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Abstract. Red radish is a nutritious root vegetable crop that has a short production cy-
cle. Water deficit limits plant productivity, affecting its quantity and quality. Compost
amendment offers a potential solution to mitigate water deficit effects. This study as-
sessed the impact of compost manure rates (0%, 50%, 75%, and 100%) and irriga-
tion treatments (40%, 60%, 80%, and 100% of evapotranspiration) on ‘Crimson
Giant’ red radish production. Significant differences in growth and quality were ob-
served among these treatments. Compost rates of 75% and 100% improved leaf gas
exchange, plant growth (leaf count, fresh weight, dry weight, and area; stem length),
root development, total yield (root fresh weight, dry weight, diameter, and length),
and root quality (vitamin C and total soluble solid and titratable acidity). The 100%
compost and 100% irrigation combination achieved the highest yields. Under water
deficit, applying 75% or 100% compost with 80% irrigation conserved 20% of water
while maintaining radish output. Overall, compost amendment effectively enhanced
red radish growth and production under water deficit.

The root vegetable red radish (Raphanus
sativus L.), belonging to the family Brassica-
ceae, is globally cultivated owing to its high
nutritional content and distinctive pungent
flavor. Red radish storage roots contain abun-
dant phenolic and antioxidant chemicals (Li
et al. 2022) known for their anticancer and
anti-inflammatory properties in humans (Li

et al. 2022; Wang et al. 2010). Its short pro-
duction cycle and excellent sink capacity
make red radish an ideal model for studying
biomass allocation patterns under stress
(Henschel et al. 2022; Stagnari et al. 2018).
Water availability significantly influences
radish biomass, as water stress prompts modi-
fications in source–sink interactions and re-
duced leaf development, posing a significant
challenge for growers (Abdalla et al. 1992;
Henschel et al. 2022; Stagnari et al. 2018).
Water scarcity and other environmental fac-
tors markedly impact plant growth and devel-
opment, posing a significant challenge for
crop growers (Abdalla et al. 1992; Feng et al.
2013; Miyashita et al. 2005; Siddique et al.
2016; Stagnari et al. 2018). To cope with
water shortage, plants adapt their life cycles,
either avoiding drought periods or developing
tolerance mechanisms to enhance water uptake

and utilization (Mukarram et al. 2021;
Rao and Chaitanya 2016; Reddy et al. 2004).
These tolerance mechanisms involve mor-
phophysiological responses, such as reduced
leaf expansion and stomatal conductance, and
biochemical responses, including enhanced
antioxidant systems and osmotic adjustment,
allowing plants to remain within their genetic
capacity (Lata et al. 2015; Mukarram et al.
2021). Root vegetables, including sugar beets
(Sabreen et al. 2018), carrots (Zhang et al.
2021), and radishes (Henschel et al. 2022;
Stagnari et al. 2018), experience reduced
growth and biomass allocation among their
organs when faced with water deficiency.
Water scarcity often leads to an excess of re-
active oxygen species (ROS), causing oxida-
tive stress (Chaichi et al. 2017; Jaleel et al.
2008; Martinez et al. 2016; Shahid et al.
2020), which can harm proteins, RNA, DNA,
and biological membranes. To counteract
this, plants use enzymatic and nonenzymatic
antioxidant systems to detoxify and regulate
cellular ROS levels (Devireddy et al. 2021;
Miller et al. 2010). Vitamin C (ascorbic
acid), a potent nonenzymatic antioxidant with
self-recycling abilities, is used to scavenge
ROS (Paciolla et al. 2019). Nevertheless, pre-
vious studies have demonstrated a series of
deteriorations in the physiomorphological
traits of radish plants under water shortage
(Henschel et al. 2022; Stagnari et al. 2018).

