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In recent research, Durandal, a signature scheme based on rank metrics following Schnorr’s 
approach, was introduced to conceal secret key information by selectively manipulating the vector 
subspace of signatures. Later, an enhancement, namely the SHMW signature scheme, with smaller 
keys and signatures while maintaining EUF-CMA security, was proposed. Both Durandal and 
SHMW require adversaries to solve hard problems (i.e., Rank Support Learning, Rank Syndrome 
Decoding, and Affine Rank Syndrome Decoding) for secret key retrieval, in which the parameters 
are designed to withstand at least 128-bit computational complexity. The authors claimed that the 
security of the SHMW scheme is deemed superior to that of the original Durandal scheme. In this 
paper, we introduce a novel approach to identifying weak keys within the Durandal framework 
to prove the superiority of the SHMW scheme. This approach exploits the extra information in 
the signature to compute an intersection space that contains the secret key. Consequently, a 
cryptanalysis of the SHMW signature scheme was carried out to demonstrate the insecurity of 
the selected keys within the SHWM scheme. In particular, we proposed an algorithm to recover 
an extended support that contains the secret key used in the signature schemes. Applying our 
approach to the SHMW scheme, we can recover its secret key with only 97-bit complexity, 
although it was claimed that the proposed parameters achieve a 128-bit security level. The results 
of our proposed approaches show that the security level of the SHMW signature scheme is inferior 
compared to that of the original Durandal scheme.

1. Introduction

The National Institute of Standards and Technology (NIST) has initiated efforts to establish standardization for post-quantum 
public-key encryption, key exchange protocols, and digital signature schemes. Code-based cryptography stands out as a significant 
contender among the alternatives evaluated for post-quantum cryptography. During Round 2 of the standardization process, out of 
the 17 candidates for encryption and key establishment, 6 were code-based. However, no code-based signature schemes were chosen 
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as candidates for digital signature schemes. NIST issued a new call for additional digital signature schemes to be considered for 
standardization in August 2022. The primary focus of this call is on general-purpose signature schemes that do not rely on structured 
lattices.

Designing an efficient and secure signature scheme poses a significant and non-trivial challenge within the field of code-based 
cryptography. An alternative technique for constructing a signature scheme relying on code-based assumptions involves utilizing the 
Fiat-Shamir (𝖥𝖲) transformation [7], which can be implemented using two distinct methods. The first method entails the application 
of a protocol that establishes zero-knowledge proof-of-knowledge and, via the 𝖥𝖲 transformation, transforms it into a signature 
scheme. Stern [21], Veron [23], and CVE [6] are examples of signature schemes that were constructed via this method in the setting 
of the Hamming metric. Similarly, 𝖥𝖲 transformation can be adapted in the rank metric setting to construct signature schemes such 
as rank Stern [9], rank Veron and rank CVE [3], cRVDC [4] and rank AGS [15].

The second way to consider the Schnorr approach [18] when trying to construct an 𝖥𝖲-type code-based signature scheme. 
Specifically, it is possible to produce a signature containing a proof of knowledge regarding the small weight matrix based on 
a sparsely chosen challenge 𝒄, where we let 𝑆 be a secret matrix of small weight vectors and 𝐻 be a random matrix with the 
associated public matrix 𝑇 = 𝑆𝐻𝑇 . Suppose 𝒚 is a randomly selected vector with a moderate weight that ensures the signature’s 
randomization; such a signature would then take the form of 𝒛 = 𝒚 + 𝒄𝑆 . As such, the prover proves knowledge of the secret matrix 
𝑆 due to the term 𝒄𝑆 in the signature.

The primary difficulty in constructing code-based signature schemes is achieving non-disclosure of secret key information through 
the randomization component. In the Hamming metric, signature schemes such as RaCoSS [17] and Persichetti’s signature scheme 
[16] were shown to be insecure as information leaks from the secret. More recently, the Schnorr approach has been considered in 
constructing rank metric code-based signature schemes such as RQCS [19], TPL [22], Durandal [2], MURAVE [13] and the SHMW 
signature scheme [20]. However, the RQCS signature scheme was successfully cryptanalyzed in [1]. Later on, generalization was 
made by Lau et al. on the attack vector of SHMW signature scheme [1], where the authors proposed two generic attacks (i.e., 
referred to as “LTP attacks”) on Schnorr-type rank metric signature schemes [14]. To be more precise, in LTP attacks, the objective is 
to derive either a basis for the original support of the secret key or a basis for extended support of the secret key based on the available 
signatures. Subsequently, it becomes possible to retrieve the secret key by utilizing the matrix linked to either the support or extended 
support constructed from the support basis and other publicly available information. Moreover, the authors also demonstrated the 
viability of using this attack on the TPL signature scheme, enabling the secret key to be retrieved in a matter of seconds.

To counter threats that leak secret key information in the signature, the original Durandal scheme was purposely devised to 
prevent the direct extraction of the support associated with the secret key. Within its design, methods aimed at decoding Low-Rank 
Parity Check codes do not disclose the support for the secret key. Moreover, the authors in [1] have shown that the Durandal 
signature schemes achieve EUF-CMA security. Later, Song et al. [20] proposed a modified version of Durandal with smaller key sizes 
and signature sizes, namely the SHMW signature scheme. The authors asserted that their scheme offers enhanced security compared 
to the original Durandal scheme. Using the proposed parameters of the SHMW scheme at 128-bit security level, it takes 148-bits to 
recover the secret keys by solving the rank syndrome decoding problem.

Our Contribution. As highlighted previously, the Durandal signature schemes were developed to prevent the direct retrieval of the 
underlying or extended support for the secret key. As a result, it is difficult to apply the LTP attacks on the Durandal signature 
schemes.

Taking a different approach, we show that it is easier to cryptanalyze the SHMW signature scheme instead. This is done by 
proving that the keys in the design are weak. Let 𝑞 be a power of prime, and we define 𝔽𝑞 and 𝔽𝑞𝑚 to be finite fields consisting of 𝑞
and 𝑞𝑚 elements, respectively. Additionally, we consider an 𝔽𝑞 -subspace with Φ of 𝔽𝑞𝑚 with dimension 𝑚′. Finally, we define 𝑠 and 𝑡
as integers such that 𝑠 ≤𝑚′ − 𝑡.

Using the definitions above, our contributions are as follows:

1. We define an algorithm, namely the 𝖱𝖲-Algorithm to determine an extended support 𝑉 for the secret key. In particular, let 
, ′ ⊂Φ such that Φ = +′ and dim() = 𝑡. The 𝖱𝖲-algorithm takes input (Φ, , 𝑠) and outputs a random subspace  ⊆′

with dim() = 𝑠 such that  ∩𝑍 = 𝟎.

2. We design a new approach (i.e., the first approach) to retrieve the secret key of the general framework of Durandal signature 
schemes. This is achieved by recovering an extended support basis for the secret key using the 𝖱𝖲-Algorithm and then solving 
for an extended support matrix using the equations from the public key. Note that the first approach may not be more efficient 
than the existing approaches (solving RSD).

3. Nevertheless, we extend the idea of our first approach by applying the 𝖱𝖲-algorithm to obtain extended supports 𝑇𝑗 ’s such that 
the vector space 𝐸.𝐹 ⊆ 𝑇𝑗 . Note that 𝐸 is the secret in the scheme while 𝐹 is part of the generated signature. Since 𝐹 and 
𝑇𝑗 ’s are available, we can compute an extended support 𝑉 for the secret 𝐸, i.e., 𝐸 ⊂ 𝑉 . Then, we can continue retrieving an 
extended support matrix for the secret keys in the general Durandal framework.

Then, our second approach is applied to the SHMW signature scheme. This approach requires only 97-bit complexity, which 
successfully cryptanalyzed their proposed parameters. In other words, the proposed parameters in the SHMW signature scheme do 
not fulfil the asserted level of 128-bit security, and the keys used in the SHMW signature scheme are weak.

Note that our approach only breaks the SHMW signature scheme, as the chosen parameter sets do not achieve the desired security 
level, while we use our approach to recover the secret key. On the other hand, the original Durandal scheme is still secure, as the 
2

complexity of our attack is higher than 128-bit with the chosen parameters.
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Organization of the paper. Section 2 introduces basic concepts in rank metric coding theory. In Section 3, the specifications for the 
original Durandal scheme and the SHMW signature scheme are given. Then, we propose a new approach to retrieve the secret key 
by considering the structure of the signature scheme in Section 4. Then, we extend the idea of our first approach and recover some 
secret keys of the SHMW signature scheme in Section 5. Finally, we provide concluding remarks, summarizing the key findings and 
insights in Section 6.

2. Preliminaries & background

In this section, we describe some basic concepts in coding theory. Let 𝑞 be a power of prime, and 𝔽𝑞 and 𝔽𝑞𝑚 are finite fields 
consisting of 𝑞 and 𝑞𝑚 elements, respectively. Then, 𝔽𝑞𝑚 is viewed as an 𝑚-dimensional vector space over 𝔽𝑞 , having the basis 
{𝛽1, … , 𝛽𝑚}. Denote ⟨𝛽1, … , 𝛽𝑚⟩𝔽𝑞 as the 𝔽𝑞 -linear span of 𝛽1, … , 𝛽𝑚, then 𝔽𝑞𝑚 = ⟨𝛽1, … , 𝛽𝑚⟩𝔽𝑞 .

