NUTRIENT UPTAKE BY RICE PLANT
INOCULATED WITH MICROAEROPHILIC RHIZOBACTERIA
ISOLATED FROM SELECTED RICE SOILS

NEO SYE PENG

FP 2002 11
NUTRIENT UPTAKE BY RICE PLANT
INOCULATED WITH MICROAEROPHILIC RHIZOBACTERIA
ISOLATED FROM SELECTED RICE SOILS

By
NEO SYE PENG

Thesis Submitted to The School of Graduate Studies,
Universiti Putra Malaysia, in Fulfilment of The Requirement for
The Degree of Master of Science

February 2002
Dedicated to my family
The major problem of rice cultivation is low efficiency of N fertilizer and increasing production costs due to the rising price of N fertilizer. Nitrogen fertilizer inputs constitute a high proportion of the price of production. The biological nitrogen fixation technology by inoculating plants with diazotrophic rhizobacteria is an alternative that would subsequently reduces cereal production cost.

The study consisted of two experiments. Experiment I was the isolation of microaerophilic rhizobacterial strains from rice soil. Experiment II was a glasshouse experiment to study the effect of selected microaerophilic rhizobacteria on rice nutrient uptake under glasshouse condition.

From the isolation procedures, 62 rhizobacterial isolates were collected from different rice soils. Twenty-six or 41.93% isolates showed positive results in nitrogen-free media test. Among the positive strains, six isolates
(designated as E18, E23, E38, E40, E44 and E47) with comparatively the highest c.f.u. were studied under the microscope and applied as inoculant in subsequent glasshouse experiment.

In the glasshouse experiment, a factorial experiment comprising 6 strains X 5 concentrations of nitrogen input with 5 replications were set up giving a total of 150 pots.

Rice plants inoculated with rhizobacteria E44 showed the tendency to increase nitrogen content, rhizobacteria E38 tends to increase plant phosphorus content, and rhizobacteria E40 inoculation tends to increase dry weight of rice plants. Meanwhile, inoculation of rhizobacteria E40 showed the tendency to increase shoot magnesium content while rhizobacteria E23 tends to increase root magnesium content. There was no obvious result that shows either potassium and calcium uptake of rice plant were promoted by inoculation with the isolated rhizobacteria.

In conclusion, rhizospheres of rice cultivation areas were found to have high populations of microaerophilic rhizobacteria that have the potential to be diazotrophs. The selected rhizobacterial strains respectively showed the trend to promote plant growth (in term of total dry weight) and nutrient (nitrogen, phosphorus, potassium, calcium and magnesium) uptake of rice plants. Therefore, they could have the potential to be applied as biofertilizer or bioenhancer.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGAMBILAN NUTRIEN OLEH POKOK PADI YANG DIINOKULASI RHIZOBAKTERIA MIKROAEROFILIK YANG DIPEROLEHI DARIPADA TANAH PADI TERPILIH

Oleh

NEO SYE PENG

Februari 2002

Pengerusi : Dr. Halimi Mohd. Saud
Fakulti : Pertanian

Masalah utama dalam penanaman padi adalah kadar keberkesanan baja nitrogen yang rendah dan kos pengeluaran yang melambung oleh sebab peningkatan harga baja nitrogen. Penggunaan baja nitrogen merangkumi sebahagian besar kos pengeluaran. Teknologi pengikatan nitrogen secara biologi yakni penginokulatan pokok dengan rhizobakteria diazotrofik merupakan satu pilihan yang boleh mengurangkan kos pengeluaran bijirin.

Daripada prosedur pengasingan, 62 rhizobakteria telah diperolehi daripada tanah-tanah sawah padi. Dua puluh enam atau 41.9% rhizobakteria terperoleh menunjukkan keputusan positif dalam kajian media tanpa nitrogen.
Di kalangan rhizobakteria yang berkeputusan positif, enam rhizobakteria (dinama sebagai E18, E23, E38, E40, E44 and E47) yang berkecenderungan untuk menghasilkan koloni yang paling banyak telah dipilih dan digunakan sebagai inokulan dalam kajian rumah kaca. Dalam kajian rumah kaca, satu rekabentuk berfaktoran dengan 6 isolat X 5 kepekatan nitrogen dan 5 replikasi yang berjumlah 150 pasu telah dijalankan.

