EFFECTIVENESS OF GRID ANALOGY FOR

BRIDGE DECK ANALYSIS

BY

TANG CHI CHEONG

B. E. (CIVIL) (HONS)

A Project Report Submitted in Partial Fulfillment

Of The Requirements for the Degree of

Master of Science in Structural Engineering and Construction

in the Department Of Civil Engineering

Faculty of Engineering

Universiti Putra Malaysia

June, 2000

FK 2000 78

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my Supervisor, Prof. D.N. Trikha for his guidance, encouragement, concern throughout the course of this study and mostly for accepting to supervise me. Examiners at Faculty of Engineering, Universiti Putra Malaysia are to be thanked, these include Assoc. Prof. Dr. Ir. Mohd. Salleh Jaafar, Dr. Mahgoub Osman Mahgoub and Assoc. Prof. Dr. Waleed Abdul Malik Thanoon.

At the same time, I would like to thank all those people in Universiti Putra Malaysia who have willingly shared with us their extensive experience and wide knowledge. Most important to me has been encouragement in completing this project. Library of Universiti Putra Malaysia is greatly acknowledged for their assistance in searching and lending all the studied literature.

Last, but not least, I thank my family, who have offered faith, finance support and gave encouragement at all times.

TANG CHI CHEONG

MASTER OF SCIENCE (STRUCTURAL ENGINEERING AND CONSTRUCTION) UNIVERSITI PUTRA MALAYSIA

June 2000

v

ABSTRACT

Bridge decks have traditionally been designed using a simplified model known as the Grillage Analogy Method. Grillage Analogy Method shows how complex structures can be analyzed with physical reasoning and relatively simple computer models, and without complicated mathematics. In recent years the computer methods of grillage has become very popular and accessible as microcomputers and software have developed rapidly. Bridge deck analysis provides bridge designers with the knowledge to understand the behaviour of bridge decks, to be familiar with and to understand the various numerical modeling techniques and to know which technique is best suited to each bridge type.

This study focuses on the analysis of the bridge deck using Grillage Analogy Method and Finite Element Method, identifying the effectiveness of Grillage Analogy Method for bridge deck analysis. Tasks being addressed by this case study are the analysis for various types of bridge deck structures which included right angle solid slab deck, skew angle solid slab deck, right angle T-beam bridge deck with 2 end diaphragms, right angle T-beam bridge deck with 5 diaphragms, skew angle T-beam bridge deck with 2 end diaphragms, curved solid slab deck, single box girder and voided slab deck. The structural details for each bridge deck are further illustrated in each chapter. This study provided information structures that show the percentage differences of the Grillage Analogy Method compared to Finite Element Method in bridge deck analysis using LUSAS Finite Element Software.

TABLE OF CONTENTS

		Page
ACKNOWL	EDGEMENT	iv
ABSTRACT		v
TABLE OF	CONTENTS	vi
LIST OF TA	ABLES	xviii
LIST OF FI	GURES	xxiv
LIST OF AE	BBREVIATIONS	xxxiv
CHAPTER 1	I: INTRODUCTION	
1.1.0	GRILLAGE ANALOGY	1
1.2.0	BRIDGE	2
	1.2.1 Components of A Bridge	2
	1.2.2 Classification of Bridge	5
	1.2.3 Bridge Decks	6
	1.2.3.1 Beam Deck	6
	1.2.3.2 Grid Deck	7
	1.2.3.3 Slab Deck	7
	1.2.3.4 Beam-and-Slab Deck	8
	1.2.3.5 Cellular Deck	9
1.3.0	OBJECTIVES	11
1.4.0	SIGNIFICANCE OF THE STUDY	12
1.5.0	SCOPE OF THE STUDY	14

CHAPTER 2: LITERATURE REVIEW 2.1.0 HISTORY OF BRIDGE DEVELOPMENT 15 2.2.0 TYPES OF BRIDGE DECKS 19 2.2.1Slab Deck 20 2.2.1.1 Structural Action 21 2.2.2 Beam-and-Slab Decks 24 2.2.2.1 Structural Action 24 2.2.3 Box Girder Decks 28 2.2.3.1 Structural Action Of Single Cell Box Girder 29 2.2.4 Skew Decks 32 2.2.5 Curved Decks 34 2.3.0 APPLICABILITY OF THE ANALYSIS METHODS 36 2.4.0 FINITE ELEMENT METHOD 39 2.4.1 Definition and Description Of The FEM 39 2.4.2 The Continuum and its Structural Analogue 40 The Continuum and Mathematics 2.4.3 41 2.4.4 Benefits Of Using The Finite Element Method 42 2.5.0 GRILLAGE ANALOGY METHOD 45 2.5.1 Introduction 45 2.5.2 Significant Of Using The Grillage Analogy Method 48 Steps In Obtaining Design Responses For The GAM 49 2.5.3 2.5.3.1 Idealization Of Physical Deck Into Equivalent Grillage

CHAPTER 4:		:	STUDY OF RIGHT ANGLE SOLID SLAB DECK	
	4.1.0	DESC	RIPTION OF RIGHT ANGLE SOLID SLAB DECK	93
	4.2.0	LOAD	DING	94
		4.2.1	Type of Loading	94
		4.2.2	Load Case Identification	95
		4.2.3	Combination of Load Cases	100
	4.3.0	SLAB	DECK MODELLING	103
		4.3. <mark>1</mark>	Finite Element Model	103
		4.3.2	Grillage Analogy Model	104
			4.3.2.1 Grillage Layout	104
			4.3.2.2 Member Section Properties	107
	4.4.0	NUMI	ERICAL ANALYSIS RESULTS	109
		4.4.1	Finite Element Analysis	109
		4.4.2	Grillage Analogy Analysis	113
		4.4.3	Comparison Of Results	116
		4.4.4	Comparison Of Results Along Longitudinal Section	120
	4.5.0	DISCU	USSION AND EVALUATION	123
		4.5.1	Longitudinal Bending Moments	123
		4.5.2	Maximum Deflections	127
		4.5.3	Shear Forces	130
		4.5.4	Twisting Moments	133
		4.5.5	Transverse Bending Moments	135

4.6.0	CONCLUSION	
-------	------------	--

CHAPTER 5:		5:	STUDY OF SKEW ANGLE SOLID SLAB DECK		
	5.1.0	DESC	CRIPTION OF SKEW ANGLE SLAB DECK	140	
	5.2.0	LOAI	DING	141	
		5.2.1	Type of Loading	141	
		5.2.2	Load Case Identification	142	
		5.2.3	Combination of Load Cases	147	
	5.3.0	SKEV	V SLAB DECK MODELLING	150	
		5.3.1	Finite Element Model	150	
		5.3.2	Grillage Analogy Model	151	
			5.3.2.1 Grillage Layout	154	
			5.3.2.2 Member Section Properties	154	
	5.4.0	NUMI	ERICAL ANALYSIS RESULTS	157	
		5.4.1	Finite Element Analysis	157	
		5.4.2	Grillage Analogy Analysis	161	
		5.4.3	Comparison Of Results	164	
		5.4.4	Comparison Of Results Along Longitudinal Middle Section	n 168	
	5.5.0	DISCU	USSION AND EVALUATION	171	
		5.5.1	Longitudinal Bending Moments	171	
		5.5.2	Maximum Deflections	175	
		5.5.3	Shear Forces	179	
		5.5.4	Twisting Moments	183	
		5.5.5	Transverse Bending Moments	185	
	5.6.0	CONC	CLUSION	188	

