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Volatility forecasting has become a crucial process in risk management over recent 

decades. With the second largest stock market by market capitalization in 2019, China 

has gained increasing attention from recent research. This study aims at providing better 

volatility forecasts by investigating the role of high-frequency data, distribution 

assumption and trading volume in volatility forecasting based on the China stock market.  

 
 

The behavior of high-frequency data in financial markets highly relates to market 

efficiency and information flow. The heterogeneous market hypothesis (HMH) is in 

response to the behavior of non-homogeneous market participants. In contrast to 

Efficient Market Hypothesis (EMH), HMH states that investors interpret information 

flow differently. Particularly, on a short-term basis, such as minute to minute, 

speculative behavior dominates the markets. In this regard, the study investigates the 

role of intraday data in volatility forecasting by using Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model. Besides, regarding the non-normal 

distribution of financial time series, a variety of distribution assumptions are 

incorporated in application. Furthermore, to examine the role of trading volume in 

volatility forecasting and test the validity of two conflicting hypotheses: the Mixture of 
Distribution Hypothesis (MDH) and the Sequential Information Arrival Hypothesis 

(SIH), trading volume is regarded as both long-run and short-run predictors by this 

research. 

 

 

The considered methods contain the GARCH family model, the Heterogeneous 

Autoregressive (HAR) family model, the Smooth Transition Exponential Smoothing 

(STES), the Autoregressive Fractionally Integrated Moving Average (ARFIMA), and 

the GARCH-MIDAS model. In particular, in GARCH application,  both intraday returns 

and daily returns are used and estimated under normal and non-normal distribution 
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assumptions. The contributions of this study are that: (1) it provides clear evidence to 

support that the superiority of traditional time series models in volatility forecasting 

remains by taking advantage of high-frequency data; (2) it incorporates different 

distribution assumptions in GARCH models to capture the stylized facts of high-

frequency data; (3) it makes the first attempt to evaluate the performance of STES in 
volatility forecasting by using RV as the proxy of actual volatility; (4) it provides a more 

consistent comparison to evaluate the forecasting ability of a mixed data sampling 

approach; (5) it extends the literature on the forecasting performance of trading volume 

to the GARCH-MIDAS approach. 

 

 

The empirical results show that: (1) data frequency in GARCH application substantially 

influence the accuracy of volatility forecasting, as the higher the frequency is of the 

return series, the better are the forecasts provided; (2) non-normal distributions are more 

capable at reproducing the stylized facts of both intraday and daily return series than 

normal distribution; (3) GARCH estimated by 5-min returns not only outperforms other 

GARCH alternatives, but also considerably beats RV-based models and STES at 
volatility forecasting; (4) no clear evidence appears that SIH holds in the China stock 

market; (5) GARCH-MIDAS is not able to beat the traditional GARCH method when 

both are estimated by the same predictors sampled at different frequencies.  
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Ramalan volatiliti telah menjadi proses penting dalam pengurusan risiko sejak beberapa 

dekad kebelakangan ini. Dengan pasaran saham kedua terbesar mengikut permodalan 

pasaran pada 2019, China telah mendapat perhatian yang semakin meningkat daripada 

penyelidikan terkini. Kajian ini bertujuan untuk menyediakan ramalan volatiliti yang 

lebih baik dengan menyiasat peranan data berfrekuensi tinggi, andaian taburan dan 

volum dagangan dalam ramalan volatiliti berdasarkan pasaran saham China. 
 

 

Tingkah laku data berfrekuensi tinggi dalam pasaran kewangan sangat berkaitan rapat 

dengan kecekapan pasaran dan aliran maklumat. Hipotesis pasaran heterogen (HMH) 

adalah sebagai tindak balas kepada tingkah laku peserta pasaran yang tidak homogen. 

Berbeza dengan Hipotesis Pasaran Cekap (EMH), HMH menyatakan bahawa pelabur 

mentafsir aliran maklumat secara berbeza. Terutamanya, pada asas jangka pendek, 

seperti minit ke minit, tingkah laku spekulatif menguasai pasaran. Dalam hal ini, kajian 

menyiasat peranan data intrahari dalam ramalan volatiliti dengan menggunakan model 

Autoregresi bersyarat Heteroskedasticiti Umum (GARCH). Selain itu, mengenai taburan 

bukan normal siri masa kewangan, pelbagai andaian taburan dimasukkan dalam aplikasi. 

