi, 2016). The specific 
content of metabolites is strain-dependent and can be heavily influenced by the 
culture conditions employed. During photosynthesis, the energy converted from 
sunlight is stored as lipid or carbohydrate within the algae, which is then 
extracted from algae for energy supply. For example, the lipid content of 
microalgae is usually in the range of 20%–50% of the cell dry weight, sometimes 
exceeding 50%, and can also be as high as 80% under certain conditions 
(Brindhadevi et al., 2021; Japar et al., 2021), thus reducing the requirement of 
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other resources for the production of the same amount of oil. Many marine 
microalgae are rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA), and also other fatty acids classes. Fatty acids with 14–20 carbons are 
used for the production of biodiesel, and polyunsaturated fatty acids (PUFAs) 
with more than 20 carbons are used as health food supplements and as feed for 
early larvae of crustacean and fish, early and late larvae mollusk, brine shrimp, 
copepods, and rotifers, especially DHA and EPA (Adarme-Vega et al., 2012; Sun 
et al., 2018). 
 
 
Among the local marine microalgae, Tetraselmis sp. is recognized as one of the 
few species of microalgae that has been explored extensively due to its high 
amount and quality of intracellular content, such as PUFAs for human 
consumption and aquaculture feed (Farhadian et al., 2008), polysaccharides for 
antibiotic development research (Kermanshahi-pour et al., 2014), high vitamin E 
content (Carballo-Cárdenas et al., 2003), and antioxidant for pharmaceutical and 
cosmeceutical purposes (Farahin et al., 2019). This genus is recognized as 
“novel food” and even approved for human consumption of biomass by the 
European Union (Mantecón et al., 2019). In culturing purposes, this strain 
displays high potential for commercial-scale production of biomass due to its high 
growth rate, ability to grow in high ammonium nitrogen (Farahin et al., 2021) and 
seawater with high salinity, and also to outcompete contaminants (Pereira et al., 
2016). Apart from elucidating the capabilities of microalgae with high-density 
cultures, a better understanding of the factors influencing microalgae growth and 
biomass must be acquired (Borowitzka and Vonshak, 2017).  
 
 
1.2 Problem statement 
 
 
The enhancement of cultivation conditions using various techniques contributes 
to the growth and production of numerous compounds in microalgae. The effect 
of abiotic stress on metabolites, such as lipid, fatty acids, and pigment production 
from microalgae and corresponding growth rates, has been considered in 
previous studies (Go et al., 2012; Roleda et al., 2013; Michels et al., 2014a; 
Imaizumi et al., 2016). Nitrogen in the form of either ammonium (NH4

+) or nitrate 
(NO3

-) is an essential nutrient for the growth of microalgae, which subsequently 
contributes to the biomass produced. Several previous studies pointed out that 
different strains of microalgae require different levels of nitrogen uptake (Raven 
et al., 1992; Feng et al., 2020). Meanwhile, ammonium, which is the most 
predominant source of nitrogen, exists in urban, agricultural, and aerobic 
digested effluents with various concentrations, ranging from the concentration 
as low as 0.01 gL-1-N to the concentration as high as 2.0 gL-1-N (de la Noüe et 
al., 1992; Cai et al., 2013; Reddy et al., 2017). Furthermore, ammonium nitrogen 
at a certain level of concentration can be toxic and inhibits the productivity of 
microalgae. Thus, further elucidation of the ammonium nitrogen tolerance in 
microalgae is needed. 
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Besides, commercial-scale production of biomass from this microalgae has 
remained uneconomical due to the challenges of achieving high biomass 
productivity (Gonçalves et al., 2016; Pereira et al., 2018). Light is vital in 
microalgae growth because this source allows microalgae to produce biomass 
and metabolites, as well as fix inorganic carbon into organic molecules 
(Huerlimann et al., 2010; Liu et al., 2019). Microalgae growth depends heavily 
on the degree of light penetration, and different light intensities are required for 
different species and also culture cell density and depth. Several studies 
reported that some species of microalgae could tolerate very high light intensity. 
The differences in light intensity tolerance are due to different cellular 
concentrations; moreover, the thylakoid structure of each species has different 
compositions of light-harvesting pigments (Conceição et al., 2020). However, 
high illumination of microalgae culture negatively affects its photosynthetic 
process due to photoinhibition, resulting in diluted culture with low biomass 
concentrations. Hence, to better solve the above-mentioned problems, it is 
essential to determine microalgae adaptability to varying light intensities to 
control microalgae growth, especially in mass culture.  
 