2.1. Preliminaries

Definition 1. Let 𝒗 = (𝑣1, … , 𝑣𝑛) be a vector with length 𝑛 over 𝔽𝑞𝑚 . We can write 𝑣𝑖 =
𝑚∑
𝑗=1

𝑐𝑗𝑖𝛽𝑗 where 𝑐𝑗𝑖 ∈ 𝔽𝑞 for 1 ≤ 𝑖 ≤ 𝑛. Let 

𝐶 =
[
𝑐𝑗𝑖
]
1≤𝑗≤𝑚,
1≤𝑖≤𝑛

∈ 𝔽𝑚×𝑛
𝑞

. We can define the rank weight of 𝒗 as rk(𝒗) ∶= rk(𝐶).

Lemma 1 ([11, Proposition 10]). Suppose that 𝒗= (𝑣1, … , 𝑣𝑛) ∈ 𝔽 𝑛
𝑞𝑚

with rk(𝒗) = 𝑟. Then there exist �̂� = (�̂�1, … , �̂�𝑟) ∈ 𝔽 𝑟
𝑞𝑚

and 𝐸𝑣 ∈ 𝔽 𝑟×𝑛
𝑞

such that 𝒗 = �̂�𝐸𝑣 with rk(�̂�) = 𝑟 and rk(𝐸𝑣) = 𝑟. Denote supp(𝒗) ∶= ⟨𝑣1,… , 𝑣𝑛⟩ ⊂ 𝔽 𝑛
𝑞𝑚

as the support for 𝒗, 𝐸𝑣 as a support matrix for 𝒗, 
and 

{
�̂�1,… , �̂�𝑟

}
as a support basis for 𝒗.

Lemma 2 ([14, Proposition 3]). Let 𝒗 = (𝑣1, … , 𝑣𝑛) ∈ 𝔽 𝑛
𝑞𝑚

be such that rk(𝒗) = 𝑟 < 𝑡. Then there exists a vector 𝒘 = (𝑤1, … , 𝑤𝑡) ∈ 𝔽 𝑡
𝑞𝑚

such that rk(𝒘) = 𝑡 and supp(𝒗) ⊂ supp(𝒘), where supp(𝒘) is an extended support of 𝒗 with extended support basis {𝑤1, … , 𝑤𝑡} for 𝒗. 
Furthermore, there exists 𝐸 ∈ 𝔽 𝑡×𝑛

𝑞
of rk(𝐸) = 𝑟 satisfying 𝒗 = (𝑤1, … , 𝑤𝑡)𝐸. We refer to 𝐸 as an expanded support matrix for 𝒗.

Definition 2. A linear subspace  ⊆ 𝔽 𝑛
𝑞𝑚

is called an [𝑛, 𝑘]-linear code  of length 𝑛 and dimension 𝑘 if dim() = 𝑘. This means 

that there is a generator matrix 𝐺 ∈ 𝔽 𝑘×𝑛
𝑞𝑚

with rk(𝐺) = 𝑘 such that  =
{
𝒖 ∶ 𝒖 = 𝒗𝐺,∀𝒗 ∈ 𝔽 𝑘

𝑞𝑚

}
. Equivalently, there is a parity-check 

matrix 𝐻 ∈ 𝔽 (𝑛−𝑘)×𝑛
𝑞𝑚

with rk(𝐻) = 𝑛 − 𝑘 such that 𝐺𝐻𝑇 = 𝟎 and  =
{
𝒖 ∶ 𝒖𝐻𝑇 = 𝟎

}
. 𝐺 (respectively 𝐻) is in the systematic form if 

it is of the form 
[
𝐼𝑘 ∣𝐴

]
where 𝐴 ∈ 𝔽 𝑘×(𝑛−𝑘)

𝑞𝑚
(respectively 

[
𝐼𝑛−𝑘 ∣ 𝐵

]
where 𝐵 ∈ 𝔽 (𝑛−𝑘)×𝑘

𝑞𝑚
).

Notation 1. In this paper, the subsequent notations are employed:

• A vector 𝒂 = (𝑎0, … , 𝑎𝑘−1) over 𝔽𝑞𝑚 can be regarded as a polynomial 𝐴(𝑋) =
𝑘−1∑
𝑖=0

𝑎𝑖𝑋
𝑖 by abuse of notation.

• Denote 𝑚,𝑛,𝑟 ∶=
{
𝒙 ∶ 𝒙 ∈ 𝔽 𝑛

𝑞𝑚
, rk(𝒙) = 𝑟

}
.

• Let 𝒂1, 𝒂2 ∈ 𝔽 𝑘
𝑞𝑚

and 𝑃 (𝑥) ∈ 𝔽𝑞[𝑋] be an irreducible polynomial of degree 𝑘. Let 𝐴1(𝑋) and 𝐴2(𝑋) be the polynomials associated 
respectively with 𝒂1 and 𝒂2. We denote 𝒂1𝒂2 mod 𝑃 ∶=𝐴1(𝑋)𝐴2(𝑋) mod 𝑃 .

• Denote 𝟏 ∶= (1, 0, ..., 0) ∈ 𝔽 𝑘
𝑞𝑚

.

• Denote 𝒂−1 ∈ 𝔽 𝑘
𝑞𝑚

as the polynomial such that 𝟏 = 𝒂𝒂−1 mod 𝑃 . We say that 𝒂 is invertible if 𝒂−1 exists.

• Let 𝒘 be a vector over 𝔽𝑞𝑚 and 𝑊 = supp(𝒘). Denote 𝑉 −1 ∶= supp(𝒗−1).

• Consider a finite set 𝐵. Let 𝑏 
$
←𝐵 represent the assignment of a randomly selected element from the uniform distribution on 𝐵

to the variable 𝑏.
• Let Φ ⊆ 𝔽𝑞𝑚 be an 𝔽𝑞 -subspace of 𝔽𝑞𝑚 . Denote 𝖦𝗋(𝑑, Φ) as the set of all 𝔽𝑞 -subspaces of Φ with dimension 𝑑.

• Let 𝑐 ∈ 𝔽𝑞𝑚 , 𝐸 = ⟨𝑒1, … , 𝑒𝑟⟩ ∈ 𝖦𝗋(𝑟, 𝔽𝑞𝑚 ) and 𝐹 = ⟨𝑓1, … , 𝑓𝑑⟩ ∈ 𝖦𝗋(𝑑, 𝔽𝑞𝑚 ). Denote the product 𝑐.𝐸 = ⟨𝑐𝑒1, … , 𝑐𝑒𝑟⟩ and the prod-

uct space 𝐸.𝐹 ∶= ⟨𝑒1𝑓1, … , 𝑒𝑟𝑓𝑑⟩ as a subspace with dimension ≤ 𝑟𝑑.

2.2. Ideal codes

We define a [2𝑘, 𝑘] ideal code as follows:

Definition 3 (Ideal Codes). Let 𝑃 (𝑋) ∈ 𝔽𝑞[𝑋] be a polynomial of degree 𝑘 and 𝒈𝟏, 𝒈𝟐 ∈ 𝔽 𝑘
𝑞𝑚

. For 1 ≤ 𝑗 ≤ 2, let 𝐺𝑗 (𝑋) =
∑𝑘−1

𝑖=0 𝑔𝑗𝑖𝑋
𝑖 be 

the polynomials associated respectively to 𝒈𝒋 = (𝑔𝑗0, … , 𝑔𝑗,𝑘−1). The [2𝑘, 𝑘] ideal code  with a generator (𝒈𝟏, 𝒈𝟐) is a [2𝑘, 𝑘]-linear 
3

code with generator matrix
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𝐺 =
⎡⎢⎢⎣
𝑋0𝐺1(𝑋) mod 𝑃 𝑋0𝐺2(𝑋) mod 𝑃

⋮ ⋮
𝑋𝑘−1𝐺1(𝑋) mod 𝑃 𝑋𝑘−1𝐺2(𝑋) mod 𝑃

⎤⎥⎥⎦ , (1)

i.e.,  =
{
(𝒙𝒈𝟏 mod 𝑃 ,𝒙𝒈𝟐 mod 𝑃 ) ∶ for all 𝒙 ∈ 𝔽 𝑘

𝑞𝑚

}
. In the case where 𝒈1 is invertible, it is possible to represent the code in a 

systematic form, denoted as  =
{
(𝒙,𝒙𝒈) ∶ for all 𝒙 ∈ 𝔽 𝑞𝑚𝑘

}
. Here, 𝒈 = 𝒈−11 𝒈2 mod 𝑃 serves as the generator, along with 𝑃 , for this 

code .

Remark 1. Suppose we have an ideal code  with a generator (𝒈1, 𝒈2), representing a [2𝑘, 𝑘] code. The polynomials (𝒉1, 𝒉2) and 𝑃
define a parity-check matrix for  if 𝐻 =

[
𝐻1 ∣𝐻2

]
serves as a parity-check matrix for 𝐺 as defined in equation (1) where

𝐻1 =
⎡⎢⎢⎣
𝑋0𝒉1 mod 𝑃

⋮
𝑋𝑘−1𝒉1 mod 𝑃

⎤⎥⎥⎦ and 𝐻2 =
⎡⎢⎢⎣
𝑋0𝒉2 mod 𝑃

⋮
𝑋𝑘−1𝒉2 mod 𝑃

⎤⎥⎥⎦ .
Likewise, when 𝒉−11 is invertible, we designate 𝒉 = 𝒉−11 𝒉2 and 𝑃 as the generator for the parity-check matrix of the ideal code .