CHAPTER 6	:	STUDY OF RIGHT ANGLE T-BEAM BRIDGE	
		(2 END DIAPHRAGMS)	
6.1.0	DESC	RIPTION OF T-BEAM BRIDGE DECK	190
6.2.0	LOAD	ING	191
	6.2.1	Type of Loading	191
	6.2.2	Load Case Identification	193
	6.2.3	Combination of Load Cases	194
6.3.0	T-BEA	M BRIDGE DECK MODELLING	197
	6.3.1	Finite Element Model	197
	6.3.2	Grillage Analogy Model	198
		6.3.2.1 Grillage Layout	198
		6.3.2.2 Member Section Properties	202
6.4.0	NUMI	ERICAL ANALYSIS RESULTS	205
	6.4.1	Finite Element Analysis	205
	6.4.2	Grillage Analogy Analysis	208
	6.4.3	Comparison Of Results	211
	6.4.4	Comparison Of Results Along Longitudinal Section	212
6.5.0	DISCU	USSION AND EVALUATION	217
	6.5.1	Longitudinal Bending Moments	217
	6.5.2	Maximum Deflections	222
	6.5.3	Shear Forces	226
	6.5.4	Transverse Bending Moments	230
6.6.0	CONC	CLUSION	231

CHAPTER 7	STUDY OF RIGHT ANGLE T-BEAM BRIDGE	
	(5 DIAPHRAGMS)	
7.1.0	DESCRIPTION OF T-BEAM BRIDGE DECK	232
7.2.0	LOADING	233
	7.2.1 Type of Loading	233
	7.2.2 Load Case Identification	235
	7.2.3 Combination of Load Cases	236
7.3.0	T-BEAM BRIDGE DECK MODELLING	237
	7.3.1 Finite Element Model	237
	7.3.2 Grillage Analogy Model	238
	7.3.2.1 Grillage Layout	239
	7.3.2.2 Member Section Properties	242
7.4.0	NUMERICAL ANALYSIS RESULTS	245
	7.4.1 Finite Element Analysis	245
	7.4.2 Grillage Analogy Analysis	248
	7.4.3 Comparison Of Results	251
	7.4.4 Comparison Of Results Along Longitudinal Section	252
7.5.0	DISCUSSION AND EVALUATION	257
	7.5.1 Longitudinal Bending Moments	258
	7.5.2 Maximum Deflections	262
	7.5.3 Shear Forces	266
	7.5.4 Transverse Bending Moments	270
760	CONCLUSION	271

STUDY OF SKEW ANGLE T-BEAM BRIDGE **CHAPTER 8:** (2 END DIAPHRAGMS) DESCRIPTION OF SKEW ANGLE T-BEAM BRIDGE DECK 8.1.0 272 8.2.0 LOADING 274 Type of Loading 8.2.1 274 8.2.2 Load Case Identification 275 8.2.3 Combination of Load Cases 276 8.3.0 SKEW ANGLE T-BEAM BRIDGE DECK MODELLING 279 8.3.1 Finite Element Model 279 8.3.2 Grillage Analogy Model 2808.3.2.1 Grillage Layout 281 8.3.2.2 Member Section Properties 284 287 8.4.0 NUMERICAL ANALYSIS RESULTS

	8.4.1	Finite Element Analysis	287
	8.4.2	Grillage Analogy Analysis	290
	8.4.3	Comparison Of Results	293
	8.4.4	Comparison Of Results Along Longitudinal Section	294
8.5.0	DISCU	USSION AND EVALUATION	299
	8.5.1	Longitudinal Bending Moments	299
	8.5.2	Maximum Deflections	304
	8.5.3	Shear Forces	308
	8.5.4	Transverse Bending Moments	312
8.6.0	CON	CLUSION	313

CHAPTER 9:		:	STUDY OF CURVED SOLID SLAB DECK		
	9.1.0	DESC	RIPTION OF CURVED SOLID SLAB DECK	314	
	9.2.0	LOAD	DING	315	
		9.2.1	Type of Loading	315	
		9.2.2	Load Case Identification	316	
		9.2.3	Combination of Load Cases	321	
	9.3.0	CURV	ED SOLID SLAB DECK MODELLING	324	
		9.3.1	Finite Element Model	324	
		9.3.2	Grillage Analogy Model	325	
			9.3.2.1 Grillage Layout	325	
			9.3.2.2 Member Section Properties	328	
	9.4.0	NUMI	ERICAL ANALYSIS RESULTS	330	
		9.4.1	Finite Element Analysis	330	
		9.4.2	Grillage Analogy Analysis	334	
		9.4.3	Comparison Of Results	337	
		9.4.4	Comparison Of Results Along Longitudinal Section	339	
	9.5.0	DISCU	USSION AND EVALUATION	342	
		9.5.1	Longitudinal Bending Moments	342	
		9.5.2	Maximum Deflections	346	
		9.5.3	Shear Forces	349	
		9.5.4	Twisting Moments	353	
		9.5.5	Transverse Bending Moments	355	
	9.6.0	CONC	CLUSION	358	

CHAPTER 10: STUDY OF RIGHT ANGLE SINGLE BOX GIRDER BRIDGE DECK

10.1.0 DESCRIPTION OF SINGLE BOX GIRDER BRIDGE DECK	359
10.2.0 LOADING	361
10.2.1 Type of Loading	361
10.2.2 Load Case Identification	363
10.2.3 Combination of Load Cases	364
10.3.0 RIGHT ANGLE SINGLE BOX GIRDER BRIDGE DECK	
MODELLING	367
10.3.1 Finite Element Model	367
10.3.2 Grillage Analogy Model	368
10.3.2.1 Grillage Layout	369
10.3.2.2 Member Section Properties	372
10.4.0 NUMERICAL ANALYSIS RESULTS	377
10.4.1 Finite Element Analysis	377
10.4.2 Grillage Analogy Analysis	380
10.4.3 Comparison Of Results	383
10.4.4 Comparison Of Results Along Longitudinal Section	384
10.5.0 DISCUSSION AND EVALUATION	387
10.5.1 Longitudinal Bending Moments	387
10.5.2 Maximum Deflections	392
10.5.3 Shear Forces	395
10.6.0 CONCLUSION	400

CHAPTER 11:	STUDY OF RIGHT ANGLE VOIDED SLAB DECK	
11.1.0 DESCR	RIPTION OF RIGHT ANGLE VOIDED SLAB DECK	401
11.2.0 LOAD	ING	402
11.2.1	Type of Loading	402
11.2.2	Load Case Identification	404
11.2.3	Combination of Load Cases	405
11.3.0 VOIDE	ED SLAB DECK MODELLING	408
11.3.1	Finite Element Model	408
11.3.2	Grillage Analogy Model	409
	11.3.2.1 Grillage Layout	410
	11.3.2.2 Member Section Properties	413
11.4.0 NUME	ERICAL ANALYSIS RESULTS	417
11.4.1	Finite Element Analysis	417
11.4.2	Grillage Analogy Analysis	420
11.4.3	Comparison Of Results	422
11.4.4	Comparison Of Results Along Longitudinal Section	423
11.5.0 DISCU	JSSION AND EVALUATION	425
11.5.1	Maximum Deflections	425
11.5.2	Shear Forces	429
11.6.0 CONC	LUSION	434

CHAPTER 12: CONCLUSIONS AND RECOMMENDATIONS 12.1.0 CONCLUSIONS

12.2.0 RECOMMENDATIONS 443

REFERENCES & BIBLIOGRAPHY

445

LIST OF TABLES

Table 2.1	Applicability of Analytical Techniques	38
Table 2.2	Foundations of the Finite Element Method	42
Table 3.1	Description Of Bridge Decks	78
Table 3.2	Load Factor	89
Table 4.1	Longitudinal Bending Moments	109
Table 4.2	Shear Forces	110
Table 4.3	Maximum Deflections	110
Table 4.4	Twisting Moments	110
Table 4.5	Transverse Bending Moments	111
Table 4.6	Longitudinal Bending Moments	113
Table 4.7	Shear Forces	113
Table 4.8	Maximum Deflections	114
Table 4.9	Twisting Moments	114
Table 4.10	Transverse Bending Moments	114
Table 4.11a	Percent Differences of Grillage Results With Respect To FEM R	Results
		119
Table 4.11b	Percent Differences of Grillage Results With Respect To FEM F	Results
		119
Table 4.12	Longitudinal Bending Moment And Deflection At Quarter and M	Aid Span
	For LC 101	120
Table 4.13	Shear Force At Support and Quarter Span (LC 101)	120
Table 4.14	Longitudinal Bending Moment And Deflection At Quarter and I	Mid Span
	For LC 102	121
Table 4.15	Shear Force At Support and Quarter Span (LC 102)	121
Table 4.16	Longitudinal Bending Moment And Deflection At Quarter and M	Mid Span
	For LC 103	121
Table 4.17	Shear Force At Support and Quarter Span (LC 103)	121

