CRYOPRESERVATION OF EXCISED EMBRYOS OF RAMBUTAN
(NEPHELIUM LAPPACEUM L.) USING VITRIFICATION TECHNIQUE

FLORENCE C. GINIBUN

FP 2001 18
CRYOPRESERVATION OF EXCISED EMBRYOS OF RAMBUTAN
(NEPHELIUM LAPPACEUM L.) USING VITRIFICATION TECHNIQUE

By

FLORENCE C. GINIBUN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Agricultural Science in the Faculty of Agriculture
Universiti Putra Malaysia

February 2001
Dedicated To:

My Beloved Parents:
Camillus Ginibun and Jovinia Polycarpus

My Beloved Sisters:
Janet, Rose, Rovina and Linda

My Beloved Relatives and Friends
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Agricultural Science.

CRYOPRESERVATION OF EXCISED EMBRYOS OF RAMBUTAN (*NEPHELIUM LAPPACEUM* L.) USING VITRIFICATION TECHNIQUE

By

FLORENCE C. GINIBUN

February 2001

Chairman : Associate Professor Hor Yue Luan, Ph. D.

Faculty : Agriculture

The present study evaluates the effects of various loading solutions, concentrations of glycerol and vitrification solutions and their time of exposure on the vitrification of rambutan embryos in liquid nitrogen.

In the initial study to evaluate the effects of loading solutions on survival, excised embryos were exposed to four loading solutions. The two most promising loading solutions were LB (1.5 M glycerol + 0.4 M sucrose + 5 % DMSO), which gave 44.0 % viability and 32.4 % survival and LA (2.0 M glycerol + 0.4 M sucrose) which gave 39.3 % viability and 28.1 % survival after freezing.

The effects of different concentrations of glycerol (0 – 2.0 M) in the most promising loading solutions were evaluated further. For loading solution LB, 1.5 M glycerol gave highest survival of 22.7 %. For loading
solution LB, 1.5 M glycerol gave highest survival of 22.7 %. For loading solution LA, 0 M glycerol or the use of only 0.4 M sucrose gave the highest viability of 76.0 % and survival of 59.0 %. Hence, loading solution with only 0.4 M sucrose (LA without glycerol) was established in this study as the most effective loading solution for rambutan embryos.

The effects of exposure time (0 – 16 hours) to the best loading solution on survival of rambutan embryos were further investigated. It was found that 8 hours duration gave the highest viability (47.7 %) and survival (32.8 %).

Having confirmed the best loading treatment, the study further evaluates the effects of six vitrification solutions on survival of rambutan embryos in liquid nitrogen. The results show that after freezing, L Solution gave the highest viability (46.0 %) and survival (24.0 %). L Solution was therefore selected as the most effective vitrification solution.

In optimizing the time of exposure, excised rambutan embryos were exposed to L Solution for 0 to 90 minutes before LN exposure. The highest viability (55.6 %) and survival (40.3 %) after vitrification were achieved at 60 minutes exposure. Longer exposure to L Solution for up to 90 minutes reduced survival to 16.0 %.
This study concludes that 0.4 M sucrose loaded for 8 hours, followed by exposure to L Solution for 60 minutes was optimum for the vitrification of excised rambutan embryos, which yielded 55.6 % viability and 40.3 % survival.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains Pertanian

PENGKROIOWETAN EMBRIO RAMBUTAN
(NEPHELIUM LAPPACEUM L.) MELALUI TEKNIK VITRIFIKASI

Oleh

FLORENCE C. GINIBUN

Februari 2001

Pengerusi Penyelia : Prof. Madya Hor Yue Luan, Ph.D.
Fakulti : Pertanian

Kajian ini menilai kesan pelbagai larutan ‘loading’, kepekatan larutan gliserol, larutan vitrifikasi dan tempoh pendedahannya ke atas penyuirifikasian embrio rambutan di dalam ceair nitrogen.

Dalam kajian menilai kesan larutan ‘loading’ ke atas kemandirian embrio rambutan, embrio didedahkan kepada empat larutan ‘loading’. Dua jenis larutan ‘loading’ yang memberi kesan ialah LB (1.5 M gliserol + 0.4 M sukrosa + 5 % DMSO) di mana 44.0 % viabiliti dan 32.4 % kemandirian diperolehi dan LA (2.0 M gliserol + 0.4 M sukrosa) memberi hasil 39.3 % viability dan 28.1 % kemandirian setelah disejukbekukan.