2.3. Hard problems in coding theory

In cryptographic systems based on rank metric codes, their security often hinges on challenging problems unique to the rank 
metric. One of these problems, a modification of the classical syndrome decoding problem, can be stated as follows in the rank 
metric.

Problem 1 (Rank Syndrome Decoding (𝖱𝖲𝖣) Problem). Let 𝐻 be an (𝑛 − 𝑘) × 𝑛 matrix over 𝔽𝑞𝑚 with rk(𝐻) = 𝑛 − 𝑘, 𝒔 ∈ 𝔽 𝑛−𝑘
𝑞𝑚

and 
𝑟 ∈ℤ+. The Rank Syndrome Decoding problem 𝖱𝖲𝖣𝐻 (𝑞, 𝑚, 𝑛, 𝑘, 𝑟) requires finding a vector 𝒙 ∈ 𝑚,𝑛,𝑟 satisfying 𝐻𝒙𝑇 = 𝒔𝑇 .

The widely recognized syndrome decoding (SD) problem in the Hamming metric has been formally shown to be NP-complete by 
Berman, Moody, and Tolhuizen [5]. In a more recent development, Gaborit and Zémor [10] demonstrated that if a probabilistic 
algorithm existed for solving the 𝖱𝖲𝖣 problem in polynomial time, it would consequently enable solving the SD problem in the 
Hamming metric using a probabilistic polynomial-time algorithm. Hence, the 𝖱𝖲𝖣 issue stands as a suitable hard problem for rank 
metric cryptosystems.

The problem described in [8] is analogous to the 𝖱𝖲𝖣 problem, with the distinction that it involves additional syndromes of 
errors sharing the same support.

Problem 2 (Rank Support Learning (𝖱𝖲𝖫) Problem). Let 𝐻 be an (𝑛 − 𝑘) × 𝑛 matrix over 𝔽𝑞𝑚 with rk(𝐻) = 𝑛 − 𝑘 and 𝑟 ∈ℤ+. Consider 
𝐸, a random subspace of 𝔽𝑞𝑚 of dimension 𝑟, and 𝒔 ∈ 𝔽 𝑛−𝑘

𝑞𝑚
where the vectors 𝒔𝑖 are randomly selected from a space 𝐸𝑛. The objective 

of 𝖱𝖲𝖫𝐻 (𝑞, 𝑚, 𝑛, 𝑘, 𝑟, 𝑁) is to retrieve the subspace 𝐸 using solely the oracle . Specifically, an instance of the 𝖱𝖲𝖫 permits 𝑁 oracle 
calls, resulting in a sequence (𝐻, 𝐻𝒔𝑇1 , … , 𝐻𝒔𝑇

𝑁
).

The next problem is a variant of the 𝖱𝖲𝖣 introduced in [2].

Problem 3 (Affine Rank Syndrome Decoding (𝖠𝖱𝖲𝖣) Problem). Consider a parity-check matrix 𝐻 for an [𝑛, 𝑘]-linear code, an 
(𝑛 − 𝑘) × 𝑛′ random matrix 𝐻 ′ over 𝐹𝑞𝑚 , an 𝐹𝑞 -subspace 𝐹 of 𝐹𝑞𝑚 with dimension 𝑟′, a vector 𝒔 in 𝐹𝑛−𝑘

𝑞𝑚
, and an integer 𝑟. The 

𝖠𝖱𝖲𝖣(𝑞, 𝑚, 𝑛, 𝑘, 𝑟, 𝑛′, 𝐹 ) problem aims to discover vectors 𝒆 ∈ 𝔽 𝑛
𝑞𝑚

and 𝒆′ ∈ 𝔽 𝑛′
𝑞𝑚

such that

𝐻𝒆𝑇 +𝐻 ′𝒆′𝑇 = 𝒔, rk(𝒆) = 𝑟, supp(𝒆′) ⊆ 𝐹 .

The 𝖱𝖲𝖫 problem has been established to possess comparable complexity to the 𝖱𝖲𝖣 problem [8]. Furthermore, for large values of 
𝑚, the 𝖠𝖱𝖲𝖣 problem exhibits equivalent difficulty to the worst-case 𝖱𝖲𝖣 problem [2]. Therefore, these two problems are accepted 
as difficult problems on which the rank metric code-based cryptosystems are based.

3. The original Durandal scheme and the SHMW scheme

In this section, we recall the specifications of the original Durandal and the SHMW signature schemes. Besides, we also include 
the proposed parameters for the mentioned signature schemes achieving a 128-bit security level.

3.1. Durandal signature scheme
4

We first give some terminologies required in the general Durandal signature scheme framework.
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Definition 4. Let 𝐸 ∈ 𝖦𝗋(𝑟, 𝔽𝑞𝑚 ) and 𝐹 ∈𝖦𝗋(𝑑, 𝔽𝑞𝑚 ). A filtered subspace of 𝐸.𝐹 of dimension 𝑟𝑑 − 𝜆 is a vector subspace 𝑈 such that

• 𝑈 ⊂𝐸.𝐹 with dim(𝑈 ) = 𝑟𝑑 − 𝜆,

• for every non-zero 𝑥 = 𝑒𝑓 with 𝑒 ∈𝐸 and 𝑓 ∈ 𝐹 , we have 𝑥 ∉𝑈 .

The original Durandal signature scheme is summarized in Algorithm 1.

Algorithm 1 Durandal Signature Scheme.

Durandal.𝖪𝖾𝗒𝖦𝖾𝗇(𝑞, 𝑚, 𝑛, 𝑘, 𝑙, 𝑙′, 𝑤, 𝑟, 𝑑, 𝜆)
Input: A public parameter (𝑞, 𝑚, 𝑛, 𝑘, 𝑙, 𝑙′, 𝑤, 𝑟, 𝑑, 𝜆) depending on the security parameter 1𝛿
Output: The public-secret key pair 𝗉𝗄,𝗌𝗄
𝐸

$
←𝖦𝗋(𝑟, 𝔽𝑞𝑚 )

𝑆
$
←𝐸𝑙𝑘×𝑛 , 𝑆′ $

←𝐸𝑙′𝑘×𝑛

𝐻
$
← ideal  𝑛

2 ×𝑛 , 𝑇 ← 𝑆𝐻𝑇 , 𝑇 ′ = 𝑆′𝐻𝑇

𝗉𝗄← (𝐻, 𝑇 , 𝑇 ′), 𝗌𝗄 ← (𝑆, 𝑆′)
Return 𝗉𝗄, 𝗌𝗄

Durandal.𝖲𝗂𝗀𝗇(𝗉𝗄, 𝗌𝗄, 𝜇)
Input: The secret key 𝗌𝗄 and a message 𝜇 ∈ {0, 1}∗ to be signed

Output: A signature (𝒛, 𝐹 , 𝒄, 𝒑)
𝑊

$
←𝖦𝗋(𝑤, 𝔽𝑞𝑚 ), 𝐹

$
←𝖦𝗋(𝑑, 𝔽𝑞𝑚 )

𝒚
$
← (𝑊 +𝐸𝐹 )𝑛 , 𝒙← 𝒚𝐻𝑇

𝒄 ←(𝒙, 𝐹 , 𝜇) where 𝒄 ∈ 𝔽 𝑙′𝑘

𝑈
$
← filtered subspace of 𝐸.𝐹 with dimensions 𝑟𝑑 − 𝜆

𝒛← 𝒚 + 𝒄𝑆′ + 𝒑𝑆 ∈𝑊 +𝑈 where 𝒑 ∈ 𝐹 𝑙𝑘

Return (𝒛, 𝐹 , 𝒄, 𝒑)

Durandal.𝖵𝖾𝗋𝗂𝖿𝗒(𝜇, 𝒛, 𝐹 , 𝒄, 𝒑, 𝗉𝗄)
Input: The public key 𝗉𝗄, a signed message 𝜇 ∈ {0, 1}∗ and a signature (𝒛, 𝐹 , 𝒄, 𝒑)
Output: Accept or Reject the signature (𝒛, 𝐹 , 𝒄, 𝒑)

if rk(𝒛) ≤𝑤 + 𝑟𝑑 − 𝜆 and rk(𝒛) ≤𝑤 + 𝑟𝑑 − 𝜆 then

Return Accept
else

Return Reject
end if

Remark 2. The main difference in the design of the original Durandal and the SHMW scheme is the choice of parameters 𝑙, 𝑙′ and 
𝜆. In the original Durandal scheme, choosing the appropriate value of 𝑙′ is essential to guarantee that the entropy of 𝒄 reaches a 
satisfactorily high level. In their parameter setting, it is consistently adequate to choose 𝑙′ = 1 to satisfy the condition 𝑙′𝑑𝑘 > 512. 
Moreover, 𝑙 = 4 and 𝜆 ≥ 𝑟 + 𝑑 are carefully determined to enhance the difficulty of attacks on both the 𝖱𝖲𝖣 and 𝖱𝖲𝖫 problems.