Global water scarcity is a pressing issue
due to factors such as climate change, popu-
lation growth, and urbanization. The demand
for water exceeds the available supply, leading
to water scarcity in many regions (Shemer
et al. 2023). Water scarcity has economic im-
pacts at a global scale, considering factors
such as population, agricultural productivity,
and climate trajectories (Dolan et al. 2021).
Agricultural water scarcity will intensify in
more than 80% of global croplands due to de-
creased water availability (Liu et al. 2022).
Compost amendments have the potential to
improve soil water retention. The addition of
compost to soil plots resulted in improved soil
water content (Wright et al. 2022). A study on
sandy soil found that coamending with water
treatment residual and compost increased plant
biomass, indicating improved water retention
(Clarke et al. 2019). Another study on olive
orchards showed that compost amendment im-
proved soil water status and reduced water
stress in plants (Amel et al. 2023). Short-term
effects of compost amendments on soil water
retention characteristics were observed, with
compost and vermicompost-based amendments
increasing soil water holding capacity and wa-
ter use efficiency (WUE). Overall, the research
suggests that compost amendments can en-
hance soil water retention and improve plant
water availability (Rivier et al. 2022). Conven-
tionally, chemical treatments and agronomical
crop management techniques have been used to
address water deficiency and mitigate its nega-
tive impacts (Askari and Ehsanzadeh 2015;
Ghani et al. 2022). However, compost, as an or-
ganic fertilization method, plays a vital role in
reducing the use of chemical fertilizers, which
have adverse effects on the environment, soil,
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and sustainable agriculture (Pergola et al. 2018;
Sequi 1996). Compost offers numerous bene-
fits, including improved soil aggregation,
enhanced microbial diversity and activity,
increased water holding capacity, field capac-
ity, soil water content, elevated soil electrical
conductivity (EC), and enriched organic mate-
rial and nutrient content, all of which promote
plant growth and boost crop yield (Ghorbani
et al. 2023; Gosling et al. 2006; Kranz et al.
2020; Sequi 1996). Better soil aggregation
has positive effects on root growth and seed-
ling emergence, which are influenced by soil
moisture, aeration, temperature, and physical
impedance (Kranz et al. 2020; Viator et al.
2002; Wang and Lin 2002).

Given the evidence of abiotic stressors
negatively affecting plant growth, our study
aimed to determine whether compost, as a
soil supplement, could mitigate the detrimen-
tal effects of water deficit on red radish
plants. Consequently, we investigated the ef-
fects of compost on leaf gas exchange, yield,
vitamin C content, and total soluble solids.

Materials and Methods

Experimental site. The field experiment
was conducted in 2020 at the Research Farm
of the Plant Production Department, College
of Food and Agriculture Sciences, King Saud
University, Riyadh, Saudi Arabia (24�430N,
46�360E). The soil at the experimental field
is classified as sandy loam, and its physico-
chemical characteristics are listed in Table 1.
The irrigation water used had an EC of
0.89 dS�m�1 and the following ion contents
(mEq�L�1): Na1 5 3.52; Ca11 5 0.74;
Mg11 5 0.17; HCO3

� 5 0.32; Cl� 5 2.31;
and SO4

�2 5 1.80.
Plant materials and experimental design.

Seeds of ‘Crimson Giant’ red radish (R. sativus)
were obtained from Emerald Seed Company
(El Centro, CA, USA) and sown manually un-
der field conditions on 4 Oct 2020. The air tem-
perature, relative humidity, and solar radiation
during the culture period are presented in Table
2. The seeds were planted in lines with a row-
to-row distance of 100 cm. The experimental de-
sign used was a randomized complete block de-
sign with a split-plot layout, comprising four
replicates that included combinations of four irri-
gation treatments and four compost fertilizers
(Fig. 1). There were 64 experimental plots
(four irrigation treatments × four compost
treatments × replicates) and the area of
each plot was 10 m2. The main plots were
randomly assigned to the irrigation treat-
ments, and the subplots were allocated to the
compost fertilizer treatments.