Kesan ke atas perbezaan kepekatan gliserol (0 – 2.0 M) dalam larutan ‘loading’ yang paling berpotensi dikaji seterusnya. Dalam larutan ‘loading’ LB, 1.5 M gliserol memberikan kemandirian yang tertinggi sebanyak 22.7 %. Dalam larutan ‘loading’ LA, 0 M gliserol atau
penggunaan hanya 0.4 M sukrosa, memberi viabiliti yang tertinggi sebanyak 76.0 % dan kemandirian sebanyak 59.0 %. Oleh yang demikian, larutan 'loading' dengan hanya 0.4 M sukrosa (LA tanpa gliserol) terbukti di dalam kajian ini sebagai larutan yang paling efektif terhadap embrio rambutan.

Kesan tempoh pendedahan (0 – 16 jam) larutan 'loading' yang terbaik ke atas kemandirian embrio rambutan seterusnya dinilai. Di dapati bahawa tempoh pendedahan selama 8 jam memberikan viabiliti (47.7 %) dan kemandirian (32.8 %) yang tertinggi.

Setelah mengenalpasti rawatan 'loading' yang terbaik, kajian seterusnya menilai kesan ke atas enam jenis larutan vitrifikasi terhadap kemandirian embrio rambutan dalam cecair nitrogen. Keputusan menunjukkan bahawa selepas penyejukbekuan, larutan L memberikan viabiliti (46.0 %) dan kemandirian (24.0 %) yang tertinggi dimana ianya lebih baik daripada larutan PVS2. Oleh yang demikian, larutan L dipilih sebagai larutan vitrifikasi yang paling efektif.

Untuk menentukan tempoh pendedahan yang optima, embrio rambutan dirawatkan dengan larutan L selama 0 sehingga 90 minit sebelum didedahkan ke dalam cecair nitrogen. Viabiliti (55.6 %) dan kemandirian (40.3 %) yang tertinggi selepas penvitrikasian diperolehi pada tempoh pendedahan 60 minit. Tempoh pendedahan yang lebih
panjang ke atas larutan L sehingga 90 minit mengurangkan kemandirian sebanyak 16.0 %.

Kajian dapat disimpulkan bahawa rawatan dengan 0.4 M sukrosa selama 8 jam diikuti dengan pendedahan kepada larutan L selama 60 minit adalah yang optima untuk penvitrifikasi embrio rambutan di mana menghasilkan sebanyak 55.6 % viability dan 40.3 % kemandirian.
ACKNOWLEDGEMENTS

Firstly, I would like to thank God Almighty for giving me the inspiration to finish my thesis in the given time. It is my pleasure to take this opportunity to express my deepest appreciation and gratitude to my supervisor Associate Prof. Dr. Hor Yue Luan, of Department of Crop Science, Universiti Putra Malaysia for his constant encouragement, advice, guidance and friendship throughout my master’s programme to the completion of this thesis.

My grateful appreciation is also due to my supervisory committee members, Associate Prof. Dr. Saleh bin Kadzimin of Department of Crop Science, Universiti Putra Malaysia and Dr. Baskaran Krishnapillay from Forestry Research Institute Malaysia (FRIM) for their comments and suggestion to improve my study.

I would like to thank Mr. Ong Choon Hoe and Puan Norafidah Yusoff, laboratory assistants of Seed Technology Research Laboratory, for their assistance and guidance in the laboratory during this study.

Special thanks also go to the staff of Field 5, Universiti Putra Malaysia and the Department of Agriculture, Serdang for their kind assistance and the supply of the rambutan fruits for this study.
My deepest thanks and love towards my parent, sisters and relatives for their love, support, prayer and assistance during my course of study in Universiti Putra Malaysia.