Table 4.18	Longitudinal Bending Moment And Deflection At Quarter and Mi	d Span
	For LC 104	122
Table 4.19	Shear Force At Support and Quarter Span (LC104)	122
Table 5.1	Longitudinal Bending Moments	157
Table 5.2	Shear Forces	158
Table 5.3	Maximum Deflections	158
Table 5.4	Twisting Moments	158
Table 5.5	Transverse Bending Moments	159
Table 5.6	Longitudinal Bending Moments	161
Table 5.7	Shear Forces	161
Table 5.8	Maximum Deflections	162
Table 5.9	Twisting Moments	162
Table 5.10	Transverse Bending Moments	162
Table 5.11a	Percent Differences of Grillage Results With Respect To FEM Re	sults
		167
Table 5.11b	Percent Differences of Grillage Results With Respect To FEM Re	sults
		167
Table 5.12	Longitudinal Bending Moments And Deflection At Quarter and M	lid
	Span For LC 101	168
Table 5.13	Shear Forces At Support and Quarter Span (LC 101)	168
Table 5.14	Longitudinal Bending Moments And Deflection At Quarter and N	/lid
	Span For LC 102	168
Table 5.15	Shear Forces At Support and Quarter Span (LC 102)	169
Table 5.16	Longitudinal Bending Moment And Deflection At Quarter and M	id Span
	For LC 103	169
Table 5.17	Shear Forces At Support and Quarter Span (LC 103)	169
Table 5.18	Longitudinal Bending Moments And Deflection At Quarter and M	Mid
	Span For LC 104	169
Table 5.19	Shear Forces At Support and Quarter Span (LC104)	170
Table 6.1	Longitudinal Bending Moments	205

Transverse Bending Moments	206
Shear Forces	206
Maximum Deflections	206
Longitudinal Bending Moments	208
Transverse Bending Moments	208
Shear Forces	209
Maximum Deflections	209
Percent Differences of Grillage Results With Respect To FEM Re	sults
	211
Longitudinal Bending Moments For Interior Beam Under FEM	212
Longitudinal Bending Moments For Exterior Beam Under FEM	213
Longitudinal Bending Moments For Interior Beam Under GAM	213
Longitudinal Bending Moments For Exterior Beam Under GAM	213
Deflections of Span For Interior Beam Under FEM	214
Deflections of Span For Exterior Beam Under FEM	214
Deflections of Span For Interior Beam Under GAM	214
Deflections of Span For Exterior Beam Under GAM	215
Shear Forces For Interior Beam Under FEM	215
Shear Forces For Exterior Beam Under FEM	215
Shear Forces For Interior Beam Under GAM	216
Shear Forces For Exterior Beam Under GAM	216
Longitudinal Bending Moments	245
Transverse Bending Moments	246
Shear Forces	246
Maximum Deflections	246
Longitudinal Bending Moments	248
Transverse Bending Moments	248
Shear Forces	249
Maximum Deflections	249
	Shear Forces Maximum Deflections Longitudinal Bending Moments Transverse Bending Moments Shear Forces Maximum Deflections Percent Differences of Grillage Results With Respect To FEM Re Longitudinal Bending Moments For Interior Beam Under FEM Longitudinal Bending Moments For Interior Beam Under FEM Longitudinal Bending Moments For Interior Beam Under GAM Deflections of Span For Interior Beam Under FEM Deflections of Span For Interior Beam Under FEM Shear Forces For Exterior Beam Under FEM Shear Forces For Interior Beam Under GAM Shear Forces For Exterior Beam Under GAM Shear Forces For Exterior Beam Under GAM Longitudinal Bending Moments Transverse Bending Moments Transverse Bending Moments Transverse Bending Moments Shear Forces

Table 7.7	Percent Differences of Grillage Results With Respect To FEM Re	sults
	d and the works of the part for the state of	251
Table 7.8	Longitudinal Bending Moments For Interior Beam Under FEM	252
Table 7.9	Longitudinal Bending Moments For Exterior Beam Under FEM	253
Table 7.10	Longitudinal Bending Moments For Interior Beam Under GAM	253
Table 7.11	Longitudinal Bending Moments For Exterior Beam Under GAM	253
Table 7.12	Deflections of Span For Interior Beam Under FEM	254
Table 7.13	Deflections of Span For Exterior Beam Under FEM	254
Table 7.14	Deflections of Span For Interior Beam Under GAM	254
Table 7.15	Deflections of Span For Exterior Beam Under GAM	255
Table 7.16	Shear Forces For Interior Beam Under FEM	255
Table 7.17	Shear Forces For Exterior Beam Under FEM	255
Table 7.18	Shear Forces For Interior Beam Under GAM	256
Table 7.19	Shear Forces For Exterior Beam Under GAM	256
Table 8.1	Longitudinal Bending Moments	287
Table 8.1a	Transverse Bending Moments	288
Table 8.2	Shear Forces	288
Table 8.3	Maximum Deflections	288
Table 8.4	Longitudinal Bending Moments	290
Table 8.4a	Transverse Bending Moments	290
Table 8.5	Shear Forces	291
Table 8.6	Maximum Deflections	291
Table 8.7	Percent Differences of Grillage Results With Respect To FEM Re	sult
		293
Table 8.8	Longitudinal Bending Moments For Interior Beam Under FEM	294
Table 8.9	Longitudinal Bending Moments For Exterior Beam Under FEM	294
Table 8.10	Longitudinal Bending Moments For Interior Beam Under GAM	295
Table 8.11	Longitudinal Bending Moments For Exterior Beam Under GAM	295
Table 8.12	Deflections of Span For Interior Beam Under FEM	295
Table 8.13	Deflections of Span For Exterior Beam Under FEM	296

Table 8.14	Deflections of Span For Interior Beam Under GAM	<u>296</u>
Table 8.15	Deflections of Span For Exterior Beam Under GAM	296
Table 8.16	Shear Forces For Interior Beam Under FEM	297
Table 8.17	Shear Forces For Exterior Beam Under FEM	297
Table 8.18	Shear Forces For Interior Beam Under GAM	297
Table 8.19	Shear Forces For Exterior Beam Under GAM	298
Table 9.1	Section Properties For Transverse Members Of Curved Slab Deck	329
Table 9.2	Longitudinal Bending Moments	330
Table 9.3	Shear Forces	331
Table 9.4	Maximum Deflections	331
Table 9.5	Twisting Moments	331
Table 9.6	Transverse Bending Moments	332
Table 9.7	Longitudinal Bending Moments	334
Table 9.8	Shear Forces	334
Table 9.9	Maximum Deflections	335
Table 9.10	Twisting Moments	335
Table 9.11	Transverse Bending Moments	335
Table 9.12a	Percent Differences of Grillage Results With Respect To FEM Re	sults
		337
Table 9.12b	Percent Differences of Grillage Results With Respect To FEM Re	sults
		338
Table 9.13	Longitudinal Bending Moments For FEM	339
Table 9.14	Longitudinal Bending Moments For GAM	339
Table 9.15	Deflections of Span For FEM	340
Table 9.16	Deflection of Span For GAM	340
Table 9.17	Shear Forces For FEM	340
Table 9.18	Shear Forces For GAM	341
Table 10.1	Longitudinal Bending Moments	377
Table 10.2	Shear Forces	378
Table 10.3	Maximum Deflections	378