In the SHMW signature scheme, 𝑙 and 𝑙′ are always fixed at 1, i.e., 𝑙 = 𝑙′ = 1. That is why they have omitted the terms 𝑙 and 𝑙′
in their proposed parameters. Moreover, there is no restriction on the parameter 𝜆 such that it must satisfy 𝜆 ≥ 𝑟 + 𝑑. Their 𝜆 was 
chosen to satisfy 𝜆 ≤

⌊
𝑑

2

⌋
.

3.2. Proposed parameters for the original Durandal and the SHMW signature schemes

To reduce the public key size of the original Durandal and the SHMW signature scheme, the authors in [2,20] considered 𝑛 = 2𝑘
and 𝐻 ∈ 𝔽 (𝑛−𝑘)×𝑛

𝑞𝑚
to have an ideal structure as in Definition 3 for an irreducible polynomial 𝑃 . Consequently, each equation of the 

form 𝒕𝑖 = 𝒔𝑖𝐻𝑇 and 𝒕′𝑖′ = 𝒔′𝑖′𝐻𝑇 can be shifted modulo 𝑃 to generate 𝑘 syndrome. Thus, the matrix 𝑆 (and 𝑆′) is constructed by 
assembling all 𝒔𝑖 (and 𝒔′

𝑖′
) vectors along with their ideal shifts. In the case of the original Durandal scheme, the public keys 𝑇 and 𝑇 ′

are expressed solely using the vectors (𝒕1, … , 𝒕𝑙) and (𝒕′1, … , 𝒕′𝑙′) respectively. In the SHMW signature scheme, the public key can be 
described using only the vectors 𝒕 and 𝒕′ when 𝑙 = 𝑙′ = 1.

Table 1 presents an overview of the suggested parameters for the original Durandal and the SHMW signature schemes for the 
security of 𝖲𝖾𝖼 = 128 bits. The sizes of the public keys, signatures, and the security level of each scheme are denoted as “𝗌𝗂𝗓𝖾𝗉𝗄”, 
“𝗌𝗂𝗓𝖾𝜎”, and “𝖲𝖾𝖼” respectively.

4. A new approach to recover secret keys of the Durandal framework

In this section, we determine the conditions to recover secret keys in the general Durandal framework. This approach does not 
aim to solve for the secret key 𝑆 and 𝑆′ via the 𝖱𝖲𝖫 or the 𝖱𝖲𝖣 method. Instead, our approach aims to recover extended support 
5

containing the secret 𝐸 via the LTP approach.
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Table 1

Parameters for the original Durandal and the SHMW schemes in [2,20].

Schemes (𝑞,𝑚,𝑘, 𝑙, 𝑙′, 𝑑, 𝑟,𝑤,𝜆) 𝗌𝗂𝗓𝖾𝗉𝗄 𝗌𝗂𝗓𝖾𝜎 Sec

Durandal-I (2,241,101,4,1,6,6,57,12) 15.25 kB 4.06 kB 128

Durandal-II (2,263,113,4,1,7,7,56,14) 18.61 kB 5.02 kB 128

SHMW-I (2,229,83,1,1,7,3,59,3) 11.88 kB 3.23 kB 128

SHMW-II (2,233,89,1,1,8,3,58,4) 12.96 kB 3.40 kB 128

4.1. LTP second attack on Schnorr-type rank metric signature schemes

We will revisit the core concept of the LTP second attack proposed in [14]. This attack capitalizes on two aspects of the design of 
Schnorr-type signature schemes:

1. The determination of whether a generated signature with a low rank inadvertently reveals any information about an extended 
support linked to the secret key. If such leakage is identified, it becomes feasible to deduce the extended support (with dimension 
𝑡) and its underlying basis for the secret key.

2. If the inequality 𝑡𝑛 ≤ (𝑛 − 𝑘)𝑚 holds, it becomes possible to solve for an extended support matrix that corresponds to the secret 
key, as the number equations in the linear system (over 𝔽𝑞) derived from the public key is sufficient.

As mentioned above, the direct application of Step 1 in this attack on the Durandal signature scheme is difficult, as applying 
techniques derived from Low-Rank Parity Check code decoding will not expose the support associated with the secret key. Conse-

quently, it becomes necessary to devise an alternative approach for determining the extended support 𝑉 associated with the secret 
key. Furthermore, to apply Step 2, we need to ensure that such 𝑉 determined has its dimension dim(𝑉 ) ≤ (𝑛−𝑘)𝑚

𝑛
.

4.2. A probabilistic algorithm for our approach

We first introduce some preliminary results required for our approach.

Lemma 3. [12, Lemma 3] Consider 𝑈 ∈ 𝖦𝗋(𝑟1, 𝔽𝑞𝑚 ), 𝑉 ∈ 𝖦𝗋(𝑟2, 𝔽𝑞𝑚 ) and 𝑊 ∈ 𝖦𝗋(𝑟3, 𝔽𝑞𝑚 ) such that 𝑈 ∩ 𝑉 = 𝟎 and 𝑊 ∩ 𝑉 = 𝟎. Let 
𝑍 =𝑈 + 𝑉 and 𝑌 = 𝑉 +𝑊 . If 𝑟1 + 𝑟2 + 𝑟3 ≥𝑚, then dim(𝑍 ∩ 𝑌 ) ≥ 𝑟1 + 2𝑟2 + 𝑟3 −𝑚.

Lemma 4. Let 𝑊 ∈ 𝖦𝗋(𝑤, 𝔽𝑞𝑚 ), 𝐸 ∈ 𝖦𝗋(𝑟, 𝔽𝑞𝑚 ) and 𝐹 = ⟨𝑓1, … , 𝑓𝑑⟩ ∈ 𝖦𝗋(𝑑, 𝔽𝑞𝑚 ) such that 𝑊 ∩𝐸.𝐹 = 0. Consider 𝑈 a filtered subspace 
𝐸.𝐹 such that {𝑒𝑓 ∶ 𝑒 ∈ 𝐸, 𝑓 ∈ 𝐹 } ∩ 𝑈 = 0 and dim(𝑈 ) = 𝑟𝑑 − 𝜆. Let 𝑍 =𝑊 + 𝑈 and 𝑍𝑐 be a complement space of 𝑍 in 𝔽𝑞𝑚 , i.e., 
𝔽𝑞𝑚 =𝑍 +𝑍𝑐 . Then for 1 ≤ 𝑖 ≤ 𝑑, there exists 𝑉𝑖 ∈𝖦𝗋(𝑟, 𝑓−1

𝑖
.𝑍𝑐) such that 𝐸 ⊂ 𝑓−1

𝑖
.𝑍 + 𝑉𝑖.

Proof. By definition of 𝑈 , a vector subspace 𝑇 ∈ 𝖦𝗋(𝜆, 𝑍𝑐) exists such as 𝐸.𝐹 = 𝑈 + 𝑇 . Thus, the subspace 𝑓−1
𝑖
.(𝐸.𝐹 ) = 𝑓−1

𝑖
.(𝑈 +

𝑇 ) contains 𝐸, i.e., 𝐸 ⊂ 𝑓−1
𝑖
.(𝑈 + 𝑇 ) = 𝑓−1

𝑖
.𝑈 + 𝑓−1

𝑖
.𝑇 ⊂ 𝑓−1

𝑖
.𝑍 + 𝑓−1

𝑖
.𝑍𝑐 . Since dim(𝐸) = 𝑟, we require only a subspace 𝑉𝑖 ∈

𝖦𝗋(𝑟, 𝑓−1
𝑖
.𝑍𝑐) such that 𝐸 ⊂ 𝑓−1

𝑖
.𝑍 + 𝑉𝑖. This completes the proof for the statement. □

The next result gives a generalization for [12, Lemma 4].

Lemma 5. Given Φ ∈ 𝖦𝗋(𝑚′, 𝔽𝑞𝑚 ). Let  ∈𝖦𝗋(𝑟, Φ),  ∈𝖦𝗋(𝑦, Φ) and  ∈𝖦𝗋(𝑢, Φ) such that  =  + and  ∩ = 0. Given a vector 
subspace  =  + ∈ 𝖦𝗋(𝑡, Φ) such that  ∩ = 0, the probability that a random  ∈ 𝖦𝗋(𝑠, Φ) such that 𝑠 ≤ 𝑚′ − 𝑡,  ∩  = 𝟎 and 
 ⊂  + is approximately 𝑞−𝑟(𝑚′−𝑡−𝑠).

Proof. The number of subspaces  ’s in Φ such that dim(𝑉 ) = 𝑠,  ∩  = 0 is 
[
𝑚′ − 𝑡

𝑠

]
𝑞

. Now, let us determine the number of 

subspaces with dimension 𝑠 which contains  . Since  =  + ⊂  + + , the remaining of the basis for  can only be chosen 

from the remaining 𝑚′ − 𝑡 − 𝑟 choices. This gives us the number of subspaces of Φ with dimension 𝑠 that contain  is 
[
𝑚′ − 𝑡− 𝑟

𝑠− 𝑟

]
𝑞

. 