 
Other than light, temperature is also recognized as another key factor that 
controls the photosynthetic rates of microalgae and autotrophic organisms, 
which are thermally sensitive (Davison, 1991; Veeramani and Santhanam, 
2015). According to the National Oceanic and Atmospheric Administration 
(NOAA) (2020), the past five years recorded the highest temperature range, and 
the average global temperature is now about 1.2 °C above the preindustrial level 
(World Meteorological Organization, 2021). These climatological conditions have 
affected the yield and quality of microalgae biomass. Microalgae are highly 
susceptible to high temperature stress, which impairs their cell functions (Mathur 
et al., 2014). Therefore, the ability to withstand and/or acclimate to the 
environmental temperature variation is essential for the adaptation and survival 
of microalgae.  
 
 
Tetraselmis tetrathele (West) Butcher 1959, a marine green microalga within the 
Chlorophyta isolated from Port Dickson, Malaysia, is recognized as one of the 
few potential species that can produce a large amount and high quality of 
intracellular content, such as PUFAs for human consumption and aquaculture 
feed (Juario and Storch, 1984; Fábregas et al., 2001; Farhadian et al., 2008; 
Michels et al., 2014b), polysaccharides for antibiotic development research 
(Kermanshahi-pour et al., 2014), high content of vitamin E (Carballo-Cárdenas 
et al., 2003), and antioxidant for pharmaceutical and cosmeceutical purposes 
(Farahin et al., 2019). Only a few studies focused on the cultivation of the 
Tetraselmis genus for high biomass production and its relationship with 
photosynthetic performance under stress conditions. The irradiance curves 
assessed by the variable chlorophyll fluorescence method provide in situ 
reaction (Michels et al., 2014b). Based on this information, the determination of 
the photosynthetic system capacity and energy captured for light energy 
processing can be performed. Thus, to maximize the biomass yield of this 
microalga, this study determined the effect of high ammonium nitrogen, high light 
intensity, and culture temperature on the growth rate, photosynthetic activity, and 
production of pigments and fatty acids of T. tetrathele without the limitation of 
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nutrients and carbon dioxide supplies. The knowledge obtained from this work 
could be useful in assessing the applicability of this strain culture under the 
abiotic stress mentioned and also enhancing the understanding of the physiology 
of microalga to sustainably maximize the production of microalgae cultivation.  
 
 
1.3 Research objectives 
 
 
The main objective of this study was to investigate the range of suitable culture 
conditions of T. tetrathele for its applications under tropical conditions. For this 
study, bubble column reactors were used to mimic indoor and outdoor conditions 
in enhancing the growth characterization of cells to study the effect of 
physiological processes and metabolite compositions. 
 
 
The specific objectives of this study using T. tetrathele are as follows: 
 

1) To evaluate the tolerance capability in high ammonium nitrogen on 
growth, physiological response, and metabolite production. 

2) To determine the growth performance of the microalga and its 
metabolites under high light intensity.  

3) To investigate the effect of different temperatures on the growth rate 
and metabolite compositions.  
 
 

With respect to the first objective, this study specifically examined the growth 
rate and photosynthetic efficiency (Fv/Fm) of T. tetrathele in different NH4

+-N 
concentrations, and quantified the production of pigments and PUFAs profiles 
(with NH4

+ and NO3
- as nitrogen sources) under six-day batch cultures. 

Meanwhile, with respect to the second objective, this study determined the effect 
of high light intensity on the growth rate, photosynthetic performance, and 
production (i.e., pigments and fatty acids) of T. tetrathele in semi-continuous 
cultures. Thirdly, with respect to the final objective, this study proceeded to 
investigate the effect of temperature on the growth rate, photosynthetic and 
physiological effects, and compositions (i.e., pigments, lipids, and fatty acids) of 
T. tetrathele under semi-continuous cultivation at the temperature of 25– 35 °C. 
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