Table 10.4	Longitudinal Bending Moments	380
Table 10.5	Shear Forces	380
Table 10.6	Maximum Deflections	381
Table 10.7	Percent Differences of Grillage Results With Respect To FEM R	esult
		383
Table 10.8	Longitudinal Bending Moments Under FEM	384
Table 10.9	Longitudinal Bending Moments Under GAM	384
Table 10.10	Deflections of Span Under FEM	385
Table 10.11	Deflections of Span Under GAM	385
Table 10.12	Shear Forces Under FEM	385
Table 10.13	Shear Forces Under GAM	386
Table 11.1	Shear Forces	417
Table 11.2	Maximum Deflections	418
Table 11.3	Shear Forces	420
Table 11.4	Maximum Deflections	420
Table 11.5	Percent Differences of Grillage Results With Respect To FEM F	Result
		422
Table 11.6	Deflections of Span Under FEM	423
Table 11.7	Deflections of Span Under GAM	423
Table 11.8	Shear Forces Under FEM	424
Table 11.9	Shear Forces Under GAM	424
Table 12.1	Effectiveness Of Grillage Analogy For Bridge Deck Analysis	442

LIST OF FIGURES

Figure 2.1	Classifications of Bridges	18
Figure 2.2	Resultant Forces On Element Of Slab	22
Figure 2.3	Bending Stress Distribution	22
Figure 2.4	Torsion Stress Distribution	22
Figure 2.5	Action Of Slab Of Beam-And-Slab Under Eccentricity Loading	25
Figure 2.6	Element Of Beam-And-Slab Deck Without Diaphragm	26
Figure 2.7	Element Of Beam-And-Slab Deck At Diaphragm	26
Figure 2.8	Structural Action Of Box-Girder	29
Figure 2.9	Structural Action Of Box-Girder Under Eccentric Load	30
Figure 2.10	Structural Action On Element Of Curved Beam	35
Figure 2.11	Transfer Of Dead Load On The Nodes	56
Figure 2.12	MEF And MED Of Grid Element	59
Figure 2.13	Transformation Of Stiffness Matrix	63
Figure 2.14	Vector Matrix	63
Figure 3.1	Flow Chart Of Methodology	81
Figure 3.2	LUSAS Finite Element System	87
Figure 4.1	Cross Section Of Solid Slab Deck	93
Figure 4.2	Longitudinal Section Of Solid Slab Deck	93
Figure 4.3	Distribution Of The Point Loads For SV	95
Figure 4.4	Load Case 1	96
Figure 4.5	Load Case 2	96
Figure 4.6	Load Case 3	96
Figure 4.7	Load Case 4	97
Figure 4.8	Load Case 5	97
Figure 4.9	Load Case 6	97
Figure 4.10	Load Case 7	98
Figure 4.11	Load Case 8	98
Figure 4.12	Load Case 9	98

Figure 4.13	Load Case 10	99
Figure 4.14	Load Case 11	99
Figure 4.15	Load Case 12	99
Figure 4.16	Load Combination 101	101
Figure 4.17	Load Combination 102	100
Figure 4.18	Load Combination 103	102
Figure 4.19	Load Combination 104	102
Figure 4.20	Mesh For Right Angle Solid Slab Deck	103
Figure 4.21	Longitudinal Grid Line Of Right Angle Solid Slab Deck	104
Figure 4.22	Transverse Grid Line Of Right Angle Solid Slab Deck	104
Figure 4.23	Grillage Node Details For Solid Slab Deck	105
Figure 4.24	Grillage Element Details For Solid Slab Deck	106
Figure 4.25	Finite Element Analysis For Solid Slab Deck	112
Figure 4.26	Grillage Analogy Analysis For Solid Slab Deck	115
Figure 4.27	Comparison of Longitudinal Bending Moments For LC 101	124
Figure 4.28	Comparison of Longitudinal Bending Moments For LC 102	124
Figure 4.29	Comparison of Longitudinal Bending Moments For LC 103	125
Figure 4.30	Comparison of Longitudinal Bending Moments For LC 104	125
Figure 4.31	Comparison of Longitudinal Deflections For Load Case 101	127
Figure 4.32	Comparison of Longitudinal Deflections For Load Case 102	128
Figure 4.33	Comparison of Longitudinal Deflections For Load Case 103	128
Figure 4.34	Comparison of Longitudinal Deflections For Load Case 104	128
Figure 4.35	Comparison of Shear Forces Along The Span For Load Case 101	131
Figure 4.36	Comparison of Shear Forces Along The Span For Load Case 102	131
Figure 4.37	Comparison of Shear Forces Along The Span For Load Case 103	131
Figure 4.38	Comparison of Shear Forces Along The Span For Load Case 104	132
Figure 4.39	Comparison of Transverse Bending Moments For Load Case 101	136
Figure 4.40	Comparison of Transverse Bending Moments For Load Case 102	136
Figure 4.41	Comparison of Transverse Bending Moments For Load Case 103	137
Figure 4.42	Comparison of Transverse Bending Moments For Load Case 104	137

Percentage Differences For Right Angle Solid Slab Deck	139	
Plan Of Skew Angle Solid Slab Deck	140	
Load Case 1 For Skew Angle Bridge Deck	143	
Load Case 2 For Skew Angle Bridge Deck	143	
Load Case 3 For Skew Angle Bridge Deck	143	
Load Case 4 For Skew Angle Bridge Deck	144	
Load Case 5 For Skew Angle Bridge Deck	144	
Load Case 6 For Skew Angle Bridge Deck	144	

0		
Figure 5.4	Load Case 3 For Skew Angle Bridge Deck	143
Figure 5.5	Load Case 4 For Skew Angle Bridge Deck	144
Figure 5.6	Load Case 5 For Skew Angle Bridge Deck	144
Figure 5.7	Load Case 6 For Skew Angle Bridge Deck	144
Figure 5.8	Load Case 7 For Skew Angle Bridge Deck	145
Figure 5.9	Load Case 8 For Skew Angle Bridge Deck	145
Figure 5.10	Load Case 9 For Skew Angle Bridge Deck	145
Figure 5.11	Load Case 10 For Skew Angle Bridge Deck	146
Figure 5.12	Load Case 11 For Skew Angle Bridge Deck	146
Figure 5.13	Load Case 12 For Skew Angle Bridge Deck	146
Figure 5.14	Load Combination 101 For Skew Angle Bridge Deck	148
Figure 5.15	Load Combination 102 For Skew Angle Bridge Deck	148
Figure 5.16	Load Combination 103 For Skew Angle Bridge Deck	149
Figure 5.17	Load Combination 104 For Skew Angle Bridge Deck	149
Figure 5.18	Mesh For Skew Angle Solid Slab Deck	150
Figure 5.19	Grillage Node Details For Skew Angle Solid Slab Deck	152
Figure 5.20	Grillage Element Details For Skew Angle Solid Slab Deck	153
Figure 5.21	Longitudinal Grid Line Of Skew Angle Slab Deck	154
Figure 5.22	Transverse Grid Line Of Skew Angle Slab Deck	154
Figure 5.23	Finite Element Analysis For Skew Angle Solid Slab Deck	160
Figure 5.24	Grillage Analogy Analysis For Skew Angle Solid Slab Deck	163
Figure 5.25	Comparison of Longitudinal Bending Moments For LC 101	172
Figure 5.26	Comparison of Longitudinal Bending Moments For LC 102	173
Figure 5.27	Comparison of Longitudinal Bending Moments For LC 103	173
Figure 5.28	Comparison of Longitudinal Bending Moments For LC 104	173
Figure 5.29	Comparison of Longitudinal Deflections For Load Case 101	176

