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The aminoimidazoazaarenes types of heterocyclic amines (AIA-types of HCAs) 
and the 4PAH of polycyclic aromatic hydrocarbons (PAHs) are chemical 
compounds that form abundantly in muscle meat cooked at 150°C and above 
from the reaction between the amino acids and the reducing sugar. Studies on 
HCAs and PAHs formation are essential as both compounds have been 
classified as carcinogenic by the International Agency for Research on Cancer 
(IARC). Many studies on HCAs and PAHs focused on their formation in food 
samples. However, the most susceptible amino acid and sugar precursor was 
unable to be identified due to the complex system containing many food 
components. Chemical model system have the advantages of allowing 
researchers to study the effect of single precursor on HCAs or PAHs formation 
as the system contains only the precursor. From using chemical model system, 
previous studies have identified phenylalanine, proline, and glycine as the 
amino acids responsible for the formation of the AIA-types of HCAs and the 
4PAH that are abundant in cooked muscle meat. Nevertheless, studies on the 
simultaneous formation are limited although they originated from the same 
precursor and most reported studies focused on HCAs and PAHs formation 
separately. There is also limited data on the rate formation involving kinetic 
studies that can be used to signify the difference between each precursor on 
the formation of HCAs and PAHs. Therefore, the objective of this study is to 
identify the most susceptible amino acid (phenylalanine, proline, and glycine) 
and sugar (glucose, fructose, and sucrose) precursor for the simultaneous 
formation of HCAs and PAHs at household cooking time and temperature using 
chemical model system with the adaption of kinetic study. Essentially, this 
study uses an amino acid model system and a sugar model system to 
investigate the effects of these precursors on the simultaneous formation of 
HCAs and PAHs. The used of phenylalanine, proline, and glycine were 
selected as it was identified by previous studies to from most of the HCAs and 
PAHs compound. Each amino acid model systems were heated at a household 
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cooking temperature and time ranged from 150°C to 270°C at 4 to 16 minutes. 
The data obtained were fitted into the first-order model equation, Arrhenius 
equation, and Eyring equation to determine the rate formation of HCAs and 
PAHs from different amino acid model systems. In sugar model system, 
glucose, fructose, and sucrose were chosen since they are commonly found in 
meat. The formation of HCAs and PAHs were identified and quantified using 
high performance liquid chromatography (HPLC) equipped with photo diode 
array (PDA) and fluorescence (FLD) detectors. Gas chromatography – mass 
spectrometry (GC-MS) screening on the model system containing the most 
susceptible amino acid and sugar was conducted to identify the possible 
intermediate compounds causing the formation of HCAs and PAHs and 
predicting the pathway formation. The findings of this study revealed that 
heating temperature has higher significant effect over heating time. The 
presence of various amino acids significantly influenced the types of HCAs and 
PAHs formed, whereas the presence of sugar highly influenced the amount 
formed. Furthermore, not all amino acid were able to form HCAs but can easily 
form PAHs. Phenylalanine was identified as the precursor for imidazoquinoline, 
imidazoquinoxaline, imidazopyridine; proline was the precursor 
imidazoquinoxaline, and imidazopyridine; whereas as glycine was the 
precursor for imidazoquinoline, and imidazoquinoxaline. Interestingly, all three 
amino acids were the precursor for PAHs which comprises of cata-condensed 
PAHs (benz[a]anthracene, BaA and chrysene, Chry) and peri-condensed PAHs 