Tambahan pula, untuk mengkaji peranan volum dagangan dalam ramalan volatiliti dan 
menguji kesahihan dua hipotesis yang bercanggah: Campuran Hipotesis Taburan (MDH) 

dan Hipotesis Ketibaan Maklumat Berjujukan (SIH), volum dagangan dianggap sebagai 

peramal jangka panjang dan pendek dalam penyelidikan ini. 

 

 

Kaedah yang dipertimbangkan terdiri daripada model keluarga GARCH, model keluarga 

Heterogenous Autoregresi (HAR), Eksponen Terlicin Alihan Lancar (STES), 

Autoregresi Percahan Integrasi Purata Bergerak (ARFIMA), dan model GARCH-

MIDAS. Khususnya, dalam aplikasi GARCH, kedua-dua pulangan intrahari dan 

pulangan harian digunakan dan dianggarkan di bawah andaian taburan normal dan bukan 
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normal. Sumbangan kajian ini ialah: (1) ia memberikan bukti yang jelas untuk 

menyokong bahawa keunggulan model siri masa tradisional dalam ramalan volatiliti 

kekal dengan mengambil kesempatan daripada data berfrekuensi tinggi; (2) ia 

menggabungkan andaian taburan yang berlainan dalam model GARCH untuk 

menangkap fakta gaya data berfrekuensi tinggi; (3) ia membuat percubaan pertama untuk 
menilai prestasi STES dalam ramalan volatiliti dengan menggunakan RV sebagai proksi 

volatiliti sebenar; (4) ia menyediakan perbandingan yang lebih konsisten untuk menilai 

keupayaan ramalan pendekatan pensampelan data berlainan kekerapan; (5) ia 

melanjutkan literatur tentang prestasi ramalan volum dagangan kepada pendekatan 

GARCH-MIDAS. 

 

 

Keputusan empirikal menunjukkan bahawa: (1) kekerapan data dalam aplikasi GARCH 

dengan ketara mempengaruhi ketepatan ramalan volatiliti, kerana semakin tinggi 

frekuensi siri pulangan, semakin baik ramalannya; (2) taburan bukan normal lebih 

berkebolehan untuk mengeluarkan semula fakta gaya bagi kedua-dua siri pulangan 

intraharian dan harian daripada taburan biasa; (3) GARCH dianggarkan dengan 
pulangan 5 minit bukan sahaja mengatasi alternatif GARCH lain, tetapi juga jauh lebih 

tepat daripada model berasaskan RV dan STES bagi ramalan volatiliti; (4) tiada bukti 

yang jelas bahawa SIH ditepati dalam pasaran saham China; (5) GARCH-MIDAS tidak 

dapat mengalahkan kaedah GARCH tradisional apabila kedua-duanya dianggar dengan 

menggunakan peramal yang sama yang disampel daripada frekuensi yang berlainan. 
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

The considerable level of uncertainty in financial markets has brought forth increasing 

concerns on hedging risk especially after the financial crises in 1997 (Asia) and 2008 

(global). Investment not only depends on profits that investors can get, but also the risks 

they may take during the investing period particularly in the stock market. As a widely 

used measurement of risk in financial markets, return volatility in recent decades has 

gained greater attention in regards to investment analysis, pricing of financial assets, and 
risk management. This study aims at providing more accurate volatility forecasts in the 

China stock market by evaluating the performance of a large number of competing 

models constructed from different frequencies. 

As the leading emerging economy that possesses the world’s second largest stock 

market, 1  China has announced a series of financial system reform policies to 

internationalize and deregulate its markets to accommodate the spread of globalization. 

Launched in the early 1990s and significantly dominated by individual investors who 

are more than likely irrational, speculation in the China stock market is sometimes 

comparable to gambling at a casino and regulations are needed to maintain the stability 

and well-behaved investment activities (see Su & Fleisher; 1998, Xu, 1999, Girardin & 

Liu, 2003, Mei et al., 2009, Lu et al., 2012, Lin et al., 2019, Xiao et al., 2021). Hence, 
some stylized facts that widely exist in return series such as the leverage effect are not 

observed in the scenario for China (see Narayan & Zheng, 2011). These characteristics 

lead to a large number of researches focusing on modelling and forecasting volatility in 

Chinese stock market in recent years (see Taylor & Sarno, 1999, Girardin & Joyeux, 

2013, Liu et al., 2018, Li et al., 2019,  Wei et al., 2020, Liu et al., 2021, among others).  