Figure 4.43

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.30	Comparison of Longitudinal Deflections For Load Case 102	176
Figure 5.31	Comparison of Longitudinal Deflections For Load Case 103	176
Figure 5.32	Comparison of Longitudinal Deflections For Load Case 104	177
Figure 5.33	Comparison of Shear Forces Along The Span For Load Case 101	180
Figure 5.34	Comparison of Shear Forces Along The Span For Load Case 102	180
Figure 5.35	Comparison of Shear Forces Along The Span For Load Case 103	180
Figure 5.36	Comparison of Shear Forces Along The Span For Load Case 104	181
Figure 5.37	Comparison of Transverse Bending Moments For Load Case 101	186
Figure 5.38	Comparison of Transverse Bending Moments For Load Case 102	186
Figure 5.39	Comparison of Transverse Bending Moments For Load Case 103	186
Figure 5.40	Comparison of Transverse Bending Moments For Load Case 104	187
Figure 5.41	Percentage Differences For Skew Angle Solid Slab Deck	189
Figure 6.1	Cross Section Of T-Beam Bridge With 2 End Diaphragms	191
Figure 6.2	Longitudinal Section Of T-Beam Bridge With 2 End Diaphragms	191
Figure 6.3	Distribution Of The Point Loads For SV	192
Figure 6.4	Load Combination 101 For Right Angle T-Beam Bridge	195
Figure 6.5	Load Combination 102 For Right Angle T-Beam Bridge	195
Figure 6.6	Load Combination 103 For Right Angle T-Beam Bridge	196
Figure 6.7	Load Combination 104 For Right Angle T-Beam Bridge	196
Figure 6.8	Mesh For Right Angle T-Beam Bridge Deck (2 End Diaphragms)	197
Figure 6.9	Longitudinal Grid Line Of T-Beam Bridge Deck (2 Diaphragms)	198
Figure 6.10	Transverse Grid Line Of T-Beam Bridge Deck (2 Diaphragms)	199
Figure 6.11	Grillage Node Details For Right Angle T-Beam Bridge Deck	200
Figure 6.12	Grillage Element Details For Right Angle T-Beam Bridge Deck	201
Figure 6.13	Finite Element Analysis For Right Angle T-Beam Bridge Deck	207
Figure 6.14	Grillage Analogy Analysis For Right Angle T-Beam Bridge Deck	210
Figure 6.15	Comparison of Longitudinal Bending Moments For LC 101	218
Figure 6.16	Comparison of Longitudinal Bending Moments For LC 102	219
Figure 6.17	Comparison of Longitudinal Bending Moments For LC 103	219
Figure 6.18	Comparison of Longitudinal Bending Moments For LC 104	219

Figure 7.18	Comparison of Longitudinal Deflections For Load Case 104	264
Figure 7.19	Comparison of Shear Forces Along The Beam For Load Case 101	267
Figure 7.20	Comparison of Shear Forces Along The Beam For Load Case 102	267
Figure 7.21	Comparison of Shear Forces Along The Beam For Load Case 103	267
Figure 7.22	Comparison of Shear Forces Along The Beam For Load Case 104	268
Figure 7.23	Comparison of Transverse Bending Moments For Load Case 101	270
Figure 7.24	Comparison of Transverse Bending Moments For Load Case 102	270
Figure 7.25	Comparison of Transverse Bending Moments For Load Case 103	270
Figure 7.26	Comparison of Transverse Bending Moments For Load Case 104	270
Figure 7.27	Percentage Differences For Right Angle T-Beam Bridge Deck	271
Figure 8.1	Skew Cross Section Of Skew Angle T-Beam Bridge at Support	273
Figure 8.2	Longitudinal Section Of Skew Angle T-Beam Bridge Deck	273
Figure 8.3	Plan Of Skew Angle T-Beam Bridge Deck	273
Figure 8.4	Distribution Of The Point Loads For SV	275
Figure 8.5	Load Combination 101 For Skew Angle T-Beam Bridge Deck	277
Figure 8.6	Load Combination 102 For Skew Angle T-Beam Bridge Deck	277
Figure 8.7	Load Combination 103 For Skew Angle T-Beam Bridge Deck	278
Figure 8.8	Load Combination 104 For Skew Angle T-Beam Bridge Deck	278
Figure 8.9	Mesh For Skew Angle T-Beam Bridge Deck	279
Figure 8.10	Longitudinal Grid Line Of Skew Angle T-Beam Bridge Deck	281
Figure 8.11	Transverse Grid Line Of Skew Angle T-Beam Bridge Deck	281
Figure 8.12	Grillage Node Details For Skew Angle T-Beam Bridge Deck	282
Figure 8.13	Grillage Element Details For Skew Angle T-Beam Bridge Deck	283
Figure 8.14	Finite Element Analysis For Skew Angle T-Beam Bridge Deck	289
Figure 8.15	Grillage Analogy Analysis For Skew Angle T-Beam Bridge Deck	292
Figure 8.16	Comparison of Longitudinal Bending Moments For LC 101	300
Figure 8.17	Comparison of Longitudinal Bending Moments For LC 102	301
Figure 8.18	Comparison of Longitudinal Bending Moments For LC 103	301
Figure 8.19	Comparison of Longitudinal Bending Moments For LC 104	301
Figure 8.20	Comparison of Longitudinal Deflections For Load Case 101	305

Figure 8.21	Comparison of Longitudinal Deflections For Load Case 102	305
Figure 8.22	Comparison of Longitudinal Deflections For Load Case 103	305
Figure 8.23	Comparison of Longitudinal Deflections For Load Case 104	306
Figure 8.24	Comparison of Shear Forces Along The Beam For Load Case 101	309
Figure 8.25	Comparison of Shear Forces Along The Beam For Load Case 102	309
Figure 8.26	Comparison of Shear Forces Along The Beam For Load Case 103	309
Figure 8.27	Comparison of Shear Forces Along The Beam For Load Case 104	310
Figure 8.28	Comparison of Transverse Bending Moments For Load Case 101	312
Figure 8.29	Comparison of Transverse Bending Moments For Load Case 102	312
Figure 8.30	Comparison of Transverse Bending Moments For Load Case 103	312
Figure 8.31	Comparison of Transverse Bending Moments For Load Case 104	312
Figure 8.32	Percentage Differences For Skew Angle T-Beam Bridge Deck	313
Figure 9.1	Plan View Of The Curved Solid Slab Deck	314
Figure 9.2	Distribution Of The Point Loads For SV	316
Figure 9.3	Load Case 1 For Curved Solid Slab Deck	317
Figure 9.4	Load Case 2 For Curved Solid Slab Deck	317
Figure 9.5	Load Case 3 For Curved Solid Slab Deck	317
Figure 9.6	Load Case 4 For Curved Solid Slab Deck	318
Figure 9.7	Load Case 5 For Curved Solid Slab Deck	318
Figure 9.8	Load Case 6 For Curved Solid Slab Deck	318
Figure 9.9	Load Case 7 For Curved Solid Slab Deck	319
Figure 9.10	Load Case 8 For Curved Solid Slab Deck	319
Figure 9.11	Load Case 9 For Curved Solid Slab Deck	319
Figure 9.12	Load Case 10 For Curved Solid Slab Deck	320
Figure 9.13	Load Case 11 For Curved Solid Slab Deck	320
Figure 9.14	Load Case 12 For Curved Solid Slab Deck	320
Figure 9.15	Load Combination 101 For Curved Solid Slab Deck	322
Figure 9.16	Load Combination 102 For Curved Solid Slab Deck	322
Figure 9.17	Load Combination 103 For Curved Solid Slab Deck	323
Figure 9.18	Load Combination 104 For Curved Solid Slab Deck	323