Thus, the desired probability is[
𝑚′ − 𝑡− 𝑟

𝑠− 𝑟

]
𝑞[

𝑚′ − 𝑡

𝑠

]
𝑞

≈ 𝑞(𝑠−𝑟)(𝑚
′−𝑡−𝑟−(𝑠−𝑟))

𝑞𝑠(𝑚′−𝑡−𝑠)

1

6

=
𝑞𝑟(𝑚′−𝑡−𝑠)

. □
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Remark 3. If  = 0, we have 𝑡 = 0 and  =  ⊂  . The desired probability is 𝑞−𝑟(𝑚′−𝑠), which is the exact case in [12, Lemma 4].

The subsequent algorithm is crucial in our approach:

Algorithm 2 𝖱𝖲-Algorithm.

Input: An 𝔽𝑞 -subspace Φ ∈𝖦𝗋(𝑚′, 𝔽𝑞𝑚 ) where 𝑚′ ≤𝑚, an 𝔽𝑞 -subspace  ∈𝖦𝗋(𝑡, Φ).
Output: An 𝔽𝑞 -subspace  ∈𝖦𝗋(𝑠, Φ) where 𝑠 ≤𝑚′ − 𝑡 and  ∩ = 𝟎.

Compute a complement space ′ for  in Φ
⊳ Choose randomly a subspace  with dim() = 𝑠 from ’


$
←𝖦𝗋(𝑠, ′)

Return 

By Lemma 5:

Corollary 6. Suppose Φ is an 𝔽𝑞 -subspace in 𝖦𝗋(𝑚′, 𝔽𝑞𝑚 ). Let  ,  ,  ,  ,  ⊂ Φ be 𝔽𝑞 -vector subspaces such that  =  +  with 
dim( ) = 𝑟,  =  + with dim() = 𝑡,  ∩  = 𝟎 and  ∩ = 𝟎. The probability that 𝖱𝖲(Φ,  , 𝑠) will output a random subspace 
 ⊆Φ such that dim() = 𝑠 ≤𝑚′ − 𝑡,  ∩ = 𝟎 and  ⊂ + is 𝑞−𝑟(𝑚′−𝑡−𝑠).

4.3. General idea for our first approach

Now, we describe the general idea for our approach to recovering secret keys. We consider the second approach in LTP attacks 
and aim to recover extended support containing the secret 𝐸 via the LTP approach. For each 1 ≤ 𝑖 ≤ 𝑙 and 1 ≤ 𝑖′ ≤ 𝑙′, we have 
syndromes 𝒕𝑖 = 𝒔𝑖𝐻

𝑇 and 𝒕′
𝑖′
= 𝒔′

𝑖′
𝐻𝑇 . By Lemma 2, there exists an extended basis vector 𝝈 ∈ 𝑚,𝑛,𝑟′ and an extended support matrix 

Σ𝑖 ∈ 𝖳𝑟
′×𝑛
𝑟′

such that 𝒔𝑖 = 𝝈Σ𝑖 for 1 ≤ 𝑖 ≤ 𝑙. Similarly, there exists an extended support matrix Σ𝑖′ ∈ 𝖳𝑟
′×𝑛
𝑟′

such that 𝒔′
𝑖′
= 𝝈Σ𝑖′ for 

1 ≤ 𝑖′ ≤ 𝑙′. Our approach consists of two main stages:

1. Retrieve an extended support basis vector 𝝈 for 𝒔𝑖 and 𝒔′
𝑖′

. We perform the 𝖱𝖲-algorithm multiple times to obtain an extended 
support of dimension 𝑤 + 𝑟𝑑−𝜆 + �̂� that contains 𝐸. Next, we perform intersect operations on these extended supports to retrieve 
a vector space 𝑉 with dimension of 𝑟′ ≤ (𝑛−𝑘)𝑚

𝑛
. Finally, we compute a basis for 𝑉 .

2. Retrieve an extended support matrix Σ𝑖 for 𝒔𝑖 from 𝒕𝑖 = 𝝈Σ𝑖𝐻𝑇 and an extended support matrix Σ𝑖′ for 𝒔′
𝑖′

from 𝒕′
𝑖′
= 𝝈Σ𝑖′𝐻𝑇

for 1 ≤ 𝑖 ≤ 𝑙 and 1 ≤ 𝑖′ ≤ 𝑙′. By examining the linear system defined over 𝔽𝑞 , the system comprises 𝑚(𝑛 − 𝑘) equations over 𝔽𝑞 , 
and 𝑟𝑛 unknown variables pertaining to 𝐸 over 𝔽𝑞 . When the inequality 𝑟′𝑛 ≤𝑚(𝑛 − 𝑘) is satisfied, retrieving the support matrix 
𝐸 becomes feasible.

We now describe our first approach to recovering secret keys on the Durandal framework. We first determine the maximum 
integer 𝑟′ such that 𝑟′𝑛 ≤ 𝑚(𝑛 − 𝑘). Then, we try to determine an extended support 𝑉 such that 𝐸 ⊂ 𝑉 . This is done by intersecting 
the vector spaces 𝐸𝑗 of dim(𝐸𝑗 ) = �̂� > 𝑟′ which contains 𝐸 (𝐸 ⊂𝐸𝑗 ), i.e., 𝑉 =

⋂
𝑗 𝐸𝑗 . Finally, we can proceed to retrieve an extended 

support matrix for 𝒔𝑖 and 𝒔′
𝑖
.

Correctness and Complexity of Algorithm 3. Let (𝒛, 𝐹 , 𝒄, 𝒑) be a signature of Durandal and 𝑍 = supp(𝒛). We can first determine 
the maximum integer 𝑟′ that satisfies 𝑚(𝑛 − 𝑘) ≥ 𝑟′𝑛, i.e., 𝑟′ =

⌊
𝑚(𝑛−𝑘)

𝑛

⌋
.

Recall that 𝑍 =𝑊 +𝑈 , where 𝑈 is a filtered subspace of 𝐸.𝐹 with dimension 𝑟𝑑−𝜆 and 𝑍′ = 𝑓−1
1 .𝑍 . Let (𝑍′)𝑐 be a complement 

space of 𝑍′ in 𝔽𝑞𝑚 . By Lemma 4, there exists a subspace 𝑋 ∈𝖦𝗋(𝑟, (𝑍′)𝑐) such that 𝐸 ⊂𝑍′ +𝑋. We can apply 𝖱𝖲(𝔽𝑞𝑚 , 𝑍′, ̂𝑟) to obtain 
a subspace 𝐸𝑗 ∈𝖦𝗋(�̂�, (𝑍′)𝑐) such that 𝐸 ⊂𝑍′ +𝑋 ⊂𝑍′ +𝐸𝑗 with probability of 𝑞−𝑟(𝑚−(𝑤+𝑟𝑑−𝜆)−�̂�).

By Lemma 3, we have dim((𝐸1 +𝑍′) ∩ (𝐸2 +𝑍′)) = 2(�̂� +𝑤 + 𝑟𝑑 − 𝜆) −𝑚 and dim((𝐸1 +𝑍′) ∩… ∩ (𝐸𝑗 +𝑍′)) = 𝑚 − 𝑗(𝑚 − (�̂� +
𝑤 + 𝑟𝑑 − 𝜆)). Let 𝑗0 be the minimum integer such that 𝑚 − 𝑗0(𝑚 − (�̂�+𝑤 + 𝑟𝑑 − 𝜆)) ≤ 𝑟′, i.e.,

𝑗0 =
⌈

𝑚− 𝑟′

𝑚− (�̂�+𝑤+ 𝑟𝑑 − 𝜆)

⌉
. (2)

Therefore, the complexity to compute the subspace 𝑉𝗂𝗇𝗍 =
⋂
𝑗

(
𝐸𝑗 +𝑍′) such that 𝐸 ⊂ 𝑉𝗂𝗇𝗍 and dim(𝑉𝗂𝗇𝗍) ≤ 𝑟′ is 𝑞𝑗0𝑟(𝑚−(𝑤+𝑟𝑑−𝜆)−�̂�).

Let dim(𝑉𝗂𝗇𝗍) = 𝑡, we can compute a basis {𝑣1, … , 𝑣𝑡} for 𝑉𝗂𝗇𝗍. For each 1 ≤ 𝑖 ≤ 𝑙, we can solve for Σ𝑖 from the equation 𝒕𝑖 =
(𝑣1, … , 𝑣𝑡)Σ𝑖𝐻𝑇 over 𝔽𝑞 . We can compute a unique solution for Σ𝑖 since 𝑡 ≤ 𝑟′ ≤ 𝑚(𝑛−𝑘)

𝑛
. Similarly for 1 ≤ 𝑖′ ≤ 𝑙′, we can solve for a 

unique Σ𝑖′ from the equation 𝒕′
𝑖′
= (𝑣1, … , 𝑣𝑡)Σ𝑖′𝐻𝑇 over 𝔽𝑞 . The complexity to solve for these is ((𝑙 + 𝑙′)𝑡𝑛)3.

Consequently, the total complexity of Algorithm 3 is

𝑂
(
((𝑙′ + 𝑙)𝑡𝑛)3𝑞𝑗0𝑟(𝑚−(𝑤+𝑟𝑑−𝜆)−�̂�)) . (3)
7

Remark 4. From the formula in (3), observe that the complexity of the above approach will decrease if the value 𝑟 decreases.
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Algorithm 3 Our First Approach to the General Durandal Framework.