(benzo[b]fluoranthen, BbF and benzo[a]pyrene, BaP). The results from the 
kinetic studies revealed that regardless on the types of amino acids used, the 
simultaneous formation of HCAs and PAHs followed the first-order model and 
that the reaction was an endothermic and bimolecular reaction. Based on the 
reaction rate (k) and activation energy (Ea) values obtained from the first-order 
model and the Arrhenius equation, the formations of HCAs and PAHs in each 
amino acid (phenylalanine, proline, and glycine) model systems were formed at 
a relatively different rate. All HCAs and PAHs compounds were identified in the 
heated system of phenylalanine. Hence, phenylalanine was identified as the 
most susceptible amino acid for the simultaneous formation HCAs and PAHs 
followed by glycine and proline. In the sugar model systems, glucose was 
identified as the most susceptible sugar precursor, forming high amount of 
HCAs and PAHs. This was then followed by fructose and sucrose. In general, 
the increased in the amino acid and sugar concentrations resulted in a 
significant increase in the simultaneous formation of HCAs and PAHs. The GC-
MS screening on model system with most susceptible amino acid 
(phenylalanine) and sugar (glucose) precursor identified five compound namely 
4-methyl quinoline, methyl-3-phenylpropanoate, 3,6-dibenzylpiperazine-2,5-
dione, 3-benzyl-6-methylpiperazine-2,5-dione, and creatinine that were 
involved in the pathway formation of HCAs and PAHs. It can be concluded that 
different amino acids highly influence the types of HCAs and PAHs whereas, 
the reducing sugar highly influence the amount of HCAs and PAHs formed. 
Their simultaneously formation occurred at a relatively different rate depending 
on the type of amino acid presence. However, regardless on the type of amino 
acids, the simultaneous formation follows the first order model and the reaction 
was an endothermic and bimolecular reaction. Phenylalanine and glucose were 
identified as the most susceptible precursor for the simultaneous formation of 
HCAs and PAHs. 
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Aminaimidazoazaren daripada amina heterosiklik (AIA-jenis HCA) dan 4PAH 
daripada hidrokarbon aromatik polisiklik (PAH) adalah sebatian kimia yang 
banyak terbentuk dalam daging yang dimasak pada suhu 150°C dan ke atas 
hasil tindak balas antara asid amino dan gula penurun. Kajian mengenai 
pembentukan HCA dan PAH adalah penting kerana keuda-dua sebatian 
tersebut telah diklasifikasikan sebagai karsinogenik oleh International Agency 
for Research on Cancer (IARC). Kebanyakkan kajian mengenai HCA dan PAH 
memberi tumpuan kepada pembentukannya dalam sampel makanan. Walau 
bagaimanapun, asid amino dan gula penurun yang paling mudah membentuk 
HCA dan PAH tidak dapat dikenal pasti oleh kerana sampel makanan 
merupakan sistem kompleks yang mengandungi pelbagai komponen makanan. 
Model sistem kimia mempunyai kelebihan yang membolehkan para penyelidik 
mengkaji kesan satu prekursor terhadap pembentukan HCA atau PAH kerana 
sistem ini menggunakan campuran prekursor. Dengan menggunakan model 
sistem kimia, kajian terdahulu telah mengenal pasti fenilalanina, prolina, dan 
glisina bekebolehan untuk menghasilkan sebilangan besar sebatian HCA dan 
PAH. Namun begitu, kajian mengenai pembentukan serantak HCA dan PAH 
adalah terhad walaupun kedua-duanya terbentuk dari prekursor yang sama 
serta kebanyakan kajian melaporkan pembentukan HCA dan PAH secara 
berasingan. Selain itu, data kadar pembentukan yang melibatkan penggunaan 
kinetik untuk membezakan kadar pembentukan HCA dan PAH dari prekursor 
yang berlainan juga adalah terhad. Oleh itu, objektif kajian ini adalah untuk 
mengenal pasti asid amino (fenilalanina, prolina, dan glisina) dan gula 
(glukosa, fruktosa, dan sukrosa) yang paling mudah membentuk HCA dan PAH 
secara serentak pada masa dan suhu memasak menggunakan gabungan 
model sistem kimia dan kajian kinetik. Secara asasnya, kajian ini 