Figure 9.19	Mesh For Curved Solid Slab Deck	324
Figure 9.20	Plan View For The Grid Line Of Curved Solid Slab Deck	325
Figure 9.21	Grillage Node Details For Curved Solid Slab Deck	326
Figure 9.22	Grillage Element Details For Curved Solid Slab Deck	327
Figure 9.23	Finite Element Analysis For Curved Solid Slab Deck	333
Figure 9.24	Grillage Analogy Analysis For Curved Solid Slab Deck	336
Figure 9.25	Comparison of Longitudinal Bending Moments For LC 101	343
Figure 9.26	Comparison of Longitudinal Bending Moments For LC 102	343
Figure 9.27	Comparison of Longitudinal Bending Moments For LC 103	344
Figure 9.28	Comparison of Longitudinal Bending Moments For LC 104	344
Figure 9.29	Comparison of Longitudinal Deflections For Load Case 101	346
Figure 9.30	Comparison of Longitudinal Deflections For Load Case 102	347
Figure 9.31	Comparison of Longitudinal Deflections For Load Case 103	347
Figure 9.32	Comparison of Longitudinal Deflections For Load Case 104	347
Figure 9.33	Comparison of Shear Forces Along The Span For Load Case 101	350
Figure 9.34	Comparison of Shear Forces Along The Span For Load Case 102	350
Figure 9.35	Comparison of Shear Forces Along The Span For Load Case 103	350
Figure 9.36	Comparison of Shear Forces Along The Span For Load Case 104	351
Figure 9.37	Comparison of Transverse Bending Moments For Load Case 101	356
Figure 9.38	Comparison of Transverse Bending Moments For Load Case 102	356
Figure 9.39	Comparison of Transverse Bending Moments For Load Case 103	357
Figure 9.40	Comparison of Transverse Bending Moments For Load Case 104	357
Figure 9.41	Percentage Differences For Skew Angle Solid Slab Deck	358
Figure 10.1	Cross Section Of Single Box Girder	360
Figure 10.2	Longitudinal Section Of Single Box Girder	360
Figure 10.3	Distribution Of The Point Loads For SV	362
Figure 10.4	Load Combination 101 For Right Angle Single Box Girder Deck	365
Figure 10.5	Load Combination 102 For Right Angle Single Box Girder Deck	365
Figure 10.6	Load Combination 103 For Right Angle Single Box Girder Deck	366
Figure 10.7	Load Combination 104 For Right Angle Single Box Girder Deck	366

Figure 10.8	Mesh For Right Angle Single Box Girder	367
Figure 10.9	Longitudinal Grid Line Of Single Box Girder	369
Figure 10.10	Transverse Grid Line Of Single Box Girder	369
Figure 10.11	Grillage Node Details For Right Angle Single Box Girder	370
Figure 10.12	Grillage Element Details For Right Angle Single Box Girder	371
Figure 10.13	Finite Element Analysis For Right Angle Single Box Girder	379
Figure 10.14	Grillage Analogy Analysis For Right Angle Single Box Girder	382
Figure 10.15	Comparison of Longitudinal Bending Moments For LC 101	388
Figure 10.16	Comparison of Longitudinal Bending Moments For LC 102	389
Figure 10.17	Comparison of Longitudinal Bending Moments For LC 103	389
Figure 10.18	Comparison of Longitudinal Bending Moments For LC 104	389
Figure 10.19	Comparison of Longitudinal Deflections For Load Case 101	393
Figure 10.20	Comparison of Longitudinal Deflections For Load Case 102	393
Figure 10.21	Comparison of Longitudinal Deflections For Load Case 103	393
Figure 10.22	Comparison of Longitudinal Deflections For Load Case 104	394
Figure 10.23	Compa <mark>rison of Shear</mark> Forces Along The Span For Load Case 101	396
Figure 10.24	Comparison of Shear Forces Along The Span For Load Case 102	396
Figure 10.25	Comparison of Shear Forces Along The Span For Load Case 103	396
Figure 10.26	Comparison of Shear Forces Along The Span For Load Case 104	397
Figure 10.27	Percentage Differences For Right Angle Single Box Girder Deck	399
Figure 11.1	Cross Section Of Voided Slab Deck	401
Figure 11.2	Longitudinal Section Of Voided Slab Deck	402
Figure 11.3	Distribution Of The Point Loads For SV	403
Figure 11.4	Load Combination 101 For Right Angle Voided Slab Deck	406
Figure 11.5	Load Combination 102 For Right Angle Voided Slab Deck	406
Figure 11.6	Load Combination 103 For Right Angle Voided Slab Deck	407
Figure 11.7	Load Combination 104 For Right Angle Voided Slab Deck	407
Figure 11.8a	Mesh For Voided Slab Deck (End Diaphragms)	408
Figure 11.8b	Mesh For Voided Slab Deck (Mid Span)	408
Figure 11.9	Longitudinal Grid Line Of Voided Slab Deck At Mid Span	410

Figure 11.10	Transverse Grid Line At Middle Width of Bridge	
Figure 11.11	Grillage Node Details For Right Angle Voided Slab Deck	
Figure 11.12	Grillage Element Details For Right Angle Voided Slab Deck	
Figure 11.13	Finite Element Analysis For Right Angle Voided Slab Deck	
Figure 11.14	Grillage Analogy Analysis For Right Angle Voided Slab Deck	
Figure 11.15	Comparison of Longitudinal Deflections For Load Case 101	
Figure 11.16	Comparison of Longitudinal Deflections For Load Case 102	426
Figure 11.17	Comparison of Longitudinal Deflections For Load Case 103	
Figure 11.18	Comparison of Longitudinal Deflections For Load Case 104	427
Figure 11.19	Comparison of Shear Forces Along The Span For Load Case 101	430
Figure 11.20	Comparison of Shear Forces Along The Span For Load Case 102	430
Figure 11.21	Comparison of Shear Forces Along The Span For Load Case 103	430
Figure 11.22	Comparison of Shear Forces Along The Span For Load Case 104	431
Figure 11.23	Percentage Differences For Right Angle Voided Slab Deck	433
Figure 12.1	Percentage Differences For Longitudinal Bending Moments	437
Figure 12.2	Percentage Differences For Shear Forces	438
Figure 12.3	Percentage Differences For Maximum Deflections	439
Figure 12.4	Percentage Differences For Twisting Moments	440
Figure 12.5	Percentage Differences For Transverse Bending Moments	441

xxxiv

LIST OF ABBREVIATIONS

BS	British Standard
Ε	Modulus of Elasticity
etc.	Excetera
FEM	Finite Element Method
G	Shear Modulus
GAM	Grillage Analogy Method
GP	Gauss Point
I constants of the	Flexural Moment of Inertia
J	Torsional Inertia
JKR	Jabatan Kerja Raya
KEL	Knife Edge Load
LC	Load Combination
LTAL	Long Term Axle Loading
MED	Member End Displacement
MEF	Member End Forces
NL	Notional Lane
STAL	Short Term Axle Loading
SV	Special Vehicle Loading
UDL	Uniformly Distributed Load
ULS	Ultimate Limit State

CHAPTER 1

INTRODUCTION

1.1.0 GRILLAGE ANALOGY

Grillage analogy is probably one of the most popular computer-aided methods for analyzing bridge decks. The method consists of representing the actual decking system of the bridge by an equivalent grillage of beams. The dispersed bending and torsional stiffness of the decking system are assumed, for the purpose of analysis, to be concentrated in these beams. The stiffnesses of the beams are chosen so that the prototype bridge deck and the equivalent grillage of beams are subjected to identical deformations under loading. The actual deck loading is replaced by an equivalent nodal loading. The method is applicable to bridge decks with simple as well as complex configurations with almost the same ease and confidence. The method is easy to comprehend and use. The analysis is relatively inexpensive and has been proved to be reliably accurate for a wide variety of bridges. The grillage representation helps in giving the designer a feel of the structural behaviour of the bridge and the manner in which the loading is distributed and eventually taken to the supports.²

1.2.0 BRIDGE

A bridge is a structure facilitating a communication route for carrying road traffic or other moving loads over a depression or obstruction such as river, stream, channel, road or railway. The communication route may be a railway track, a tramway, a roadway, a footpath, a cycle track or a combination of them.

1.2.1 Components of A Bridge

A bridge structure consists of two basic parts: superstructure, substructure and miscellaneous components. The superstructure serves to take traffic loads and transfer them to the substructure, which generally consists of the piers and abutments. The superstructure consists of the span between supports which carry the highway or railway and transfers this load to the substructure. Substructure takes the load and transfers it to the ground.

i) Superstructure

Superstructure consists of structural members carrying a communication route. Thus, handrails, guard stones and flooring supported by any structural system such as beams, girders, arches and cables above the level of bearings constitutes the superstructure.