Input: A signature (𝒛, 𝐹 , 𝒄, 𝒑), 𝑟′ < �̂� ∈ℤ, 𝗉𝗄 = (𝐻, 𝒕1, … , 𝒕𝑙 , 𝒕′1, … , 𝒕′
𝑙′
)

Output: The secret key 𝒔1, … , 𝒔𝑙 , 𝒔′1 , … , 𝒔′
𝑙′

⊳ Step 1: Retrieve an extended support basis for 𝒔1, … , 𝒔𝑙 , 𝒔′1, … , 𝒔′
𝑙′

Determine a basis {𝑓1, … , 𝑓𝑑} for 𝐹
for 𝑖 ← 1, … , 𝑛 do

Compute 𝑧′
𝑖
← 𝑓−1

1 𝑧𝑖
end for

Compute 𝑍′ ← ⟨𝑧′1 , … , 𝑧′
𝑛
⟩

𝑉𝗂𝗇𝗍 ← 𝔽𝑞𝑚 as an 𝑚-dimensional vector space

𝑗← 0
while dim(𝑉𝗂𝗇𝗍) > 𝑟′ do

𝑗← 𝑗 + 1

𝐸𝑗

$
←𝖱𝖲(𝔽𝑞𝑚 , 𝑍′, ̂𝑟)

Compute 𝑉𝗂𝗇𝗍 ← 𝑉𝗂𝗇𝗍 ∩ (𝐸𝑗 +𝑍′)
end while

𝑡← dim(𝑉𝗂𝗇𝗍)
Determine a basis {𝑣1, … , 𝑣𝑡} for 𝑉𝗂𝗇𝗍
⊳ Step 2: Recover support matrices for 𝒔1 , … , 𝒔𝑙 , 𝒔′1, … , 𝒔′

𝑙′

for 𝑖 ← 1, … , 𝑙 do

Recover Σ𝑖 from 𝒕𝑖 = (𝑣1, … , 𝑣𝑡)Σ𝑖𝐻𝑇 over 𝔽𝑞
Compute 𝒔𝑖 ← (𝑣1, … , 𝑣𝑡)Σ𝑖

end for

for 𝑖′ ← 1, … , 𝑙′ do

Recover Σ𝑖′ from 𝒕𝑖′ = (𝑣1, … , 𝑣𝑡)Σ𝑖′𝐻𝑇 over 𝔽𝑞
Compute 𝒔𝑖′ ← (𝑣1, … , 𝑣𝑡)Σ𝑖′

end for

Return 𝒔1, … , 𝒔𝑙 , 𝒔′1, … , 𝒔′
𝑙′

Table 2

Complexity of our First Approach to Determine secret keys.

Schemes (𝑟, 𝜆) 𝑟′ �̂� Succ. Rate of 𝖱𝖲-Algorithm 𝑗0 Solving 1st

Theoretical Experimental RSD KRA

Durandal-I (6,12) 120 159 2−6 2−6.001 121 128 776

158 2−12 2−12.041 61 782

157 2−18 2−18.009 41 788

Durandal-II (7,14) 131 171 2−7 2−7.002 132 128 975

170 2−14 2−14.007 66 975

169 2−21 2−20.971 44 975

SHMW-I (3,3) 114 151 2−3 2−2.999 115 128 391

150 2−6 2−6.091 58 394

149 2−9 2−8.947 39 397

SHMW-II (3,4) 116 154 2−3 2−3.001 117 128 397

153 2−6 2−6.017 59 400

152 2−9 2−9.078 39 397

4.4. Results of our first approach on the Durandal and the SHMW schemes

We implement our first approach on the Durandal and the SHMW signature schemes for all the parameters proposed. We consider 
different values for �̂�. We executed the 𝖱𝖲-Algorithm with parameters (𝔽𝑞𝑚 , 𝑍′, ̂𝑟) in Magma V2.20-5, on a 3.4 GHz Intel (R) CoreTM 
i7 processor with 16 GB of RAM. In particular, we calculated the number of iterations required for the 𝖱𝖲-Algorithm to be successful 
for 1000 instances. Our experiment results coincide with the theoretical success rate of the 𝖱𝖲-Algorithm as in Corollary 6.

We now summarize the complexity of our first approach (denoted as “1st KRA”) in Table 2.

Based on 2, it is evident that our first approach is not as efficient as the key recovery attacks (solving RSD in Table 2) proposed 
in [2,20]. Nevertheless, our first approach can be further improved with some modifications, as explained in Section 5.

5. An improved approach to retrieve the secret keys of the Durandal framework

In this section, we improve our first approach to recover the secret keys of the Durandal framework.

5.1. General idea for our second approach

Now, we describe the general idea for our second approach to recovering secret keys. Our second approach is similar to the first 
8

approach, except for the details of recovering an extended support basis vector 𝝈 for 𝒔𝑖 and 𝒔′
𝑖′

. In particular, instead of recovering 
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directly a vector subspace that contains 𝐸, we first try to recover a vector subspace 𝐸𝐹𝑗 of dim(𝐸𝐹𝑗 ) = �̄� > 𝑟′ which contains 𝐸.𝐹 , 
i.e., 𝐸.𝐹 ⊂ 𝐸𝐹𝑗 . Then, we proceed to compute 𝑉𝑗 = ∩𝑑

𝜇=1𝑓
−1
𝜇
.(𝐸𝐹𝑗 +𝑍), and intersect 𝑉𝑗 ’s to obtain 𝐸 ⊂ 𝑉 =

⋂
𝑗 𝑉𝑗 . Finally, we can 

retrieve an extended support matrix for 𝒔𝑖 and 𝒔′
𝑖
.

The following is the specification for our second approach.

Algorithm 4 Our Second Approach on the General Durandal Framework.

Input: A signature (𝒛, 𝐹 , 𝒄, 𝒑), 𝑟′ < �̄� ∈ℤ, 𝗉𝗄 = (𝐻, 𝒕1, … , 𝒕𝑙 , 𝒕′1, … , 𝒕′
𝑙′
)

Output: The secret key 𝒔1, … , 𝒔𝑙 , 𝒔′1 , … , 𝒔′
𝑙′

⊳ Step 1: Retrieve an extended support basis for 𝒔1, … , 𝒔𝑙 , 𝒔′1, … , 𝒔′
𝑙′

Compute a basis {𝑓1, … , 𝑓𝑑} for 𝐹
𝑉𝗂𝗇𝗍 ← 𝔽𝑞𝑚 as an 𝑚-dimensional vector space

𝑗← 0
while dim(𝑉𝗂𝗇𝗍) > 𝑟′ do

𝑗← 𝑗 + 1

𝐸𝐹𝑗
$
←𝖱𝖲(𝔽𝑞𝑚 , 𝑍, ̄𝑟)

𝑇𝑗 ←𝐸𝐹𝑗 +𝑍

for 𝜇← 1, … , 𝑑 do

Compute 𝑉𝗂𝗇𝗍 ← 𝑉𝗂𝗇𝗍 ∩ 𝑓−1
𝜇
.𝑇𝑗

end for

end while

𝑡← dim(𝑉𝗂𝗇𝗍)
Determine a basis {𝑣1, … , 𝑣𝑡} for 𝑉𝗂𝗇𝗍
⊳ Step 2: Retrieve support matrices for 𝒔1, … , 𝒔𝑙 , 𝒔′1, … , 𝒔′

𝑙′

for 𝑖 ← 1, … , 𝑙 do

Recover Σ𝑖 from 𝒕𝑖 = (𝑣1, … , 𝑣𝑡)Σ𝑖𝐻𝑇 over 𝔽𝑞
Compute 𝒔𝑖 ← (𝑣1, … , 𝑣𝑡)Σ𝑖

end for

for 𝑖′ ← 1, … , 𝑙′ do

Recover Σ𝑖′ from 𝒕𝑖′ = (𝑣1, … , 𝑣𝑡)Σ𝑖′𝐻𝑇 over 𝔽𝑞
Compute 𝒔𝑖′ ← (𝑣1, … , 𝑣𝑡)Σ𝑖′

end for

Return 𝒔1, … , 𝒔𝑙 , 𝒔′1, … , 𝒔′
𝑙′

Correctness and Complexity of Algorithm 4. Let (𝒛, 𝐹 , 𝒄, 𝒑) be a signature of Durandal and 𝑍 = supp(𝒛). We can first determine 
the maximum integer 𝑟′ that satisfies 𝑚(𝑛 − 𝑘) ≥ 𝑟′𝑛, i.e., 𝑟′ =

⌊
𝑚(𝑛−𝑘)

𝑛

⌋
.

Recall that 𝑍 =𝑊 + 𝑈 , where 𝑈 is a filtered subspace of 𝐸.𝐹 with dimension 𝑟𝑑 − 𝜆. By definition of 𝑈 , there exists a vector 
space 𝑈 ′ of dim(𝑈 ′) = 𝜆 such that 𝐸.𝐹 = 𝑈 + 𝑈 ′. We can apply 𝖱𝖲(𝔽𝑞𝑚 , 𝑍, ̄𝑟) to obtain a subspace 𝐸𝐹𝑗 ∈ 𝖦𝗋(�̄�, 𝑍𝑐) such that 
𝐸.𝐹 ⊂𝑍 +𝐸𝐹𝑗 = 𝑇𝑗 with the probability of 𝑞−𝜆(𝑚−(𝑤+𝑟𝑑−𝜆)−�̄�).