menggunakan model sistem asid amino dan model sistem gula untuk mengkaji 
kesan kedua-dua prekursor terhadap pembentukan serentak HCA dan PAH. 
Fenilalanina, prolina, dan glisina dipilih kerana kajian terdahulu mendapati asid 
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amino ini berkebolehan untuk menghasilkan sebilangan besar HCA dan PAH. 
Setiap model sistem asid amino dipanaskan pada suhu dan tempoh yang biasa 
digunakan untuk memasak iaitu antara 150°C hingga 270°C selama 4 hingga 
16 minit. Data yang diperolehi digunakan dalam persamaan model peringkat-
pertama, persamaan Arrhenius, dan Eyring untuk menentukan kadar 
pembentukan HCA dan PAH. Dalam model sistem gula, glukosa, fruktosa, dan 
sukrosa dipilih kerana kebiasanya yang terdapat dalam daging. Pembentukan 
HCA dan PAH dikenalpasti dan dikuantifikasi dengan menggunakan 
kromatografi cecair berprestasi tinggi (HPLC) yang dilengkapi dengan alat 
pengesan foto dioda (PDA) dan pendarfluor (FLD). Analisis kromatografi gas - 
spektrometri jisim (GC-MS) pada model sistem yang mengandungi asid amino 
dan gula yang paling mudah membentuk HCA dan PAH dilakukan untuk 
mengenal pasti sebatian perantaraan dan meramalkan laluan 
pembentukannya. Hasil kajian menunjukkan kesan suhu pemanasan adalah 
lebih signifikan berbanding dengan masa pemanasan. Kepelbagaian asid 
amino mempengaruhi jenis HCA dan PAH, manakala kehadiran gula 
mempengaruhi jumlah yang terbentuk. Tidak semua asid amino berkebolehan 
membentuk HCA tetapi membentuk PAH dengan mudah. Fenilalanina dikenal 
pasti sebagai prekursor kepada imidazokuinolina, imidazokuinoxalina, dan 
imidazopiridina; prolina adalah prekursor kepada imidazokuinoxalina dan 
imidazopiridina; manakala glisina adalah prekursor kepada imidazokuinolina 
dan imidazokuinoxalina. Namun begitu, ketiga-tiga asid amino itu merupakan 
prekursor kepada PAH yang terdiri daripada PAH cata-condensed dan peri-
condensed. Hasil kajian kinetik pula menunjukkan tanpa mengira jenis asid 
amino yang digunakan, pembentukan serentak HCA dan PAH mengikuti model 
peringkat-pertama dan tindak balas yang terbentuk adalah tindak balas 
endoterma dan dwimolekul. Berdasarkan nilai kadar tindak balas (k) dan nilai 
tenaga pengaktifan (Ea) yang diperolehi dari model peringkat-pertama dan 
persamaan Arrhenius, pembentukan HCA dan PAH dalam setiap asid amino 
terbentuk pada kadar yang berbeza. Sistem fenilalanina berkebolehan 
membentuk kesemua sebatian HCA dan PAH. Oleh itu, fenilalanina dikenal 
pasti sebagai prekursor yang paling mudah untuk membentukan HCAs dan 
PAH secara serentak diikuti oleh glisina dan prolina. Dalam model sistem gula, 
glukosa telah dikenal pasti sebagai prekursor gula yang paling mudah 
membentuk HCA dan PAH dalam jumlah yang tinggi. Ini kemudian diikuti oleh 
fruktosa dan sukrosa. Secara amnya, peningkatan kepekatan asid amino dan 
gula mengakibatkan peningkatan ketara dalam pembentukan HCA dan PAH 
secara serentak. Analisis GC-MS pada model sistem yang mengandungi 
prekursor asid amino (fenilalanina) dan gula (glukosa) yang paling mudah 
membentuk HCA dan PAH mengenal pasti lima sebatian yang terlibat dalam 
laluan pembentukkannya iaitu 4-metil kuinolina, metil-3-fenilpropanoate, 3,6-
dibenzilpiperazina-2,5-diona, 3-benzil-6-metilpiperazina-2,5-diona dan keratina. 
Dapat disimpulkan bahawa asid amino yang berlainan mempengaruhi jenis 
HCA dan PAH manakala gula mempengaruhi jumlah HCA dan PAH yang 
terbentuk. Pembentukan serentak sebatian ini berlaku pada kadar yang 
berbeza bergantung kepada jenis asid amino yang digunakan. Walau 
bagaimanapun, tanpa mengira jenis asid amino, tindak balas yang berlaku 
adalah tindakbalas endoterma, dwimolekul dan mengikuti model peringkat-
pertama. Fenilalanina dan glukosa dikenal pasti sebagai prekursor yang paling 
mudah untuk pembentukan serentak HCA dan PAH. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Study background  