Dalam analisis statistik, padi yang diinokulasi dengan rhizobakteria E44 menunjukkan kecenderungan meningkat kandungan nitrogen, rhizobakteria E38 cenderung untuk meningkatkan kandungan phosphorus dan rhizobakteria E40 untuk berat kering pokok padi. Sementara itu, inokulasi rhizobakteria E40 didapati bercenderung untuk meningkatkan kandungan magnesium pucuk manakala rhizobakteria E23 untuk magnesium akar. Tidak ada keputusan yang ketara menunjukkan peningkatan pengambilan kedua-dua nutrien kalium dan kalsium oleh padi yang diinokulasi dengan rhizobakteria.

Kesimpulannya, rizosfera kawasan sawah padi didapati mengandungi populasi rhizobakteria mikroaerofilik yang tinggi dan berpotensi diazotrof. Rhizobakteria yang terpilih didapati masing-masing berkecenderungan meningkatkan tumbesaran padi (dari segi berat kering) and pengambilan nutrien (nitrogen, fosforus, kalium, kalsium dan magnesium) yang tertentu. Oleh itu, rhizobakteria tersebut berpotensi dijadikan “biofertilizer” atau “bioenhancer”.
ACKNOWLEDGEMENTS

I wish to acknowledge generous individuals whose valuable support made this study a success and the completion of this thesis possible. I am immensely indebted to them and my only means of repaying them is to express a heartfelt gratitude and a sincere appreciation.

Foremost is to my supervisor, Dr. Halimi Mohd. Saud, Chairperson of the Supervisory Committee, who provided me scholarly insights, professional guidance and knowledge, moral support and understanding when I needed them the most. To Associate Professor Dr. Mohd. Khanif Yusop, member of the Supervisory Committee, not only for his valuable comments but also for those precious words of encouragement which keeps me going when the progression becomes tough. Sincere appreciation also goes to Dr. Anuar Abd. Rahim, member of the Supervisory Committee, for his help, comments and guidance on the statistical analysis of the data. My sincere thanks.

Special thanks go to all lecturers, and laboratory staffs and seniors in the Department of Land Use and Land Management and especially to Mr. Amir, Mr. Baset, and Pn. Zarina in the Microbiology laboratory, for their invaluable help in the analyses of my samples. They will always be remembered with gratitude.

To my colleagues, Mr. Chng Loi Peng, Mr. Tai Kin Leong, Miss Tan Geok Hun, Miss Choo Ee Fong, and other post graduate students in the
faculty, for their generosity and countless invaluable help which made my work in the laboratory and field bearable and pleasant.

I also wish to thank all my friends especially, Mr. Soong Khang Wei, Mr. Khor Kok Chin, Mr. Lee Choon Keat, Mr. Yeoh See Hon, Miss Yong Bee Fong and En. Alias for their help, cooperation, support, and encouragement in my difficult and depressing moment in finishing this work.

Finally, I wish to express my deepest appreciation to my beloved parents, brothers, sisters and Miss Yap, for their patience and endurance and for standing by me through those difficult times. To them, I dedicate this work.
I certify that an Examination committee met on 18th February 2002 to conduct the final examination of Neo Sye Peng on his Master of Science thesis entitled “Nutrient Uptake by Rice Plant Inoculated with Microaerophilic Rhizobacteria Isolated from Selected Rice Soils” in the accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

AZIZAH HASHIM, Ph. D.
Professor
Department of Land Management
Faculty of Agriculture
University Putra Malaysia
(Chairman)

HALIMI MOHD. SAUD, Ph.D.
Lecturer
Department of Land Management
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

MOHD. KHANIF YUSOP, Ph.D.
Associate Professor
Department of Land Management
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ANUAR ABD. RAHIM, Ph.D.
Lecturer
Department of Land Management
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