Superstructure basically consists of the following parts:

• Elements that transfer the traffic load along the span onto the substructure, generally parallel to the longitudinal bridge axis. These elements are called the main carrying bridge members. Because the main bridge loading is vertical, the main carrying bridge members are vertical. These members, in the shape of plate girders, deflect under the loading and the resulting stresses are taken by the flanges. The webs of the plate girders and diagonals of trusses take shear forces.

- Elements that transfer pressures from the vertical loads to the main carrying members in the transverse direction normal to the bridge axis, and connecting main carrying members in the transverse direction, are called the deck and transverse bracings or transverse construction. This transverse construction is necessary because the main carrying members, installed as the plane walls, are placed at a certain distance from each other and, therefore, cannot take pressure from the loads that are placed between them. Apart from this, main carrying members as plane structure are unstable without a transverse connection.
- Elements that transfer to the supports load resulting from the wind and centrifugal force. These loads are horizontal and the elements transferring these loads are located in horizontal planes, usually at the planes of flanges of the main carrying members. They are called the wind bracings because the main load acting on them is the wind. They are also called the transverse bracings because they are working in the transverse direction when they transfer wind loading to the supports. The main carrying members together with the deck and bracings constitute a superstructure unit. It is generally rectangular, its vertical sides are the main and secondary loading-vertical and horizontal- is located along the horizontal side.

The bridge superstructure is supported by the bearings. Bearings transfer the weight of the superstructure and traffic loadings to the supports at definite locations. The intermediate supports are piers and the end supports are abutments. The intermediate supports have the shape of columns; in the cross section they are configures such that the water will not produce whirlpool and scour. The abutments take the end reactions from the superstructure and also act as retaining walls.

ii) Substructure

Substructure is a supporting system for the superstructure. It consists of the following:

- Abutments,
- Piers and Abutment piers,
- Wing walls,
- Foundations for the piers and abutments.

The other main parts of bridge structure are approaches, bearings and river training works, like aprons, revetment for slopes at abutments, etc.

iii) Miscellaneous Components

The miscellaneous components include bridge surfacing or pavement, approach slab, expansion joints, drainage, slope and bank protection, railings, kerbs, sidewalks, etc.

1.2.2 Classification of Bridges

Bridges can be classified into various types depending upon the following:

- Alignment
- Degree of Redundancy
- Fixed or Movable
- Loadings
- Location of Bridge Floor
- Life
- Material used for Construction
- Nature of Superstructure
- Position of High Flood Level
- Purpose
- Swinging Bridges
- Type of Connection

1.2.3 Bridge Decks

Bridge deck can be classified as part of the bridge superstructure. This is the part where all the loading which occur as the patch load, uniformly distributed load, line load, point load, dynamic load and other external forces apply on and distribute through it (bridge deck) to the bearings, through the piers and down to the foundation.

Bridge decks are developing today as fast as they have at any time since the beginning of the Industrial Revolution. The diversity of sites is increasingly challenging the ingenuity of engineers to produce new structural forms and appropriate materials. The types of bridge deck are divided into beam, grid, slab, beam-and-slab and cellular, to differentiate their individual geometric and behavioural characteristics. Inevitable many decks fall into more than one category, but they can usually be analysed by using a judicious combination of the methods applicable to the different types.

1.2.3.1 Beam Deck

A bridge deck can be considered to behave as a beam when its lengths exceeds its width by such an amount that when loads cause it to bend and twist along its length, cross-sections displace bodily and do not change shape such as footbridges. It can be in reinforced concrete or prestressed concrete which are often continuous over two or more spans. Long span bridges behave as beams because the dominant load is concentric so that the distortion of the cross-section under eccentric loads has relatively little influence on the principal bending stresses.

1.2.3.2 Grid Deck

The primary structural member of a grid deck is a grid of two or more longitudinal beams with transverse beams (or diaphragms) supporting the running slab. Loads are distributed between the main longitudinal beams by the bending and twisting of the transverse beams. Due to difficulty of the method of construction to fabricate or shutter the transverse beams, this system is being replaced by slab and beam-andslab decks with no or a few transverse diaphragms. The analysis in effect sets out a set of simultaneous slope-deflection equations for the moments and torsions in the beams at each joint and then solves the equations for the load cases required.

1.2.3.3 Slab Deck

Slab deck behaves like a flat plate which is structurally continuous for the transfer of moments and torsions in all directions within the plane of the plate. When a load is placed on part of a slab, the slab deflects locally as a 'dish' causing a two-dimensional system of moments and torsions which transfer and share the load to neighbouring parts of the deck which are less severely loaded. A slab is 'isotropic' when its stiffnesses are the same in all directions in the plane of the slab. A slab is 'orthotropic' when the stiffnesses are different in two directions at right angles.

A shear-key deck does not fit neatly into any of the main categories of the deck. Shear-key deck is constructed of contiguous prestressed/reinforced concrete beams of rectangular or box sections, connected along their length by in-situ concrete joints. It is not prestressed transversely and thus is not fully continuous for transverse moments. Although such deck have little or no transverse bending stiffness, distribution of loads between beams still takes place because differential deflection of the beams is resisted by the torsional stiffness of the beams and a vertical shear force is transferred across the keyed joints.

1.2.3.4 Beam-and-Slab Deck

A beam-and slab deck consists of a number of longitudinal beams connected across their tops by a thin continuous structural slab. In transfer of the load longitudinally to the supports, the slab acts in concert with the beams as their top flanges. At the same time the greater deflection of the most heavily loaded beams bends the slab transversely so that it transfers and shares out the load to the neighbouring beams. Sometimes his transverse distribution of load is assisted by a number of transverse diaphragms at points along the span, so that behaviour of more similar to that of a grid deck. The use of diaphragms is becoming less popular because of the construction problems they cause and because their localized stiffnesses attract forces which can cause unnecessary stress concentrations. Beam-and-slab construction has the advantage over slab that it is very much lighter while retaining the necessary longitudinal stiffness. Consequently it is suitable for a much wider range of spans, and it lends itself to precast and prefabricated construction. The transverse flexibility help a deck on skew supports to deflect and twist 'comfortably' under load without excessively loading the nearest supports to the load or lifting off. Beam-and-slab decks can be divided into two main groups:

Contiguous beam-and-slab

Slab with beams at close centers or touching. When a load is placed on part of a deck, the slab will defects in a smooth wave so that for load distribution its behaviour can be considered similar to that of an orthotropic slab with

longitudinal stiffening. This decks have been designed with precast prestressed concrete beams or steel beams supporting a concrete slab.

Spaced beam-and-slab

Slab with beams at wide centers. When a load is placed above on beam of a spaced beam-and-slab deck, the slab does not necessarily deflect transversely in a single wave but sometimes in a series of waves between beams especially if the beams have high torsional stiffnesses.

1.2.3.5 Cellular Deck

The cross section of a cellular or box deck is made up of a number of thin slabs and thin or thick webs which totally enclose a number of cells. Due to the low materials content, low weight and high longitudinal bending stiffness, it provided high torsional stiffnesses which give better stability and load distribution characteristics. For the long, high spans, where false work is inappropriate, the deck is erected in elements as a beam cantilevering out from supports or the deck has been constructed and launched across the piers from an abutment. The cellular decks can be divided into two categories due to its structural behaviour which are multicellular slabs and box-girders.

Multicellular slabs are wide shallow decks with numerous large cells. The crosssectional shape does not lend itself to precast segmental construction, and construction is usually in-situ concrete or contiguous precast box beams or top hat beams with large voids. When a load is placed on one part of such a deck, the high torsional stiffness and transverse bending stiffness of the deck transfer and share out the load over a wide area. The distribution is not as effective as that of a slab since the thin top and bottom slabs flex independently when transferring vertical shear

9

1000692594

forces between webs, and the cross-section is said to 'distort' like a Vierendeel truss in elevation. Distortion can be reduced by incorporating transverse diaphragms at various points along the deck.