Since 𝐸.𝐹 ⊂ 𝑇𝑗 , for each 1 ≤ 𝜇 ≤ 𝑑, 𝐸 ⊂ 𝑓−1
𝜇
.(𝐸.𝐹 ) ⊂ 𝑓−1

𝜇
.𝑇𝑗 . By Lemma 3, we have dim

(⋂𝑑

𝜇=1 𝑓
−1
𝜇
.𝑇𝑗

)
= 𝑚 − 𝑑(𝑚 − (�̄� +𝑤 +

𝑟𝑑 − 𝜆)) and

dim

(⋂
𝑗

(
𝑑⋂

𝜇=1
𝑓−1
𝜇
.𝑇𝑗

))
=𝑚− 𝑗𝑑(𝑚− (�̄�+𝑤+ 𝑟𝑑 − 𝜆)).

Let 𝑗′0 be the minimum integer such that 𝑚 − 𝑗′0𝑑(𝑚 − (�̄�+𝑤 + 𝑟𝑑 − 𝜆)) ≤ 𝑟′, i.e.,

𝑗′0 =
⌈

𝑚− 𝑟′

𝑑(𝑚− (�̄�+𝑤+ 𝑟𝑑 − 𝜆))

⌉
. (4)

Therefore, the complexity to compute the subspace 𝑉𝗂𝗇𝗍 =
⋂
𝑗

(
𝑑⋂

𝜇=1
𝑓−1
𝜇
.𝑇𝑗

)
such that 𝐸 ⊂ 𝑉𝗂𝗇𝗍 and dim(𝑉𝗂𝗇𝗍) ≤ 𝑟′ is 𝑞𝑗

′
0𝜆(𝑚−(𝑤+𝑟𝑑−𝜆)−�̄�)

.

Let dim(𝑉𝗂𝗇𝗍) = 𝑡, we can compute a basis {𝑣1, … , 𝑣𝑡} for 𝑉𝗂𝗇𝗍. For each 1 ≤ 𝑖 ≤ 𝑙, we can solve for Σ𝑖 from the equation 𝒕𝑖 =
(𝑣1, … , 𝑣𝑡)Σ𝑖𝐻𝑇 over 𝔽𝑞 . We can compute a unique solution for Σ𝑖 since 𝑡 ≤ 𝑟′ < 𝑚(𝑛−𝑘)

𝑛
. Similarly, for 1 ≤ 𝑖′ ≤ 𝑙′, we can solve for a 

unique Σ𝑖′ from the equation 𝒕′
𝑖′
= (𝑣1, … , 𝑣𝑡)Σ𝑖′𝐻𝑇 over 𝔽𝑞 . The complexity to solve for these is ((𝑙 + 𝑙′)𝑡𝑛)3.

Consequently, the overall complexity of Algorithm 4 is

𝑂

(
((𝑙′ + 𝑙)𝑡𝑛)3𝑞𝑗

′
0𝜆(𝑚−(𝑤+𝑟𝑑−𝜆)−�̄�)

)
. (5)

Remark 5. From the formula in (5), observe that the complexity of the approach will decrease if:

• The value 𝑑 increases. This results in the decrease of value 𝑗′0 and thus lowers the complexity.
9

• The value 𝜆 decreases, which lowers the complexity.
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Table 3

Complexity of our Second Approach to Recover Secret Keys.

Schemes (𝑟, 𝑑) 𝑟′ �̄� Succ. Rate of 𝖱𝖲-Algorithm 𝑗′0 Solving 2nd

Theoretical Experimental RSD KRA

Durandal-I (6,12) 120 159 2−12 2−12.000 21 128 302

158 2−24 2−24.005 61 314

157 2−36 2−35.918 41 302

Durandal-II (7,14) 131 171 2−14 2−13.998 19 128 317

170 2−28 2−28.011 10 331

169 2−42 2−41.995 7 345

SHMW-I (3,3) 114 151 2−3 2−2.984 17 128 97

150 2−6 2−6.014 9 100

149 2−9 2−8.999 6 100

SHMW-II (3,4) 116 154 2−4 2−3.991 15 128 106

153 2−8 2−12.015 8 110

152 2−12 2−11.989 5 106

5.2. Results of our second approach on the Durandal and the SHMW schemes

We implement our second approach on the original Durandal and the SHMW signature schemes for all the parameters proposed. 
We consider different values for �̄�. We executed the 𝖱𝖲-Algorithm with parameters (𝔽𝑞𝑚 , 𝑍′, ̄𝑟) in Magma V2.20-5, on a 3.4 GHz Intel 
(R) CoreTM i7 processor with 16 GB of RAM. In particular, we calculated the number of iterations required for the 𝖱𝖲-Algorithm to 
be successful for 1000 instances. Our experiment results coincide with the theoretical success rate of 𝖱𝖲-Algorithm as in Corollary 6.

We now summarize the complexity of our second approach (denoted as “2nd KRA”) in Table 3.

From Table 2 and Table 3, we observe that our second approach improved the efficiency of our first approach. Furthermore, the 
second approach is more efficient than the proposed key recovery attack (Solving RSD in Table 3) in [2,20].

In particular, for SHMW-I, our second approach requires only 297 complexity compared to the proposed key recovery attack of 
2148 to solve the 𝖱𝖲𝖣 problem. For SHMW-II, our second approach requires only 2106 complexity compared to the proposed key 
recovery of 2150. Consequently, our second approach shows that both proposed SHMW-I and II do not achieve the claimed security 
of 128-bit.

As mentioned above in Remarks 4 and 5, the parameters 𝑟 and 𝜆 chosen in the SHMW signature scheme are lower than those in 
the original Durandal scheme, resulting in lower solving complexity of our approaches on the SHMW signature scheme. This implies 
that when 𝑟 and 𝜆 are high, the key recovery attack by solving the 𝖱𝖲𝖣 approach would be more efficient than our approaches.

Furthermore, the reason behind the increased efficiency of our second approach compared to the key recovery attack through 
solving the 𝖱𝖲𝖣 approach and our first approach is that our second approach leverages the additional information provided by 
𝐹 = ⟨𝑓1, … , 𝑓𝑑⟩ to minimize the number of iterations necessary for reducing the dimension of 𝑉𝗂𝗇𝗍 . In particular, the term 𝑑 in (4)

reduces the value for 𝑗′0 and thus reduces the complexity required for the attack algorithm, as compared to the value for 𝑗0 in (2).

6. Conclusion

The Durandal signature scheme offers a promising new idea using the Schnorr approach to construct rank metric code-based 
signature schemes. Nevertheless, it is essential to exercise caution, as we have demonstrated the feasibility of conducting the LTP 
second attack on the rank metric code-based signature scheme. In particular, we exploited the fact that we can apply the 𝖱𝖲-algorithm 
to determine extended supports that contain the secret support 𝐸 or the secret product space 𝐸.𝐹 . Taking sufficient intersections 
for these collected extended supports, we can evaluate extended support with a dimension small enough to satisfy the inequality in 
solving for an extended support matrix from the linear system over 𝔽𝑞 .

With regards to the second approach in this paper, one notable remark is that it exploits the information on 𝐹 and improves 
the complexity of recovering the SHMW signature scheme’s secret keys. In particular, as all the 𝑑 elements in a basis of 𝐹 could be 
used, the intersection steps can be repeated 𝑑 times to filter out the extra vector spaces that do not contain the secret key space, in 
contrast to only one intersection taken for each 𝖱𝖲-algorithm executed in the first approach. As a result, the iterations to execute the 
𝖱𝖲-algorithm can be reduced, thus lowering the attack’s complexity. Notably, in the original key recovery attacks proposed in [20], 
none of the information on 𝐹 was used to solve the 𝖱𝖲𝖣 problem, thus recovering the secret key.

Our second approach has successfully cryptanalyzed the proposed parameters of the SHMW scheme with 97-bit complexity. This 
implies that their proposals have weak keys and that the claimed 128-bit security is false.

At this point, it is unclear whether the extra information on 𝐹 given in the signature will further reduce the security of the 
proposed schemes or not, as our second approach exploits this information on 𝐹 to reduce the complexity of recovering the secret 
10

key. Further investigation into the matter shall be left as future work.



Heliyon 10 (2024) e24185T.S.C. Lau, M. Kamel Ariffin, S.-C. Yip et al.

Ethics declarations

Review and/or approval by an ethics committee was not needed for this study because the study solely focused on the analysis 
of algorithms, code and did not involve human subjects in any way. Informed consent was not required for this study because no 
personally identifiable information was used.

Funding

The research was supported by the Ministry of Higher Education, Malaysia through the Fundamental Research Grant Scheme 
(FRGS/1/2023/ICT07/MMU/03/1). The results of Terry Shue Chien Lau were supported by Multimedia University Postdoc 
(MMUI/230164).

CRediT authorship contribution statement

Terry Shue Chien Lau: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Data 
curation, Conceptualization. Muhammad Rezal Kamel Ariffin: Writing – original draft, Validation, Supervision, Resources, Formal 
analysis. Sook-Chin Yip: Writing – review & editing, Writing – original draft, Supervision, Resources, Project administration, Funding 
acquisition, Formal analysis. Ji-Jian Chin: Formal analysis, Conceptualization. Choo-Yee Ting: Resources, Formal analysis.