Compost and irrigation treatments. Organic
fertilization (compost; Table 3) was applied

at rates of 0%, 50%, 75%, and 100% of
20 m3�ha�1. Irrigation treatments commenced
10 d after planting using a drip irrigation
system, with four treatments implemented:
40%, 60%, 80%, and 100% of evapotranspi-
ration (ETc). The amount of irrigation water
applied was determined based on the FAO
Penman�Monteith method (Allen et al. 1998;
Table 4) using data from the nearby meteoro-
logical station. Irrigation scheduling was mon-
itored using class A pan (mm) evaporation,
and the total irrigation water supply was esti-
mated using the following crop coefficients
equation (Allen et al. 1998):

ET crop5Kc � ET0,

where ET crop is the maximum daily crop
evapotranspiration in mm; Kc is the crop
coefficient, ranging from 0.7 to 1.0 for differ-
ent growth stages; and ET0 is the reference
crop evapotranspiration ET, measured using
a class A pan (mm). The irrigation treatments
were applied for 50 days, with the following
total amounts of water applied for each treat-
ment: 1125, 900, 675, and 450 m3�ha�1 for
treatments T1, T2, T3, and T4 (control),
respectively.

Leaf gas exchange. The photosynthetic
rate, stomatal conductance, and transpiration
of the plants were measured using an LI-
6400 photosynthesis system (Li-6400XT;
LI-COR, Lincoln, NE, USA). Three plants
were used for each measurement, and the
third fully expanded leaf (from the apex) was
exposed to 1200 mmol (photon) m�2�s�1 pho-
tosynthetic photon flux density, a chamber
temperature of 25 �C, a CO2 concentration of
350 ± 10 mmol�mol�1, and a relative humid-
ity of 50% to 55%.

Measurements of root growth and physical
characteristics. At harvest, shoot height, leaf
count, leaf area, fresh and dry plant weights,
and leaf dry matter content were recorded.
The total root of each plot was hand-harvested
60 d after planting, and all harvested roots
from each plot were weighted before global
yield was calculated in tons per hectare. WUE
(kg�m�3) was calculated using the following
equation:

WUE (kg�m�3)5 total fruit yield (kg�ha�1)/
applied water (m3�ha�1). Root quality, in-
cluding dimensions (length and diameter in
centimeters) and root fresh and dry weights
(in grams), was also measured. For dry
weight determination, fresh samples were
oven-dried at 70 �C until a constant weight
was achieved.

Measurements of root chemical charac-
teristics. Vitamin C content was measured
using the classical titration method with a
2,6-dichlorophenolindophenol solution and
expressed in milligrams of ascorbic acid per

100 g fresh weight (Association of Official Ag-
ricultural Chemists 2005). Total soluble solids
were determined using a Portable Digital Re-
fractometer (PR-101; Palette Series, Atago
Co., Ltd., Tokyo, Japan). Titratable acidity was
determined through titration of the root homog-
enate (5.0 g) using 0.1 M sodium hydroxide at
pH 8.1, with citric acid as control.

Statistical analysis. The data obtained for
the different measurements were subjected to
analysis of variance appropriate for a ran-
domized complete block split-plot design.
Tukey’s multiple range test via SAS (version
6.12; SAS Institute, Cary, NC, USA) was
used to compare mean differences for the
different measurements among experimental
treatments at a significance level of P# 0.05.
Pearson’s correlation analysis was conducted
to elucidate the extent of correlation between
yield and parameters under various irrigation
and compost treatments. Principal component
analysis (PCA) with clustering was per-
formed to integrate growth and yield parame-
ters with different treatments and explain the
largest proportion of variability among varia-
bles. This analysis was carried out using the
XLSTAT statistical package software (Ver-
sion 2019.1, Excel Add-ins soft SARL, New
York, NY, USA).