 
 
Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are 
compounds formed in cooked muscle meat as a result of thermal processing 
(Singh et al., 2016; Puangsombat et al., 2012; El Badry, 2010; Iwasaki et al., 
2010; Jahurul et al., 2010). The presence of HCAs and PAHs in cooked muscle 
meat are of major concern, as both compounds have been classified as 
carcinogenic to humans (Group 1), probably carcinogenic to humans (Group 
2A), and possibly carcinogenic to humans (Group 2B) by the International 
Agency for Research on Cancer (IARC). Among the groups of HCAs and 
PAHs, the aminoimidazoazaarenes (AIA) types of HCAs and the four PAHs 
were abundantly found in cooked muscle meat. The four PAHs are known as 
benzo[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF), and 
benzo[a]pyrene (BaP). Whereas, the AIA can be classified into three groups of: 
 

i- Imidazoqunoline: 2-amino-3-methylimidazo[4.5-f]quinoline (IQ) and 
2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) 
ii- Imidazoquinoxaline: 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx) 
and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) 
iii- Imidazopyridine: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine 
(PhIP) (Cheng et al., 2006; Schut and Snyderwine, 1999) 
 

 
The presences of HCAs and PAHs in cooked muscle meat have been 
documented in numerous studies. Examples of cooked meat products with high 
HCAs and PAHs content  are grilled beef and chicken (15 – 1185 ng/g HCAs; 
48 – 342 ng/g PAHs), fried chicken (23 ng/g HCAs; 10 ng/g PAHs), chicken 
and beef satay (14 – 39 ng/g HCAs; 14 – 132 ng/g PAHs), and smoked fish (8 
ng/g HCAs; 255 – 263 ng/g PAHs) (Onwukeme et al., 2015; Puangsombat et 
al., 2012; Alomirah et al., 2011; Farhadian et al., 2010; Iwasaki et al., 2010; 
Jahurul et al., 2010). Previous studies suggested that free amino acids and 
reducing sugars are the precursors that trigger the formation of  HCAs and 
PAHs via Maillard reaction by heating chemical model systems at 125 – 230°C 
and 600 – 900°C, respectively (Gibis, 2016; Dennis et al., 2015; Britt et al., 
2004; Murkovic, 2004a, 2004b; Sharma et al., 2004). Despite the fact that meat 
contains a small amount of reducing sugars and mixtures of amino acids at 
varying concentrations, previous studies discovered that among the amino 
acids, phenylalanine and glycine formed the majority of HCAs compounds, 
while phenylalanine and proline formed the majority of PAHs compounds (Britt 
et al., 2004; Murkovic, 2004a, 2004b; Wang et al., 2004a; Sharma et al., 2003; 
Zochling and Murkovic, 2002). The presence of these amino acids in muscle 
meat ranged from 1.2 – 4.5 µmol/g for phenylalanine, 1.9 – 10 µmol/g for 
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proline, and 9.0 – 21.1 µmol/g for glycine (Borgen et al., 2001; Skog et al., 
2000).  
 