SHAMSHER MOHAMD. RAMADILI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies,
Universiti Putra Malaysia

Date: 19 APR 2002
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

AINI IDERIS, Ph.D.
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 JUN 2002
I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NEO SYE PENG

Date: 16.4.2002
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 - Rice
 - Rice in Malaysia
 - The Roles of Nitrogen, Phosphorus and Potassium in Rice Plant
 - Problem in Rice Cultivation
 - Soil Fertility
 - Disease and Pest
 - Diazotrophs
 - Rice Inoculation with Diazotrophs
 - Factors Affecting Growth and Colonization of Diazotrophs
 - Carbon and Energy Resources
 - Temperature
 - pH
 - Physiological Age
 - Moisture
 - Oxygen
 - Light
 - Nutrient Uptake of Plants with Diazotroph Inoculations

3. **EXPERIMENT 1: ISOLATION OF MICROAEROPHILIC BACTERIA FROM RICE SOILS**
 - Introduction
 - Objective
 - Materials and Methods
 - Soil Samples Collection
 - Bacteria Isolation and Preservation
 - N-free Media Test
 - Colony Forming Unit (cfu) Assessments
 - Microscopy Study
 - Results
 - Discussion

xii
EXPERIMENT 2: EFFECT OF SELECTED MICROAEROPHILIC RHIZOBACTERIA ON RICE GROWTH UNDER GLASSHOUSE CONDITION

Introduction 37
Objective 38
Material and Methods 38
 Inoculations Preparation 38
 Media Preparation 39
 Glasshouse Experiment Plots 39
 Post Harvest Analysis 41
Statistical Analysis 42
 Trend Analysis 42
 Regression Analysis 43
 Dunnett Test 43
 Duncan’s Multiple Range Test 44
 Principal Component Analysis 44
 Multiple Regression Analysis with Stepwise 44
Results 46
Statistical Analysis 54
 Trend Analysis for Nitrogen Contents of Shoot and Root Portions 54
 Trend Analysis for Phosphorus Contents of Shoot and Root Portions 59
 Trend Analysis for Potassium Contents of Shoot and Root Portions 63
 Trend Analysis for Calcium Contents of Shoot and Root Portions 67
 Trend Analysis for Magnesium Contents of Shoot and Root Portions 71
 Trend Analysis for Dry Weight of Shoot and Root Portions 73
Dunnett’s Test and Duncan’s Multiple Range Test 78
 Rhizobacteria E18 78
 Rhizobacteria E23 79
 Rhizobacteria E38 80
 Rhizobacteria E40 81
 Rhizobacteria E44 81
 Rhizobacteria E47 82
Principal Component Analysis 83
 Principal Component Selection for Rhizobacteria E18 83
 Principal Component Selection for Rhizobacteria E23 84
 Principal Component Selection for Rhizobacteria E38 85
 Principal Component Selection for Rhizobacteria E40 86
 Principal Component Selection for Rhizobacteria E44 87
 Principal Component Selection for Rhizobacteria E47 88
Multiple Linear Regression Analysis with Stepwise 90
Discussion 93
5 SUMMARY AND CONCLUSIONS 99

BIBLIOGRAPHY 102
APPENDICES 119
BIODATA OF THE AUTHOR 157
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Description of The Collected Rice Soil Samples.</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Selected Chemical and Physical Properties of Rice Soil Samples.</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Colony Forming Units (c.f.u.) of 26 Selected Isolates.</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Colonial Characteristics of Selected Isolates.</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Concentration of N Applied in Glasshouse Experiment.</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Selected Rhizobacterial Applied in Glasshouse Experiment.</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of ANOVA for Factorial Analysis (Rhizobacteria x N Input)</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Nitrogen Contents (mg pot⁻¹) (n=20)</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Nitrogen Contents (mg pot⁻¹) (n=20)</td>
<td>58</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Phosphorus Contents (mg pot⁻¹) (n=20)</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Phosphorus Contents (mg pot⁻¹) (n=20)</td>
<td>62</td>
</tr>
<tr>
<td>4.8</td>
<td>Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Potassium Contents (mg pot⁻¹) (n=20)</td>
<td>64</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Potassium Contents (mg pot⁻¹) (n=20)</td>
<td>66</td>
</tr>
</tbody>
</table>
4.10 Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Calcium Contents (mg pot\(^{-1}\)) (n=20)