Results and Discussion

Leaf gas exchange of red radish in re-
sponse to water deficit and compost amend-
ment. The leaf gas exchange parameters,
including net CO2 assimilation (Fig. 2A), sto-
matal conductance (Fig. 2B), and transpira-
tion rate (Fig. 2C), exhibited a significant
decrease with reduced irrigation levels. Con-
versely, the application of different percen-
tages of compost to the soil resulted in higher
leaf gas exchange parameters compared with
untreated plants. Notably, the 100% compost
treatment resulted in the highest level of leaf
gas exchange across all irrigation levels. In-
creasing the compost rate led to an enhance-
ment in leaf gas exchange parameters under
different irrigation levels. Net CO2 assimila-
tion, stomatal conductance, and transpiration
rate were markedly decreased by reducing
the irrigation level. These findings align with
previous studies (Benyahia et al. 2023; Miya-
shita et al. 2005). A shortage of irrigation wa-
ter can induce various detrimental effects on
plant growth and development, including in-
hibited photosynthesis (Ji et al. 2023; Siddique
et al. 2016), stomatal closure, cell membrane
damage, and plant metabolic process disrup-
tion (Siddique et al. 2016).

In this study, water deficit significantly re-
duced red radish growth parameters com-
pared with well-irrigated red radish plants.

Table 1. Soil characteristics of the experimental soil.

Soil texture

pH
EC

ds�m�1

Cations (mEq�L�1) Anions (mEq�L�1)

Clay % Silt % Sand % Texture K1 Na1 Mg11 Ca11 HCO3
� Cl� SO4

–

8.43 7.82 83.75 Sandy Loam 7.9 1.05 1.30 6.95 4.48 10.48 2.28 2.62 18.31

pH 5 acid or alkaline; EC 5 electrical conductivity; K5 potassium; Na 5 sodium; Mg 5 magnesium; Ca 5 calcium; HCO3 5 bicarbonate; Cl 5 chloride;
SO4 5 sulfate.
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However, the application of compost posi-
tively influenced leaf gas exchange in these
plants, regardless of whether they experi-
enced water deficit or were well-irrigated.
This effect was more pronounced when the
75% and 100% compost levels were applied
to the soil. Compost plays a dual role by in-
creasing soil moisture availability in the root
zone and acting as organic matter (Duong
et al. 2012; Qian et al. 2023). Under drought
or osmotic stress conditions, applied compost
has been found to enhance the growth of vari-
ous plant species, such as quinoa and pea
(Hirich et al. 2014), common bean (Rady
et al. 2016), tomato and cabbage (Goswami
et al. 2017), and pepper (Yu et al. 2019).
Compost serves as organic matter that im-
proves soil fertility and water holding capac-
ity, and it has been shown to enhance growth
and yield parameters in pea, tomato, and cab-
bage (Goswami et al. 2017; Hirich et al.
2014).

Vegetative growth parameters of red rad-
ish in response to water deficit and compost
amendment. The impact of compost treat-
ments and water deficit on plant growth and
biomass is summarized in Table 5. The low-
est values of plant growth and biomass were
observed under a 40% irrigation level without

compost application, whereas the highest val-
ues were recorded in plants treated with com-
post under both natural and water deficit
conditions. Notably, the use of compost re-
sulted in a significant increase in stem length
under drought stress conditions. Stem length
reached 16.60 cm under the 100% irrigation
level without compost, whereas it reached
19.39 and 17.65 cm under 80% water deficit
with application of the 100% and 75% com-
post treatments, respectively. In addition, fresh
and dry weight increased with increasing com-
post application under water deficit conditions.
Leaf area was recorded as 508.1 cm2 without
compost at the 100% water level, but it was
494.2 and 463.1 cm2 under 80% water deficit
with the 75% and 100% compost treatments,
respectively. The number of leaves did not
differ significantly with compost application
levels (75% and 100%) under the 80% irriga-
tion level compared with the 100% irrigation
level without compost. Under water deficit
conditions, red radish stem length, leaf fresh
and dry weight, leaf number, leaf area, and
total yield were significantly decreased at dif-
ferent critical stages without using compost.
These findings are consistent with previous
research (More et al. 2023; Siddique et al.
2016), which also reported adverse effects of