Last but not least, I would like to express my warmest gratitude to my beloved Syed Huzal bin Syed Jaffar and to all my friends especially Miss Wong Lay Yieng, Miss Cynthia P. Cossall, Miss Sam Yen Yen, Miss Shubashini, Mr. Hendry Joseph, Mr. Philip Sipen, Mr. Khairul Nairn, Mr. Thaddeus Kasun and Mr. Peter Lintar for their kind support and friendship.
I certify that an Examination Committee met on 22nd February 2001 to conduct the final examination of Florence C. Ginibun on her Master of Agricultural Science thesis entitled "Cryopreservation of Excised Embryos of Rambutan (Nephelium lappaceum L.) Using Vitrification Technique" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Rajan Amartalingam, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Hor Yue Luan, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Saleh b. Kadzimin, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Baskaran Krishnapillay, Ph.D.
Forestry Field Division
Forestry Research Institute Malaysia (FRIM)
(Member)

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Professor/Deputy Dean of Graduate School,
Universiti Putra Malaysia.

Date: 09 APR 2001
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of requirement for the degree of Master of Agricultural Science.

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Professor/Deputy Dean of Graduate School,
Universiti Putra Malaysia.

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

FLORENCE C. GINIBUN

Date: 09.04.2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION .. 1

II REVIEW OF LITERATURE ... 6

- Taxonomy of Rambutan ... 6
- Germplasm Conservation .. 8
- Seed Classification and Behavior in Storage 9
- Storage Behavior of Recalcitrant Seeds 12
- Cryopreservation of Recalcitrant Seeds 13
- Cryopreservation of Embryos ... 14
- Cryoprotective Agents .. 18
- Vitrification .. 21
- Loading ... 23
- Unloading .. 25
- Freezing in Liquid Nitrogen ... 26
- Thawing and Recovery .. 28

III MATERIALS AND METHODS ... 31

- Study Layout .. 31
- Experimental Materials .. 32
- Experimental Procedures .. 33
 - Excision of Embryos .. 33
 - Glassware and Cleaning for In-vitro Studies 35
 - Preparation of MS Stock Solutions .. 35
 - Preparation of MS Basal, MS Culture and Stabilisation Medium 36
 - Preparation of Loading Solutions ... 37
 - Preparation of Different Concentrations of Glycerol in Loading Solution 37
 - Preparation of Vitrification Solutions 38
 - Preparation of Unloading Solution ... 39
Vitrification Procedure .. 39
Incubation of Cultures .. 42
Measurement and Observations 42
 Percentage Moisture of Excised Embryos 42
 Percentage Viability and Survival of Excised
 Embryos in MS Medium 43
Experiments .. 45
 Experiment 1: Effects of Different Loading
 Solutions on Survival of Excised Embryos of
 Rambutan in Liquid Nitrogen........................... 45
 Experiment 2: Effects of Glycerol Concentrations
 in the Loading Solution LB (1.5 M Glycerol with
 0.4 M Sucrose and 5 % DMSO) and LA (2 M
 Glycerol and 0.4 M Sucrose) on Survival of
 Excised Embryos of Rambutan in Liquid Nitrogen... 47
 Experiment 2A: Effects of Glycerol Concentrations
 in Loading Solution LB on Survival of Excised
 Embryos of Rambutan in Liquid Nitrogen............. 47
 Experiment 2B: Effects of Glycerol Concentrations
 in Loading Solution LA on Survival of Excised
 Embryos of Rambutan in Liquid Nitrogen............. 49
 Experiment 3: Effects of Exposure Time to
 Loading Solution (0.4 M Sucrose) on Survival
 of Excised Embryos of Rambutan in Liquid
 Nitrogen... 50
 Experiment 4: Effects of Different Vitrification
 Solutions on Survival of Excised Embryos of
 Rambutan in Liquid Nitrogen............................ 51
 Experiment 5: Effects of Exposure Time to
 Loading Solution on Survival of Excised Embryos of
 Rambutan in Liquid Nitrogen............................ 53

Statistical Analysis ... 54

IV RESULTS AND DISCUSSIONS 55

Experiment 1: Effects of Different Loading Solutions on
Survival of Excised Embryos of Rambutan in Liquid
Nitrogen... 55
Experiment 2A: Effects of Glycerol Concentrations in Loading Solution LB on Survival of Excised Embryos of Rambutan in Liquid Nitrogen 64