 
Bordas et al. (2004) discovered that, the addition of phenylalanine, glycine and 
alanine into a meat extract model system heated at 175°C for 2 hours, 
enhanced the formation of imidazoquinoxaline type-HCAs namely IQx (43 ng/g) 
and MeIQx (478 ng/g) which was not identified earlier in the meat extract model 
system. The addition of the amino acids also increased the formation of 
imidazopyridine type-HCAs namely PhIP from 16.7 ng/g to 83 ng/g. Another 
study by Borgen et al. (2001) also discovered high formation of 
imidazoquinoxaline type-HCAs (MeIQx and DiMeIQx) in pork chop model 
system and high formation of imidazopyridine type-HCA (PhIP) in chicken 
breast model system. Based on the amino acid profiles, pork chop contains 
21.1 µmol/gdm of glycine and 3.6 µmol/gdm of phenylalanine while chicken 
breast contains 12.8 µmol/gdm of glycine and 4.5 µmol/gdm of phenylalanine. 
The formation of imidazopyridine type-HCAs (PhIP) using chemical model 
system containing mixtures of phenylalanine, creatinine, and glucose in a ratio 
of 2:2:1 heated at 128 – 200 °C for 10 – 60 minutes have been reported by 
Moon and Shin (2013a, 2003b), and Zochling and Murkovic (2002). 
Furthermore, Grivas et al. (1986), Kato et al. (1996) and Jokic et al. (2001) 
have shown that heated mixtures of glycine, creatinine, and glucose formed the 
imidazoquinoline (IQ and MeIQ) and the imidazoquinoxaline type-HCAs (IQx 
and MeIQx).  
 
 
Majority of studies on PAHs formation used amino acid pyrolysis at extremely 
high temperature ranging from 600 – 900°C. Not much study reported on 
model system based on meat, mixture of amino acids, and mixture of amino 
acids with sugar. Among the amino acids that were identified to generate PAHs 
were leucine and glutamic acids discovered by Masuda et  al. (1967), 
phenylalanine, proline, and serine by Nie et al. (2018), and asparagine by 
Sharma et al. (2009). However, studies by Nie et al. (2018), Britt et al. (2004), 
and Wang et al. (2004) discovered that the pyrolysis of phenylalanine at 600 °C 
and above, enhanced the formation of up to 12 PAH compounds including the 
4PAH (BaA, Chry, BbF, and BaP).  
 
 
Reducing sugar was also involved in the Maillard reaction for HCAs and PAHs 
formation. Nor Hasyimah et al. (2018) and Hasnol et al. (2014) reported that 
marinating meat with herbs and spices increased glucose levels from 0.2 
g/100g to 0.9 g/100g, and marinating chicken with honey increased glucose 
levels from 1.60 g/100g to 3.68 g/100g respectively. The increase in glucose 
levels had a significant effect on the formation of HCAs compound. The use of 
chemical model system containing mixtures of amino acid with different 
reducing sugars such as glucose, fructose, galactose, and lactose resulted in 
the increased of HCAs and PAHs formations (Nie et al., 2018; Dennis et al., 
2015; Britt et al., 2004). In addition, mixtures of glycine and creatinine with non-
reducing sugar such as sucrose also showed increased in the mutagenic 
activity from Salmonella strain TA989 test, which later corresponded to 
imidazoquinoxaline type-HCAs (Skog and Jägerstad, 1990). 
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The formations of HCAs and PAHs were also influenced by other factors such 
as heating time, heating temperature, water activity and pH. The effect of 
heating time and heating temperature on the formation of HCAs and PAHs 
referred to as the cooking method. A model system was recently constructed to 
determine the time and temperature dependence on HCAs and PAHs 
formation. In general, the formation of HCAs and PAHs increased with the 
increase in heating time and temperature (Gibis, 2016; Alaejos and Afonso, 
2011; Cheng et al., 2006). Water serves as transport medium for water soluble 
precursors to be transported to the surface of the product, exposing to higher 
temperature and increasing the formation of HCAs and PAHs (Gibis, 2016; 
Cheng et al., 2006). It is also known that pH value of the medium influence the 
Maillard reaction (Linghu et al., 2020). At pH 3 – 7, the concentration of 
Amadori compound increased, resulting in high HCAs formation (Linghu et al., 
2020; Cremer and Eichner, 2000; Puangsombat et al., 2012).   
 