water deficit on stem length (Widuri et al.
2018) and fresh and dry weight (Bocchini
et al. 2018; Widuri et al. 2018). The highest
values for stem length, leaf fresh and dry
weight, leaf number, leaf area, and total yield
were observed under the 100% irrigation
level, whereas these traits exhibited a decline
with increasing water deficit levels. The re-
sults suggest that increasing soil moisture
availability in the root zone by applying wa-
ter at the 100% irrigation level may enhance
water assimilation, leading to increased pho-
tosynthesis activity, cell division, and cell en-
largement (Abd El-Mageed et al. 2019). In
the present study, leaf gas exchange under
water deficit was associated with a decrease
in leaf area, number, and fresh and dry
weight (Feng et al. 2013; Liu and St€utzel
2004; Stagnari et al. 2018).

Root growth characteristics were also in-
fluenced by irrigation levels and compost
amendment (Table 6). Root diameter reached
its highest level under the 80% water level,
measuring 4.6 and 4.2 cm with 100% and
75% compost application, respectively, com-
pared with 3.9 cm recorded under the 100%
water level without compost. In addition, root
length was greater when 100% and 75%
compost were applied under the 80% irriga-
tion level compared with the 100% irrigation
level without compost. Root fresh weight ex-
hibited the highest values of 42.8 and 38.9 g
with compost application under the 80% irri-
gation level and the 100% irrigation level
without compost, respectively, and the same
trend was observed in root dry weight. Total
yield was increased when using a higher
compost rate at all levels of irrigation. WUE
was lowest when 75% compost was applied.
These results suggest more efficient water up-
take and improved growth and WUE under
water deficit and well-irrigated conditions.
Moreover, these findings indicate that both ir-
rigation level and compost rate treatments
imposed significant effects on all parameters,
with a significant interaction between irriga-
tion level and compost rate also observed. A
well-developed root system plays a vital role
in plant growth and serves as a storage organ
in red radish. Our study showed that red rad-
ish root length, diameter, and fresh and dry
weight decreased with lower irrigation levels.
Similar findings have been reported for the root
length, diameter, and yield of sugar beet under
water stress (Abd El-Mageed et al. 2019;
Sabreen et al. 2018). However, the negative ef-
fects of water deficit on red radish root biomass
traits were alleviated by the addition of com-
post, which positively influenced root biomass.
This improvement can be attributed to the ame-
liorative effect of compost on soil physiochemi-
cal characteristics and soil–water relations,

Fig. 1. Experimental site and layout (A) and harvest of ‘Crimson Giant’ red radish (B).

Table 3. The chemical analysis of compost used in this study.

pH H (%)

N P K Ca11 Mg11 Fe Mn Zn

C/N ratio
Wt of m3

manure (kg)OM (%) (%) ppm
Compost 6.23 24 45 1.46 0.88 1.14 0.53 0.43 671 280 135 12:1 380

ppm 5 mg�kg�1; H 5 humidity; pH 5 acid or alkaline; OM 5 organic matter; N 5 nitrogen; P 5 phosphorus; K 5 potassium; Ca 5 calcium; Mg 5
magnesium; Fe 5 iron; Mn 5 manganese; Zn 5 zinc.

Table 2. Air temperature, relative humidity, and solar radiation during October and November 2020
at the experimental site.

Parameters
Month

T max
(�C)

T min
(�C)

RH max
(%)

RH min
(%)

Solar
LY

WS
(m�s�1)

ET0

(mm)
October 35.98 22.41 42.51 14.89 342.15 2.45 8.79
November 28.15 15.96 51.86 21.52 279.26 2.42 5.49