Experiment 2B: Effects of Glycerol Concentrations in Loading Solution LA on Survival of Excised Embryos of Rambutan in Liquid Nitrogen 73

Experiment 3: Effects of Exposure Time to Loading Solution (0.4 M Sucrose) on Survival of Excised Embryos of Rambutan in Liquid Nitrogen 82

Experiment 4: Effects of Different Vitrification Solutions on Survival of Excised Embryos of Rambutan in Liquid Nitrogen .. 91

Experiment 5: Effects of Exposure Time to L Solution on Survival of Excised Embryos of Rambutan in Liquid Nitrogen .. 99

V SUMMARY AND CONCLUSION ... 107

REFERENCES ... 110

APPENDICES .. 122

APPENDIX A
Murashige and Skoog (1962) Inorganic Salts and Vitamin ... 122

APPENDIX B
Additional Tables (Morphological Categorisation) 123

APPENDIX C
Statistical Analysis ... 129

BIODATA OF AUTHOR ... 146
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Percentage viability and survival of excised rambutan embryos after exposure to different loading solutions, after PVS2 dehydration (-LN) and after LN exposure (+LN)</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>Moisture content of excised rambutan embryos after exposure to different loading solutions and dehydration in PVS2</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>Percentage viability and survival of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LB after PVS2 dehydration (-LN) and after LN exposure (+LN)</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Moisture content of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LB and after dehydration in PVS2</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>Percentage viability and survival of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LA, after PVS2 dehydration (-LN) and after LN exposure (+LN)</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>Moisture content of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LA and after dehydration in PVS2</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>Percentage viability and survival of excised rambutan embryos after loading in 0.4 M sucrose for different duration, followed by PVS2 desiccation (-LN) and LN exposure (+LN)</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>Moisture content of excised rambutan embryos after loading in 0.4 M sucrose for different duration and desiccation in PVS2</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>Percentage viability and survival of excised rambutan embryos after exposure to different vitrification solutions before (-LN) and after (+LN) freezing in liquid nitrogen</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>Moisture content of excised rambutan embryos after exposure to different vitrification solutions</td>
<td>95</td>
</tr>
</tbody>
</table>
11 Percentage viability and survival of excised rambutan embryos after exposure to L Solution for different duration before (-LN) and after (+LN) freezing in liquid nitrogen... 100

12 Moisture content of excised rambutan embryos after exposure to L Solution for different duration.................... 103

13 Morphological categorisation for survival evaluation of excised rambutan embryos after exposure to different loading solutions, after PVS2 dehydration (-LN) and after LN exposure (+LN) .. 123

14 Morphological categorisation for survival evaluation of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LB, after dehydration in PVS2 (-LN) and after LN exposure (+LN) ... 124

15 Morphological categorisation for survival evaluation of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LA, after dehydration in PVS2 (-LN) and after LN exposure (+LN) ... 125

16 Morphological categorisation for survival evaluation of excised rambutan embryos after loading in 0.4 M sucrose for different duration followed by dehydration in PVS2 (-LN) and after LN exposure (+LN) 126

17 Morphological categorisation for survival evaluation of excised rambutan embryos after exposure to different vitrification solutions before (-LN) and after LN exposure (+LN) ... 127

18 Morphological categorisation for survival evaluation of excised rambutan embryos after exposure to L Solution for different duration before (-LN) and after exposure (+LN) ... 128

19 ANOVA table of percentage viability of excised rambutan embryos after exposure to different loading solutions (a), after dehydration in PVS2 (-LN) (b) and after LN exposure (+LN) (c) ... 129

20 ANOVA table of percentage survival of excised rambutan embryos after exposure to different loading solutions (a), after dehydration in PVS2 (-LN) (b) and after LN exposure (+LN) (c) ... 130
21 ANOVA table of percentage viability of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LB (a), after dehydration in PVS2 (-LN) (b) and after LN exposure (+LN) (c) 131

22 ANOVA table of percentage survival of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LB (a), after dehydration in PVS2 (-LN) (b) and after LN exposure (+LN) (c) 132

23 ANOVA table of percentage viability of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LA (a), after dehydration in PVS2 (-LN) (b) and after LN exposure (+LN) (c) 133