4.11 Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Calcium Contents (mg pot\(^{-1}\)) (n=20)

4.12 Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Magnesium Contents (mg pot\(^{-1}\)) (n=20)

4.13 Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Magnesium Contents (mg pot\(^{-1}\)) (n=20)

4.14 Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Dry Weight (g pot\(^{-1}\)) (n=20)

4.15 Summary of Regression Analysis for The Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Dry Weight (g pot\(^{-1}\)) (n=20)

4.16 Summary of Multiple Linear Regression Analysis. (n=20)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Nfb Test Results in Percentage.</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Example of Pellicle Formation by Microaerophillic Bacteria in Nfb Semi-solid Agar.</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Single Cell Morphology of Isolates E18, E23, E38, E40, E44 and E47.</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison among Treatments of Shoot and Root Nitrogen Contents for Rhizobacteria E18, E23, E38, E40, E44 and E47.</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison among Treatments of Shoot and Root Phosphorous Contents for Rhizobacteria E18, E23, E38, E40, E44 and E47.</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison among Treatments of Shoot and Root Potassium Contents for Rhizobacteria E18, E23, E38, E40, E44 and E47.</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison among Treatments of Shoot and Root Calcium for Rhizobacteria E18, E23, E38, E40, E44 And E47.</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison among Treatments of Shoot and Root Magnesium Contents for Rhizobacteria E18, E23, E38, E40, E44 And E47.</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison among Treatments of Shoot and Root Dry Weight for Rhizobacteria E18, E23, E38, E40, E44 and E47.</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Nitrogen Contents (mg pot⁻¹).</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Nitrogen Contents (mg pot⁻¹).</td>
<td>58</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Phosphorus Contents (mg pot⁻¹).</td>
<td>60</td>
</tr>
</tbody>
</table>
4.10 Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Phosphorus Contents (mg pot⁻¹).

4.11 Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Potassium Contents (mg pot⁻¹).

4.12 Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Potassium Contents (mg pot⁻¹).

4.13 Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Calcium Contents (mg pot⁻¹).

4.14 Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Calcium Contents (mg pot⁻¹).

4.15 Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Magnesium Contents (mg pot⁻¹).

4.16 Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Magnesium Contents (mg pot⁻¹).

4.17 Effect of Rhizobacterial Inoculation and Nitrogen Input on Shoot Dry Weight (g pot⁻¹).

4.18 Effect of Rhizobacterial Inoculation and Nitrogen Input on Root Dry Weight (g pot⁻¹).
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAO</td>
<td>Federal Agriculture Organization</td>
</tr>
<tr>
<td>BNF</td>
<td>Biological Nitrogen Fixation</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysia Agriculture Research and Development Institute</td>
</tr>
<tr>
<td>Ndfa</td>
<td>Nitrogen derived from air (atmosphere)</td>
</tr>
<tr>
<td>ARA</td>
<td>Acetylene reduction assay</td>
</tr>
<tr>
<td>Nfb</td>
<td>Nitrogen-free semisolid agar</td>
</tr>
<tr>
<td>c.f.u.</td>
<td>Colonies forming unit</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>AA</td>
<td>Autoanalyser</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic absorption system</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Nitrogen is always the major factor limiting the yield of lowland rice in tropical area. Yoshida (1981) reported that the efficiency of N fertilizer in lowland rice cultivation in the tropics is low. Field studies with flooded rice have shown that about 70% of the applied nitrogen can be lost due to denitrification, ammonia volatilization (Freney et al., 1990; Buresh et al., 1993), and leaching or run-off (Schinier et al., 1988; De Datta and Buresh, 1989).