T max and T min 5 maximum and minimum air temperature; RH max and RH min 5 maximum and min-
imum air relative humidity; solar LY 5 Langley; WS 5 wind speed; ET0 5 reference evapotranspiration.
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which promoted root elongation and develop-
ment, facilitating water and nutrient uptake in
red radish plants. These results are consistent
with previous studies on several crops, includ-
ing sugar beet (Abd El-Mageed et al. 2019;
Sabreen et al. 2018), quinoa and pea (Hirich
et al. 2014), common bean (Phaseolus vulgaris)
(Rady et al. 2016), and pepper (Yu et al. 2019).
Water deficit limits CO2 assimilation and sto-
matal conductance (Miyashita et al. 2005;
Sabreen et al. 2018); however, in our study, the
application of 75% and 100% compost signifi-
cantly improved these parameters. WUE indi-
cates the ratio of water used in metabolic
processes to the water lost via transpiration, and
it has been reported to increase with increasing
drought levels (Jaleel et al. 2008; Liu and
St€utzel 2004). In addition, compost amendment
has been shown to significantly enhance WUE
(Abd El-Mageed et al. 2018; Jaleel et al. 2008);
however, compost amendment effects can vary
due to factors such as compost quality, applica-
tion rates, crop type, and environmental condi-
tions. Different compost amendments have
been found to have varying effects on soil
characteristics and plant growth. For example,
in the study by Kissler (2022), the effective-
ness of compost amendment in modifying soil
physical and hydrological attributes was found
to depend on the pore size distribution obtained
from adsorption and desorption experiments.
Similarly, Duddigan et al. (2021) found that
different compost amendments resulted in sig-
nificantly different soil environments and nitro-
gen budgets, leading to variable effects on
plant yield and biometrics. In addition, the ef-
fects of compost amendment on wheat yield
and quality were dependent on weather condi-
tions, with different outcomes observed in drier
and wetter years (Deakin 2021). Overall, the
variability in compost amendment effects
highlights the need for careful consider-
ation of factors such as compost type, applica-
tion rates, and specific environmental conditions
when implementing compost amendments in ag-
ricultural practices.

Vitamin C content, titratable acidity, and
total soluble solids of red radish in response
to water deficit and compost amendment.
Both water deficit and compost amendment
significantly influenced the vitamin C con-
tent, titratable acidity, and total soluble solids
of red radish roots (Table 7). Vitamin C con-
tent increased with higher compost rates,
reaching its peak value under the 40% irriga-
tion level with the application of 50%, 75%,
and 100% compost. Similarly, titratable acid-
ity increased as irrigation level decreased and
compost rate increased. The data showed that

total soluble solids reached the highest values
of 5.51% and 5.03% with 50% to 100% com-
post under the lowest irrigation level, respec-
tively. A previous study by Favati et al. (2009)
suggested that vitamin C levels increase with

higher drought levels, but other studies, such
as that of Shao et al. (2014), have shown no
significant increase in vitamin C content in
stressed plants. Moreover, compost amend-
ment has been reported to enhance vitamin C

Table 4. Water use for the irrigation treatments
of ‘Crimson Giant’ red radish.

Treatments Description

Water
consumptive
use (m3/ha)

T1 Irrigation at 100% of ETc 1,125
T2 Irrigation at 80% of ETc 900
T3 Irrigation at 60% of ETc 675
T4 Irrigation at 40% of ETc 450

Etc 5 evapotranspiration.

Fig. 2. Net CO2 assimilation (A), stomatal conductance (B) and transpiration rate (C) of ‘Crimson Gi-
ant’ red radish in response to irrigation levels and compost amendment.
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content in habanero-type pepper (Capsicum
chinense) (Premamali et al. 2019) and lettuce
(Santos et al. 2016). Titratable acidity was
found to increase in the fruit of tomato plants
grown under salt stress conditions (Carbajal-
V�azquez et al. 2020). In our study, titratable
acidity increased as irrigation levels decreased,
and this response also had an impact on total
soluble solids. Similarly, total soluble solids
increased with higher water stress levels,
which aligns with findings in tomato plants,
where vitamin C content, titratable acidity,
and total soluble solids increased under water
deficit conditions (Al-Selwey et al. 2021).
Compost usage was also found to increase
the values of titratable acidity and total solu-
ble solids in sweet pepper fruits (Al-Harbi