 
Previous studies have also incorporated kinetics study to predict the reaction 
rate of each individual HCAs compounds (Moon and Shin, 2013a; Arvidsson et 
al., 1997). The kinetic study was applied in a model systems containing 
mixtures of several amino acids, mixtures of phenylalanine with creatinine and 
glucose, meat juice, and in meat emulsion (Ahn and Grün, 2005; Hwang and 
Ngadi, 2002; Arvidsson et al., 1999). The use of kinetic parameters has 
allowed researchers to determine and differentiate the reaction rate (speed of 
reaction) of each individual HCAs compounds in the system. 
 
 
1.2 Problem statement 
 
 

The simultaneous formation of HCAs and PAHs is unavoidable. Nonetheless, 
the formation's level is controllable. To control the levels of formation, it is 
necessary to first understand the major factor that influences the formation of 
HCAs and PAHs. The major factor that caused the formation of HCAs and 
PAHs is the presences of amino acids and reducing sugar in meat that is 
believed to be a precursor for HCAs and PAHs. The formation was triggered 
via Maillard reaction between the amino acids and the reducing sugars in the 
presences of heating temperature and heating time. Based on previous 
studies, phenylalanine, proline, glycine, and reducing sugar have been 
identified as the precursors that formed the majority of HCAs and PAHs 
compounds. 
 
 
Several studies have documented the use of chemical model system to study 
the formation of HCAs and PAHs. However, limited data was available on the 
simultaneous formation even though these compounds were derived from the 
same precursors. Up to date, the incorporation on kinetic study in chemical 
model system for studying the simultaneous formation of HCAs and PAHs has 
not been reported. The use of kinetic studies is extremely beneficial for 
determining the reaction rate of each individual HCAs and PAHs compound as 
a function of time and temperature from various precursors. Furthermore, the 
majority of reported studies on PAHs formation focused on PAHs occurrence in 
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the environment via amino acids pyrolysis at extremely high temperature of 
more than 600°C, which is not a common practise in household cooking 
methods.  
 
 
Therefore, the aim of this research is to identify the most susceptible amino 
acid and sugar precursors among phenylalanine, proline, glycine, reducing and 
non-reducing sugars using an amino acid model system and a sugar model 
system heated at commonly used household cooking times and temperatures, 
as well as to predict the pathway formation from the most susceptible amino 
acid and sugar precursor by identifying the intermediate compounds. 
 
 
1.3 Significance of study 
 
 
The use of chemical model systems (amino acid model system and sugar 
model system) in this study that only include the precursors (amino acids, 
sugar, and creatinine) allows researchers to modify the precursor content in 
order to investigate the effect of single precursor on the simultaneous formation 
of HCAs and PAHs. This will be a difficult task if food model system was used 
since other food components in the food may interfere with HCAs and PAHs 
formation. The amino acid precursor namely phenylalanine, proline, and 
glycine were chosen since they have previously been shown to be capable of 
forming majority of the HCAs and PAHs (Nie et al., 2018; Wang et al., 2004a; 
Jägerstad et al., 1991).  
 
 
The adaptation of kinetic studies in each amino acid model systems can 
differentiate the rate formation of each individual HCAs and PAHs compounds. 
Heating the system at common household cooking time and temperature may 
provide insight information on how these compounds are formed during 
cooking. Furthermore, because sugar is also a component of muscle meat 
composition, the data obtained from sugar model systems can be used to 
identify the significant effect of reducing sugar and non-reducing sugar on the 
simultaneous formation of HCAs and PAHs. Identifying the intermediate 
compounds and predicting the pathway formation of HCAs and PAHs can 
provide better understanding of how these compounds are form. 
 