Kundu and Ladha (1995) stated that to feed the increasing global population, the world’s annual rice production must increase from the present 520×10^6 tons to 760×10^6 tons by the year 2020. In addition, it is estimated that twice as much fixed nitrogen will be required for cereal crop production by the year 2020 to meet the food requirements of increasing human populations (BNF, 1997).

To maintain rice sufficiency with diminishing rice-area production and reducing inorganic fertilizer inputs, alternative and sustainable sources of fertilizer is required (People et al., 1995).

In Malaysia, the land area for rice cultivation is decreasing. The statistic obtained from Federal Agriculture Organization (FAO) web site (2000) showed that there was 698,624 hectares for rice cultivation area in Malaysia
in 1994. However, the cultivation area has decreased to 692,389 hectares in 2000. To increase rice production from the same or even less land area, productivity (yield ha\(^{-1}\)) must be enhanced.

Nitrogen fixing bacteria, or diazotrophs, are the beneficial bacteria that exist in the soil which can colonize, either entophytic or epiphytic, and contribute to biological nitrogen to wetland rice crops (Kundu and Ladha, 1995). Compared with industrial nitrogen fixation, biological nitrogen fixation (BNF) is sustainable and can be less polluting and cheaper. Biological nitrogen fixation has the advantages of lower cost, reduced production of greenhouse gases like carbon dioxide and less nitrate contamination of underground water.

In recent years, the use of plant growth promoting rhizobacteria (PGPR) has been used in rice cultivation (Malik et al., 1997) and has been shown to increase rice yield (straw and grain) with minimal inputs from chemical fertilizers.

So far, only few studies have been carried out on the effects of BNF on rice cultivation in Malaysia. Furthermore, the reports mostly emphasized only on N uptake and subsequent effects of plant responses. Therefore, besides N uptake, the aim of this study is to investigate if there are any other beneficial effects contributed by diazotrophic inoculants.
The objectives of this research are:

1. To isolate local potential microaerophilic bacteria strains from rice soils.
2. To investigate the effect of selected microaerophilic strains on rice mineral uptake under glasshouse condition.
CHAPTER 2

LITERATURE REVIEW

Rice

Rice, or paddy, *Oryza sativa* of family Gramineae, is the only crop for wet area. Watanabe (1986) mentioned that flooding favours rice growth environments by bringing the soil pH near to neutral that would making nutrients like P and Fe more available and depressing soil organic matter decomposition.

The low concentration of oxygen under the surface of the water would stimulate nitrogen fixation, depressing the outbreak of soil-borne disease and suppressing weeds, especially those of C4 type (Tanaka, 1976).

The rice cultivation area at the same time also could be acting as a water reservoir and preventing soil erosion. Meanwhile, the irrigation water would supply additional nutrients.

Rice is unarguably the most essential cereal crop in the world. It feeds over 2 billion people, particularly in Asia, Africa and Latin America (Ladha et al., 1997). And, the tropical lowland rice cultivation is responsible for 86% of the total world rice crop (James et al., 1999).
In 1994, world rice production was around 535 million tonnes. More than 50 countries throughout the world contributed to that total with an annual production of at least 100 thousand tones of rice grains. Asian farmers produced 91% of the total. Worldwide, about 79 million hectares of rice is grown under irrigated condition, 36 million hectares is rainfed and around 11.4 million hectares of rice cultivation area in South and Southeast Asia are subject to uncontrolled flooding (Riceweb, 2001).

Average rice yields in tropical area were approximately 2.3 t ha\(^{-1}\) overall, and some were as low as 1.3 t ha\(^{-1}\) for the more flood-prone lands (IRRI, 1997).

Rice in Malaysia

Since the establishment of MADA, the most widely planted rice varieties were MR84 (58%), MR167 (21%), MR185 (15%) and other varieties (6%) with yield of 1.4 t to 6.8 t per hectare, respectively (Agrolink, 1999).

Recently, Malaysia Agriculture Research and Development Institute (MARDI) successfully produced two new varieties of rice: MRQ50 and MR211. These two varieties were announced to have the potential in producing high yield per hectare that subsequently will increase the income per farmer.