et al. 2020) and strawberries (Wang and Lin
2002). The perception of taste in fresh root
vegetables, such as radish, is influenced by
factors such as total acidity and sweetness
(measured by Brix). Consumers consider
both total acidity and Brix as important fac-
tors when evaluating the taste of radish fresh
root (Wieczorek et al. 2018). In addition, the
sensory characteristics of Brassica vegeta-
bles, which include radish, are known to
have a characteristic sharp and bitter taste
(Bell et al. 2018). The perception of taste in
radish fresh root is influenced by both the
levels of total acidity and sweetness (Brix),
as well as the presence of bitter compounds
like glucosinolates and isothiocyanates (Chang
et al. 2010).

Principal component analysis. The PCA
biplot visually represents that the first and second
components account for 94.16% variability ob-
served among all parameters when considering
both compost and irrigation treatments (Fig. 3).
Specifically, the first component accounts for
78.38% of the variability, and the second com-
ponent accounts for 15.78% of the variability
among the parameters. Furthermore, the biplot
from the PCA analysis demonstrates that the
vegetative growth and leaf gas exchange traits
exhibit positive correlation with one another,
with the exception being the biochemical traits
such as vitamin C, titratable acidity, total solu-
ble solids, and WUE. Root fresh weight exhib-
ited strong correlation with 100% compost
and 80% irrigation rate.

Table 5. Effects of irrigation levels and compost rate on stem length, leaf number, leaf area, and leaf fresh and dry weight of ‘Crimson Giant’ red radish.

Irrigation rate
(%)

Compost rate
(%) Stem length (cm/plant) No. of leaves Leaf area (cm2/plant)

Leaf fresh wt
(g/plant) Leaf dry wt (g/plant)

100 100 22.58 ai 10.5 a 600.7 a 42.53 a 4.50 a
75 20.35 b 10.2 b 573.8 b 40.79 b 4.26 b
50 18.55 d 9.7 c 544.0 c 38.84 c 4.11 c
0 16.60 f 9.0 d 508.1 d 36.59 d 3.85 d

80 100 19.39 c 9.3 d 494.2 e 35.52 e 3.83 d
75 17.65 e 8.6 d 463.1 f 33.20 f 3.56 e
50 15.95 g 8.1 gf 435.9 g 31.31 g 3.36 f
0 14.52 i 7.5 i 405.0 i 29.15 i 3.17 h

60 100 17.55 e 8.5 e 442.6 g 31.73 g 3.39 f
75 16.47 f 8.1 f 421.2 h 30.22 h 3.28 g
50 15.34 h 7.6 ih 385.2 j 27.78 j 3.04 i
0 14.05 j 7.0 j 354.1 l 25.61 l 2.83 j

40 100 15.55 h 8.1 gf 382.1 j 27.56 j 3.02 i
75 14.72 i 7.8 gh 365.5 k 26.40 k 2.87 j
50 13.57 k 7.4 i 342.6 m 24.81 m 2.75 k
0 10.60 l 6.7 k 312.7 n 20.47 n 2.17 l

Significance
Irrigation level * * * * *
Compost rate * * * * *
Irrigation level × Compost rate * NS * * *
i Values followed by the same letter in the same column are not significantly different at P # 0.05 level, according to Tukey’s multiple range test.
NS, * indicate not significant or significant at P # 0.05, respectively.
1 cm 5 0.3937 inch; 1 cm2 5 0.1550 inch2; 1 g 5 0.0353 oz.

Table 6. Effects of irrigation levels and compost rate on root diameter and length, root fresh and dry weight, total yield and water use efficiency (WUE)
of ‘Crimson Giant’ red radish.