Box-girder decks have a cross-section composed of one or a few large cells, the edge cells often having triangular cross-section with inclined outside web. Frequently the top slab is much wider than the box, with the edges cantilevering out transversely. Excessive twisting of the deck under eccentric loads on the cantilevers is resisted by the high torsional stiffness of the structure.

1.3.0 OBJECTIVES

The main objective of the study is to find out the effectiveness of the grillage analogy for bridge deck analysis.

The objectives of this study include:

- Analysis: To analyze the various type of bridge decks for different loading cases obtained by using grid analogy method and finite element method.
- 2. Comparison: To compare the observed response using grid analogy method with that using finite element method in analytical models.
- Evaluation: To estimate the accuracy of the grid analogy method for analysis of different types of bridge decks as compared to the finite element method.

1.4.0 SIGNIFICANCE OF THE STUDY

Finite element method is complex and requires large manual and computational efforts for the analysis of the bridge structures. Grid analogy is presented herein that allows, within reasonable calculations, adequate results concerning both the forces and the displacements for the most coarse mesh. This formulation is based on intensive analysis of various grid parameters and has been extended to the non-linear domain. Incorporation of a powerful finite element model for the analysis of bridge decks under symmetrical and eccentric loading has resulted in the development of a new simplified method for bridge decks analysis.

Grillage analogy seems to be completely universal with the exception of Finite Element and Finite Strip Methods, which always carry a heavy cost penalty for a structure as simple as a slab bridge. In addition, the rigorous methods of analysis such as finite element method, even today, are considered too complex by bridge designers.

In recent years, the Grillage Analogy Method, which is a computer-oriented technique, is increasingly being used in the analysis and design of bridges. The method is also suitable in cases where bridge exhibits complicating features such as heavy skew, edge stiffening and isolated supports. The use of computer facilities the investigation of several load cases in shortest possible time. The method is versatile in nature and the contribution of kerb beams and the effect of differential sinking of girder ends over yielding bearings (such as neoprene bearing) can also be taken into account and large variety of bridge decks can be analysed with sufficient practical accuracy.

Furthermore, the method is easy to comprehend and use. The analysis is relatively inexpensive and has been proved to be reliably accurate for a wide variety of bridges. The grillage representation helps in giving the designer a feel of the structural behaviour of the bridge and the manner in which the loading is distributed and eventually taken to the supports.

The significance of using the grillage analogy method in bridge deck analysis is discussed further in Chapter 2.

1.5.0 SCOPE OF THE STUDY

The scope of study under this project is to determine the effectiveness and accuracy of the grid analogy method in bridge deck analysis. The study has been carried out within the following scope:

- 1. Types of Analysis Method: Finite element method and grid analogy method.
- Type of Analysis Structures: Solid Slab Deck, Void Slab Deck, Beam-and-Slab Deck (T-Beam Deck) and Box Girder Deck.
- 3. Bridge Alignment: Right, skew and curved.
- 4. Support condition: All the bridge decks are simply supported.
- 5. Material used: Reinforced concrete.
- 6. Analysis Scope: Elastic analysis has been conducted for all the bridge deck structures.
- Bridge Width: Two lanes Carriageway bridge have been chosen for analysis.
 Footway at both sides of the bridge are ignored.
- Span Length: 10m, 15m, 20m and 30m spans are used according to the type of the bridge deck.
- All the load cases follow the JKR Specification For Bridge Live Load and BD 37/88.

- Mr. Carlton, "Application Of The Finite Element Method To Structural Engineering Problems", Journal of The Institution of Structural Engineers, The Structural Engineer, Volume 71, No. 4/16, February 1993.
- K. H. Tan and Prof. P. Montague, "A Simple Grillage Analogy For The Analysis Of Steel Sandwich Panels With Penetrations", The Structural Engineer, Volume 69, No. 16/6 August 1991.
- James A. Kankam and Habib J. Dagher, "Nonlinear FE Analysis Of RC Skewed Slab Bridges", Journal Of Structural Engineering, September 1995.
- Mohsen A. Issa., Alfred A. Yousif., Mahmoud A. Issa., Iraj I. Kaspar., Salah Y. Khayyat., "Analysis Of Full Depth Precast Concrete Bridge Deck Panels", PCI Journal, January-February 1998.
- "LUSAS Powerful FE Technology For Specialist Application: LUSAS User Guide", FEA Ltd, United Kingdom.
- "LUSAS Powerful FE Technology For Specialist Application: LUSAS Examples", FEA Ltd, United Kingdom.
- "LUSAS Powerful FE Technology For Specialist Application: LUSAS Theory Manual 1", FEA Ltd, United Kingdom.
- "LUSAS Powerful FE Technology For Specialist Application: LUSAS Theory Manual 2", FEA Ltd, United Kingdom.
- "LUSAS Powerful FE Technology For Specialist Application: MYSTRO Command Reference 1", FEA Ltd, United Kingdom.

- 18. S. P. Bindra. (1976), "Elements of Bridges, Tunnel and Railway Engineering", Dhanpat Rai & Sons, Delhi.
- M. S. Troitsky. (1994), "Planning and Design of Bridges", John Willey & Sons, Inc. New York.
- C. H. Norris. (1976), "Elementary Structural Analysis", McGraw-Hill, United States of America.
- David S. Burnett. (1988), "Finite Element Analysis: From Concepts to Application", (2nd Edition), Addison-Wesley Publishing Company, United States of America.
- 22. Y. K. Cheung & M. F. Yeo. (1979), "A Practical Introduction to Finite Element Analysis", Pitman Publishing Limited, London.
- 23. Klaus-Jürgen Bathe. (1982), "Finite Element Procedures In Engineering Analysis", Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- 24. J. E. Akin. (1982), "Application and Implementation of Finite Element Methods", Academic Press, Inc., London.
- D. Johnson Victor. (1980), "Essentials Of Bridge Engineering", (3rd Edition), Oxford & IBH Publishing Co. New Delhi.
- Derrick Beckett. (1973), "An Introduction To Structural Design: Concrete Bridges", Surrey University Press, England.
- Trikha D. N., Razali A. K., Saleh J. and Waleed A.M.T. (1998), "Bridge Assessment Report", Universiti Putra Malaysia, Malaysia.

- 28. "JKR Specification For Bridge Live Load", Jabatan Kerja Raya Malaysia.
- 29. "Departmental Standard BD 37/88: Load For Highway Bridges", (1989), Department of Transport, Highway and Traffic, London.
- "Determination Of The Structural Capacity Of Existing Bridges In Peninsular Malaysia", (1985), Jabatan Kerja Raya, Malaysia.
- Leslie G. Jaeger and Baidar Bakht. (1989), "Bridge Analysis By Microcomputer", McGraw-Hill Book Company, New York.
- R. E. Rowe. (1976), "Concrete Bridge Design", (4th Edition), Applied Science Publishers Ltd. London.
- Petros P. Xanthakos. (1993), "Theory And Design Of Bridge", John Wiley & Sons Inc, New York.
- E. J. O'Brien and D. L. Keogh, "Upstand Finite Element Analysis Of Slab Bridges", Computers & Structures, Pg 671-683, 1998.
- Denby Grey Morrison and Gustav R. Weich, "Free-Edge And Obtuse-Corner Shear In R/C Skew Bridge Decks", ACI Structural Journal, January-February 1987.
- S. H. Zhang and L. P. R. Ryons, "A Thin-Walled Box Beam Finite Element For Curved Bridge Analysis", Computers & Structures, Vol. 18, No. 6, pp. 1035-1046, 1984.
- Adel Fam and Carl Turkstra, "A Finite Element Scheme For Box Bridge Analysis", Computers & Structures, Vol. 5, pp. 179-186, 1975.

 Rene Tinawi and Richard G. Redwood, "Orthotropic Bridge Decks With Closed Stiffeners – Analysis And Behaviour", Computers & Structures, Vol. 7, pp. 683-699, 1977.