 
It is important to understand how HCAs and PAHs are formed as these 
compounds can form DNA adduct in the human body exposing to the risk of 
cancer. The data obtained from this study can contribute to the existing 
database of HCAs or PAHs formation using chemical model system. 
Furthermore, the findings can also provide awareness for consumer into the 
development of methods and precautions steps for the household cooking 
method or commercial processing to reduce or control the formation of these 
carcinogenic and mutagenic compounds. 
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1.4 Objectives of the study 
 
 

This research will cover three objectives as follows: 
 
1. To determine the effect of time and temperature on the simultaneous 

formation of HCAs and PAHs in three different amino acid model systems 
and their formation kinetics. 
 

2. To determine the most susceptible amino acids precursor among 
phenylalanine, proline, and glycine for the simultaneous formation HCAs 
and PAHs.  
 

3. To evaluate the role of reducing sugar and non-reducing sugar in the 
simultaneous formation of HCAs and PAHs and predicting the pathway 
formation through intermediate compounds. 

 
 
1.5 Hypothesis of the study 
 
 

1. The simultaneous formation of HCAs and PAHs will increase as the heating 
time and temperature increase in phenylalanine, proline, and glycine model 
systems. 

 
2. Among the amino acids, phenylalanine will be the most susceptible amino 

acid precursor for HCAs and PAHs formation compare to proline and 
glycine.  

 
3. Both reducing sugar and non-reducing sugar influence the concentrations 

of HCAs and PAHs. HCAs and PAHs forms through different pathways 
involving different intermediate compounds. 
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1.6 Research flow  
 
 

Figure 1.1 and Figure 1.2 illustrate the amino acid model system and sugar 
model system, which will be use in the research.  
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
Figure 1.1 : Flow chart of amino acid model system 
  
 
 
 
 

Amino Acid Model System: 

Objective 2: To determine the most susceptible amino acids precursor among 
phenylalanine, proline, and glycine for the simultaneous formation HCAs and PAHs.  

 

Model system: Glycine Model System 

 Identify the effect of time and temperature 
on HCAs and PAHs formation.  

 Identify the kinetics formation of HCAs and 
PAHs. 

 Identify the effect of glycine 
concentration on HCAs and 
PAHs formation. 

Objective 1: To determine the effect of time and temperature on the simultaneous 
formation of HCAs and PAHs in three different amino acid model systems and 
their formation kinetics 

Model system: Phenylalanine Model 
System 

 Identify the effect of time and temperature 
on HCAs and PAHs formation.  

 Identify the kinetics formation of HCAs and 
PAHs. 

 Identify the effect of 
phenylalanine concentration 
on HCAs and PAHs 
formation. 

Model system: Proline Model System 

 Identify the effect of time and temperature 
on HCAs and PAHs formation.  

 Identify the kinetics formation of HCAs and 
PAHs. 

 Identify the effect of proline 
concentration on HCAs and 
PAHs formation. 
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Figure 1.2 : Flow chart of sugar model system 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sugar Model System: 

Identify effect of reducing sugar and non-reducing sugar at different concentration on 
HCAs and PAHs formation. 

Objective 4: To evaluate the role of reducing sugar and non-reducing sugar in the 
simultaneous formation of HCAs and PAHs and predicting the pathway formation 
through intermediate compounds 

 Reducing sugar model system 
i- Glucose model system 
ii- Fructose model system 

 Non-reducing sugar model 
system 
i- Sucrose model system 

GCMS screening identificationof intermediate compound 

Perdicting HCAs (imidazoquinoline, imidazoquinoxaline and imidazopyridine) and 
PAHs pathway formation 
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