A variety of methods have been introduced by previous researchers to capture the 

stylized facts of return series in past few decades and the number of methods is still 

steadily growing. Among them, Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) models initially presented by Engle (1982) and extended 

by Bollerslev (1986) are most widely adopted in volatility modelling and forecasting. 

According to Bollerslev et.al (1992), GARCH-type models are the most successful and 

effective approach to capture the stylized facts of financial time series. The popularity 
and success of GARCH-type models is evidenced by considerable following literature 

focusing on theoretically extending GARCH-type models to various extensions as well 

1  Announced by the World Federation of Exchanges in 2019, https://www.world-exchanges.org/our-

work/statistics
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as empirical application in markets such as stock market, foreign exchange market, 

future market, bond market, oil market, etc.   

However, the advent of high-frequency data has largely challenged the superiority 

GARCH-type models at volatility modelling and forecasting, because GARCH-type 

models are characterized as capable of capturing the stylized facts of daily or lower 
frequency return series. In particular, the introduction of realized volatility (RV) by 

Bollerslev & Andersen (1998) sheds new light on volatility forecasting. Computed from 

the aggregating intraday squared returns, RV is able to better reflect the information 

contained in trading hours and is less noisy than the daily close-to-close squared return. 

A large number of RV-based forecasting methods has been developed such as 

Autoregression Fractional Integrated Moving Average (ARFIMA) by Granger & Joyeux 

(1980) along with Hosking (1981) and Heterogeneous Autoregressive (HAR) of Corsi 

(2009). The outstanding performances of these methods are widely documented by 

recent literature (see Becker et al., 2007, Liu & Maheu, 2009, Konstantinidi et al., 2008,  

Asai et al., 2011, Lee, 2014, Patton & Sheppard, 2015, Tseng et al., 2015, Audrino & 

Knaus, 2016, Pu et al., 2016, Wang et al., 2017, Ma et al., 2019, Gkillas et al., 2020, 

Lehrer et al., 2021, Lyócsa & Stašek, 2021, Clements & Preve, 2021, Liu et al., 2022).  

This gives rise to the issue of the role of high-frequency data in volatility forecasting. 

Particularly, how to improve the forecasting ability of traditional time series models in 

the light of increasing availability of high-frequency data. Will the superiority of 

traditional time series methods, especially GARCH-type models, could remain by 

incorporating information embedded in high-frequency data?  

In response to above concerns, this research is dedicated to investigating the role of high-

frequency data in volatility forecasting by conducting empirical research in the China 

stock market. Moreover, with regard to the non-normal distribution of return series and 

for the purpose of improving the forecasting accuracy, this research estimates GARCH-

type models by incorporating different distribution assumptions to examine the role of 

distribution assumptions in volatility forecasting using GARCH-type models.  

In addition, a variety of studies in the literature has emerged in recent decades to capture 

the feature of information flow that could significantly influence investment behavior 

and further determine the dynamics of financial time series. Among all alternatives, 

trading volume is widely regarded as one of the most notable proxies of information flow. 

For instance, Narayan et al. (2011) state that trading volume has statistically significant 

negative effects on price clustering in the Mexico stock market since it successfully 

captures market uncertainty. Baker & Stein (2004), Hong et al. (2006), and Girardin & 

Joyeux (2013) consider trading volume as the proxy for irrational investment and 

speculative activities. In general, the relationship between trading volume and volatility 

is among the center of recent researches (see  Louhichi, 2011, Slim & Dahmene, 2016, 

Zheng et al., 2019, Liu et al., 2020, Kao et al., 2020, etc.).  
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However, there is in fact limited literature providing research on the role of trading 

volume in volatility forecasting in the China stock market. This research not only adds 

to the literature on the role of trading volume in volatility forecasting by taking the China 

stock market into consideration, more importantly, this research also extends the current 

research on the forecasting performance of trading volume to the Generalized 
Autoregressive Conditional Heteroscedasticity-Mixed Data Sampling (GARCH-

MIDAS) approach. In this way, this research provides a more consistent comparison to 

evaluate the forecasting ability of the mixed data sampling approach as well as further 

investigate the role of data frequency in volatility forecasting.  