Irrigation rate
(%)

Compost rate
(%)

Root diam
(cm)

Root length
(cm)

Root fresh wt
(g/plant)

Root dry wt
(g/plant)

Total yield
(t·ha�1) WUE

100 100 5.4 ai 5.6 a 49.2 a 5.7 a 31.651 a 28.13 ji
75 4.8 b 5.1 b 47.2 b 5.5 b 30.528 b 27.13 k
50 4.4 d 4.7 d 44.6 c 5.2 c 29.088 c 25.86 l
0 3.9 f 4.2 f 41.2 e 4.8 d 27.229 e 24.20 m

80 100 4.6 c 4.9 c 42.8 d 5.1 c 28.134 d 31.26 h
75 4.2 e 4.5 e 38.9 f 4.5 e 25.987 f 28.87 i
50 3.8 g 4.0 g 36.2 g 4.2 f 24.514 g 27.24 jk
0 3.4 i 3.7 i 33.6 i 3.9 h 23.076 i 25.64 l

60 100 4.2 e 4.4 e 38.8 f 4.6 e 25.893 f 38.36 d
75 3.9 f 4.2 f 36.4 g 4.2 f 24.582 g 36.42 e
50 3.6 h 3.9 h 33.8 i 3.9 h 23.154 i 34.30 f
0 3.3 j 3.6 j 31.1 j 3.6 i 21.670 j 32.11 hg

40 100 3.7 h 3.9 h 36.3 g 4.2 f 24.518 g 54.49 a
75 3.5 i 3.7 i 35.0 h 4.0 g 23.828 h 52.95 b
50 3.2 k 3.5 k 32.7 i 3.8 h 22.584 i 50.19 c
0 2.7 l 2.9 l 24.2 k 2.9 j 14.555 k 32.34 g

Significance
Irrigation level * * * * * *
Compost rate * * * * * *
Irrigation level × Compost rate * * * * * *
i Values followed by the same letter in the same column are not significantly different at P # 0.05 level, according to Tukey’s multiple range test.
*Significant at P # 0.05.
1 cm 5 0.3937 inch; 1 g 5 0.0353 oz; 1 t·ha�1 5 0.4461 ton/acre.
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Pearson’s correlation coefficient between
yield and all studied parameters under differ-
ent rates of compost and irrigation treat-
ments. Pearson’s correlation analysis was
conducted to elucidate the association be-
tween yield and various factors of vegetative

growth, leaf gas exchange, and WUE of the
‘Crimson Giant’ red radish, under different
compost and irrigation treatments (as pre-
sented in Table 8). All factors demon-
strated a high degree of correlation and
displayed a robust and positive relationship

(r 5 0.84–0.98; P # 0.001), with the ex-
ception of WUE, total soluble solids, vitamin
C, and titratable acidity, which exhibited insig-
nificant correlations.

In conclusion, the current investigation
offers insights into the beneficial effects of
applying compost to mitigate the diverse im-
pacts of water deficit and enhance production
qualities in red radish plants. Water deficit
notably decreased the WUE, physiological
responses, and growth traits of red radish
plants. However, the use of compost miti-
gated the harmful effects of water deficit and
improved plant growth characteristics. Com-
post appears to be a viable substitute for im-
proving soil water availability and fertility.
Our results demonstrate that compost rates of
75% and 100% significantly improve total
yield, vitamin C content, total soluble solids,
and titratable acidity. Moreover, the treatment
combining 100% compost and 100% irriga-
tion proved to be the most effective, provid-
ing the highest yields under the experimental
conditions. In cases of water shortage, the
application of the 75% and 100% compost
with 80% irrigation yielded promising re-
sults, saving 20% of irrigation water while
providing nearly the same red radish yield.
Our findings suggest that the use of com-
post may serve as a potential growth stimu-
lant to enhance plant growth and production
when water resources are limited. Future in-
vestigations ought to direct their attention
toward the anatomical characteristics and
antioxidative capacity of radish when sub-
jected to water scarcity and compost amend-
ment. Furthermore, it is imperative to consider
the performance of radish when exposed to a
dual condition of elevated irrigation level
(125%) and an increased rate of compost
application (120%).
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