24 ANOVA table of percentage survival of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LA (a), after dehydration in PVS2 (-LN) (b) and after LN exposure (+LN) (c) 134

25 ANOVA table of percentage viability of excised rambutan embryos after loading in 0.4 M sucrose for different duration (a), followed by dehydration in PVS2 (-LN) (b) and after LN exposure (+LN) (c) 135

26 ANOVA table of percentage survival of excised rambutan embryos after loading in 0.4 M sucrose for different duration (a), followed by dehydration in PVS2 (-LN) (b) and after LN exposure (+LN) (c) 136

27 ANOVA table of percentage viability of excised rambutan embryos after exposure to different vitrification solutions before (-LN) (a) and after (+LN) (b) freezing in liquid nitrogen... 137

28 ANOVA table of percentage survival of excised rambutan embryos after exposure to different vitrification solutions before (-LN) (a) and after (+LN) (b) freezing in liquid nitrogen... 137

29 ANOVA table of percentage viability of excised rambutan embryos after exposure to L Solution for different exposure time before (-LN) (a) and after (+LN) (b) freezing in liquid nitrogen... 138
30 ANOVA table of percentage survival of excised rambutan embryos after exposure to L Solution for different exposure time before (-LN) (a) and after (+LN) (b) freezing in liquid nitrogen

31 ANOVA table of moisture content of excised rambutan embryos after exposure to different loading solutions (a) and dehydration in PVS2 (b)

32 ANOVA table of moisture content of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LB (a) and after dehydration in PVS2 (b)

33 ANOVA table of moisture content of excised rambutan embryos after exposure to different concentrations of glycerol in the loading solution LA (a) and after dehydration in PVS2 (b)

34 ANOVA table of moisture content of excised rambutan embryos after loading in 0.4 M sucrose for different exposure time (a) and dehydration in PVS2 (b)

35 ANOVA table of moisture content of excised rambutan embryos after exposure to different vitrification solutions

36 ANOVA table of moisture content of excised rambutan embryos after exposure to L Solution for different exposure time
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
</tr>
<tr>
<td>7a</td>
<td>44</td>
</tr>
<tr>
<td>7b</td>
<td>44</td>
</tr>
<tr>
<td>8a</td>
<td>61</td>
</tr>
<tr>
<td>8b</td>
<td>61</td>
</tr>
<tr>
<td>9a</td>
<td>62</td>
</tr>
<tr>
<td>9b</td>
<td>62</td>
</tr>
<tr>
<td>10a</td>
<td>63</td>
</tr>
<tr>
<td>10b</td>
<td>63</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

- Figure 1: Matured unripe rambutan fruits of variety R7
- Figure 2: Rambutan seed of variety R7
- Figure 3: Rambutan embryos attached to the cotyledons
- Figure 4: Excision of rambutan embryos
- Figure 5: Test materials in cryovial secured to cryocanes
- Figure 6: Freezing of test materials using LN in a cryogenic tank
- Figure 7a: Morphological categorization (A - D)
- Figure 7b: Morphological categorization (E - H)
- Figure 8a: Development of excised rambutan embryos after exposure to different loading solutions (from left: Fresh control, Control 1, LA, LB; 8 weeks, after loading)
- Figure 8b: Development of excised rambutan embryos after exposure to different loading solutions (from left: LC, LD, Control 2; 8 weeks, after loading)
- Figure 9a: Development of excised rambutan embryos after exposure to different loading solutions and PVS2 before freezing in LN (from left: Fresh control, Control 1, LA, LB; 8 weeks, -LN)
- Figure 9b: Development of excised rambutan embryos after exposure to different loading solutions and PVS2 before freezing in LN (from left: LC, LD, Control 2; 8 weeks, -LN)
- Figure 10a: Development of excised rambutan embryos after exposure to different loading solutions and PVS2 after freezing in LN (from left: Fresh control, Control 1, LA, LB; 8 weeks, +LN)
- Figure 10b: Development of excised rambutan embryos after exposure to different loading solutions and PVS2 after freezing in LN (from left: LC, LD, Control 2; 8 weeks, +LN)
11a Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LB (from left: Fresh control, Control 2, 0.0 M, 0.5 M; 8 weeks, after loading).. 70