Declaration of competing interest

The authors declare that they do not have any known competing financial interests or personal relationships that could have 
influenced the work reported in this paper.

Data availability

The datasets produced and/or analyzed during the present study are not deposited into any publicly available repository. Data 
will be made available from the corresponding author upon reasonable request.

References

[1] N. Aragon, O. Blazy, J-C. Deneuville, et al., Cryptanalysis of a rank-based signature with short public keys, Des. Codes Cryptogr. 88 (2020) 643–653.

[2] N. Aragon, O. Blazy, P. Gaborit, et al., Durandal: a rank metric based signature scheme, in: Advances in Cryptology – EUROCRYPT 2019, Darmstadt, 2019, in: 
Lecture Notes in Computer Science, vol. 11478, Springer, Cham, 2019, pp. 728–758.

[3] E. Bellini, F. Caullery, A. Hasikos, et al., Code-based signature schemes from identification protocols in the rank metric, in: Cryptology and Network Security, 
CANS 2018, Naples, 2018, in: Lecture Notes in Computer Science, vol. 11124, Springer, Cham, 2018, pp. 277–298.

[4] E. Bellini, F. Caullery, P. Gaborit, et al., Improved Veron identification and signature schemes in the rank metric, in: Proceedings of 2019 IEEE International 
Symposium on Information Theory (ISIT), Paris, France, 2019, pp. 1872–1876.

[5] E. Berlekamp, R. McEliece, H.V. Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. Inf. Theory 24 (1978) 384–386.

[6] P-L. Cayrel, P. Véron, S.M. El Yousfi Alaoui, A zero-knowledge identification scheme based on the 𝑞-ary syndrome decoding problem, in: Proceedings of Selected 
Areas in Cryptography, SAC 2010, Waterloo, in: Lecture Notes in Computer Science, vol. 6544, Springer, Berlin, Heidelberg, 2010, pp. 171–196.

[7] A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems, in: Proceedings of Advances in Cryptology - CRYPTO 86, 
Santa Barbara, Springer-Verlag, Berlin, Heidelberg, 1987, pp. 186–194.

[8] P. Gaborit, A. Hauteville, D.H. Phan, et al., Identity-based encryption from codes with rank metric, in: Proceedings of Advances in Cryptology - CRYPTO 2017, 
Santa Barbara, in: Lecture Notes in Computer Science, vol. 10403, Springer, Cham, 2017, pp. 192–224.

[9] P. Gaborit, J. Schrek, G. Zémor, Full cryptanalysis of the Chen Identification Protocol, in: Proceedings of Post-Quantum Cryptography, PQCrypto 2011, Taipei, 
in: Lecture Notes in Computer Science, vol. 7071, Springer, Berlin, Heidelberg, 2011, pp. 35–50.

[10] P. Gaborit, G. Zémor, On the hardness of the decoding and the minimum distance problems for rank codes, IEEE Trans. Inf. Theory 62 (2016) 7245–7252.

[11] A. Horlemann-Trautmann, K. Marshall, J. Rosenthal, Extension of Overbeck’s attack for Gabidulin based cryptosystems, Des. Codes Cryptogr. 86 (2018) 319–340.

[12] T.S.C. Lau, C.H. Tan, Rank preserving code-based signature scheme, in: Proceedings of 2020 IEEE International Symposium on Information Theory (ISIT), Los 
Angeles, CA, USA, 2020, pp. 846–851.

[13] T.S.C. Lau, C.H. Tan, MURAVE: a new rank code-based signature with MUltiple RAnk VErification, in: Proceedings of Code-Based Cryptography, CBCrypto 2020, 
Zagreb, in: Lecture Notes in Computer Science, vol. 12087, Springer, Cham, 2020, pp. 94–116.

[14] T.S.C. Lau, C.H. Tan, T.F. Prabowo, Key recovery attack on some rank metric code-based signatures, in: Proceedings of Cryptography and Coding. IMACC 2019, 
Oxford, in: Lecture Notes in Computer Science, vol. 11929, Springer, Cham, 2019, pp. 215–235.

[15] V. Nagaraja, M.R.K. Ariffin, T.S.C. Lau, et al., Rank AGS identification scheme and signature scheme, Mathematics 11 (5) (2023) 1139.

[16] E. Persichetti, Efficient one-time signatures from quasi-cyclic codes: a full treatment, Cryptography 2 (2018) 30.

[17] K. Fukushima, P.S. Roy, R. Xu, et al., Random code-based signature scheme (RaCoSS). First Round Submission to the NIST Post-quantum Cryptography Call. 
2017, https://csrc .nist .gov /projects /post -quantum -cryptography /round -1 -submissions.

[18] C.P. Schnorr, Efficient identification and signatures for smart cards, in: Proceedings of Cryptology - CRYPTO’ 89 Proceedings. CRYPTO 1989, Santa Barbara, in: 
Lecture Notes in Computer Science, vol. 435, Springer, New York, NY, 1989, pp. 239–252.

[19] Y. Song, X. Huang, Y. Mu, et al., A new code-based signature scheme with shorter public key, Cryptology ePrint Archive: Report 2019/053, 2019.

[20] Y. Song, X. Huang, Y. Mu, et al., An improved Durandal signature scheme, Sci. China Inf. Sci. 63 (2020) 132103.

[21] J. Stern, A new identification scheme based on syndrome decoding, in: Proceedings of Advances in Cryptology - CRYPTO’ 93, Santa Barbara, in: Lecture Notes 
in Computer Science, vol. 773, Springer, Berlin, Heidelberg, 1993, pp. 13–21.

[22] C.H. Tan, T.F. Prabowo, T.S.C. Lau, Rank metric code-based signature, in: Proceedings of 2018 International Symposium on Information Theory and Its Appli-

cations (ISITA), Singapore, 2018, pp. 70–74.
11

[23] P. Véron, Improved identification schemes based on error-correcting codes, Appl. Algebra Eng. Commun. Comput. 8 (1997) 57–69.

http://refhub.elsevier.com/S2405-8440(24)00216-0/bib5E3330A87D330BFFB4D5125F2F12559Fs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibDAE8FED1F645919AFEC26F98C665EB3Bs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibDAE8FED1F645919AFEC26F98C665EB3Bs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibD1C79537162BB7A5E6AE4050C0CA8648s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibD1C79537162BB7A5E6AE4050C0CA8648s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib4723767F3F2F688D23AA9EB8BBA778A6s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib4723767F3F2F688D23AA9EB8BBA778A6s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibF0E4335B415A16A741A1F02535EDF16Ds1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib608A923776F710DF50124517F8BAC982s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib608A923776F710DF50124517F8BAC982s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib972A8002B7D8D345AA07BB60FCF65CD1s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib972A8002B7D8D345AA07BB60FCF65CD1s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibB2E7EB524E2C0AF4BA2D463C8AD8A31Ds1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibB2E7EB524E2C0AF4BA2D463C8AD8A31Ds1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib224BFB572AE6D6BE55BD27061ED8710Cs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib224BFB572AE6D6BE55BD27061ED8710Cs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib4AB43A2C0DC7753F26B1DD942DF4FFEBs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib4E3B00C84771E58F5CF3C2109CC73CFDs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibF2C5377C0A6EA99B4E52DF45A9DB8155s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibF2C5377C0A6EA99B4E52DF45A9DB8155s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibEC11F076C154F3565AD8102F38712799s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibEC11F076C154F3565AD8102F38712799s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib3FAF7EB030775787166918932402E993s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib3FAF7EB030775787166918932402E993s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibBFF0AC317387B7947540EAF58EEF3EDAs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibA5037A88D7C4547BAF2AC2024DD08CB3s1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibFC24058574BD5A3A55F796E5BAD35BA6s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bibFC24058574BD5A3A55F796E5BAD35BA6s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib41D9701D1F90144AEA503CDA7340A54Bs1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib553B66D5B266961CD915EF7F1B576812s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib3912BB178E225F8DFF822F66407D8765s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib3912BB178E225F8DFF822F66407D8765s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib120F96B8F8A7AE39F846216CC3861746s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib120F96B8F8A7AE39F846216CC3861746s1
http://refhub.elsevier.com/S2405-8440(24)00216-0/bib49EFCB9C3871F68F97D1C3EA5FACF87As1

	Cryptanalysis of the SHMW signature scheme
	1 Introduction
	2 Preliminaries & background
	2.1 Preliminaries
	2.2 Ideal codes
	2.3 Hard problems in coding theory

	3 The original Durandal scheme and the SHMW scheme
	3.1 Durandal signature scheme
	3.2 Proposed parameters for the original Durandal and the SHMW signature schemes

	4 A new approach to recover secret keys of the Durandal framework
	4.1 LTP second attack on Schnorr-type rank metric signature schemes
	4.2 A probabilistic algorithm for our approach
	4.3 General idea for our first approach
	4.4 Results of our first approach on the Durandal and the SHMW schemes

	5 An improved approach to retrieve the secret keys of the Durandal framework
	5.1 General idea for our second approach
	5.2 Results of our second approach on the Durandal and the SHMW schemes

	6 Conclusion
	Ethics declarations
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