11b Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LB (from left: 1.0 M, 1.5 M, 2.0 M; 8 weeks, after loading)... 70

12a Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LB before freezing in LN (from left: Fresh control, Control 2, 0.0 M, 0.5 M; 8 weeks, -LN)... 71

12b Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LB before freezing in LN (from left: 1.0 M, 1.5 M, 2.0 M; 8 weeks, -LN)... 71

13a Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LB after freezing in LN (from left: Fresh control, Control 2, 0.0 M, 0.5 M; 8 weeks, +LN)... 72

13b Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LB after freezing in LN (from left: 1.0 M, 1.5 M, 2.0 M; 8 weeks, +LN)... 72

14a Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LA (from left: Fresh control, Control 2, 0.0 M, 0.5 M; 8 weeks, after loading)... 79

14b Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LA (from left: 1.0 M, 1.5 M, 2.0 M; 8 weeks, after loading)... 79

15a Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LA before freezing in LN (from left: Fresh control, Control 2, 0.0 M, 0.5 M; 8 weeks, -LN)... 80

15b Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LA before freezing in LN (from left: 1.0 M, 1.5 M, 2.0 M; 8 weeks, -LN)... 80
16a Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LA after freezing in LN (from left: Fresh control, Control 2, 0.0 M, 0.5 M; 8 weeks, +LN) .. 81

16b Development of excised rambutan embryos after exposure to different concentrations of glycerol in loading solution LA after freezing in LN (from left: 1.0 M, 1.5 M, 2.0 M; 8 weeks, +LN) .. 81

17a Development of excised rambutan embryos after exposure to loading solution (0.4 M sucrose) for different duration (from left: 0, 0.5, 1, 2, 4 hr; 8 weeks, after loading) 88

17b Development of excised rambutan embryos after exposure to loading solution (0.4 M sucrose) for different duration (from left: 6, 8, 12, 16 hr; 8 weeks, after loading) 88

18a Development of excised rambutan embryos after exposure to loading solution (0.4 M sucrose) for different duration before freezing in LN (from left: 0, 0.5, 1, 2, 4 hr; 8 weeks, -LN) .. 89

18b Development of excised rambutan embryos after exposure to loading solution (0.4 M sucrose) for different duration before freezing in LN (from left: 6, 8, 12, 16 hr; 8 weeks, -LN) .. 89

19a Development of excised rambutan embryos after exposure to loading solution (0.4 M sucrose) for different duration after freezing in LN (from left: 0, 0.5, 1, 2, 4 hr; 8 weeks, +LN) .. 90

19b Development of excised rambutan embryos after exposure to loading solution (0.4 M sucrose) for different duration after freezing in LN (from left: 6, 8, 12, 16 hr; 8 weeks, +LN) .. 90

20a Development of excised rambutan embryos after exposure to different vitrification solutions before freezing in LN (from left: Fresh control, After loading, PVS, PVS2; 8 weeks, -LN) .. 97

20b Development of excised rambutan embryos after exposure to different vitrification solutions before freezing in LN (from left: PVS3, L Solution, Towill, Watanabe; 8 weeks, -LN) .. 97
21a Development of excised rambutan embryos after exposure to different vitrification solutions after freezing in LN (from left: Fresh control, After loading, PVS, PVS2; 8 weeks, +LN) ... 98

21b Development of excised rambutan embryos after exposure to different vitrification solutions after freezing in LN (from left: PVS3, L Solution, Towill, Watanabe; 8 weeks, +LN) 98

22a Development of excised rambutan embryos after exposure to L Solution for different duration before freezing in LN (from left: Fresh control, 0, 15, 30 min; 8 weeks, -LN) 105

22b Development of excised rambutan embryos after exposure to L Solution for different duration before freezing in LN (from left: 45, 60, 75, 90 min; 8 weeks, -LN) 105

23a Development of excised rambutan embryos after exposure to L Solution for different duration after freezing in LN (from left: Fresh control, 0, 15, 30 min; 8 weeks, +LN) 106

23b Development of excised rambutan embryos after exposure to L Solution for different duration after freezing in LN (from left: 45, 60, 75, 90 min; 8 weeks, +LN) 106