In general, this research intends to examine the role of high-frequency data, distribution 

assumption and trading volume in volatility forecasting in the China stock market. The 

whole research is divided into two sub-studies. The first sub-study focuses on the role of 

high-frequency data and distribution assumption in volatility forecasting by comparing 

a large number of models including traditional GARCH estimated by daily return, 

intraday GARCH estimated by intraday high-frequency return, RV-based models 

including ARFIMA and HAR, and Smoothing Transition Exponential Smoothing (STES) 

proposed by Taylor (2004a) and Taylor (2004b). The second sub-study investigates the 
contribution of trading volume on improving the accuracy of volatility forecasting by 

adopting both GARCH-MIDAS approach and traditional GARCH-type models.  

The remainder of this chapter runs as follows. Section 1.2 presents the background of 

the study. Section 1.3 presents the problem statement. Section 1.4 presents the study 

questions. Section 1.5 presents research objectives. Section 1.6 presents the significance 

of study. Section 1.7 briefly outlines the thesis. Section 1.8 concludes.  

1.2 Background of the Study 

Since the open and reform policy launched in 1978 by the Chinese government, China 

has undertaken a series of significant challenges to accommodate its economy to the 

trend of economic globalization and to boost its economic growth. After the gradual 

liberalization of its trade sector, property rights, foreign direct investment, and other 

major sectors of economy in past four decades, China has successfully emerged as the 

second largest economy in the world (see Chan et al., 2012, Xu et al., 2018).  

However, being excessively protected by the government in long history, the 

liberalization of Chinese financial sector has turned to be one of the main controversial 
issue in transition its economy from government-regulated to market-oriented since 

China joined WTO in 2001. In the early 2018, Chinese president Xi Jing-Ping announced 

that the country would further open its financial sector by loosening the government 

restrictions on foreign access to Chinese insurance industry, the entry and expansion of 

foreign financial institutions, and improving the financial investment climate in general. 

More specifically, this includes a series of financial system reform including the 

liberalization of interest rates, internationalization of exchange rate, and the 

liberalization of capital account (see Petry & Petry, 2020). 
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Among these ongoing reform strategies, internationalization and deregulation of its stock 

market is one of the biggest challenges faced by Chinese authority. As the major 

financing and investment platform, stock market injects huge liquidity into economy and 

provides a crucial role in private sectors. However, a large amount of literature 

documents that Chinese stock market is not under well-behaved condition and has a long 
history of being dominated by highly speculative behavior and occasionally intervened 

by the Chinese authority (see Feng et al., 2021, Petry, 2021). To better understand the 

China stock market and facilitate our empirical research, this research presents a broad 

view for the historical development as well as the current situation of the China stock 

market as follows. It should be noted that this paper purely focuses on the China 

mainland stock market. Due to the “one country, two systems” policy, the Chinese 

Hongkong stock market is more internationalized and is not the scope of this research. 

Hence, for the remainder of the paper, the China stock market only refers to its mainland 

segment.  

There are two stock exchanges in the China stock market: Shanghai Stock Exchange 

(SSE) located in Shanghai, and Shenzhen Stock Exchange (SZE) located in Shenzhen. 

SSE was formally established on December 19, 1990, and SZE on July 3, 1991. Both 
stock markets trade four hours a day from 9:30a.m. to 11:30a.m. in the morning and 

consecutively operate from 1:00p.m. to 3:00p.m. in the afternoon from Monday through 

Friday except the national holidays announced by Chinese government. Under controlled 

by China Securities Regulatory Commission (CSRC), SSE and SZE are not fully open 

to foreign investors and occasionally manipulated by the central government. The shares 

in both markets are divided into A shares and B shares. A share is only available to 

domestic investors and Qualified Foreign Institutional Investor (QFII). B share is 

available to both domestic and foreign investors. A share is priced in local currency and 

B share is priced in USD in SSE and HKD in SZE. As the major influential stock indices 

in China, SSE Composite Index (SSECI) and SZE Component Index (SZECI) are as a 

barometer for China’s economy.  

According to the report announced by World Federation of Exchange in 2019, SSE has 

been ranked at the fourth of largest stock exchange by market capitalization at US$4.02 

trillion and SZE has been ranked at the eighth with US$2.50 trillion market capitalization. 

Meanwhile, with a total of US$6.52 market capitalization, the China stock market turns 

to be the second-largest stock market in the world with a total of 3639 listed companies’ 

shares traded in the market (see Table 1.1).  
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Table 1.1 : Top 10 Stock Exchange by Market Capitalization 

Stock Exchange Jan. 1st. July 14th. 
YTD 

Performance 

Market 

Cap. 

No. of 

Companies 

NYSE (USA) 11383.53 13210.91 16.05% $22.90 3128 

Nasdaq (USA) 6665.94 8161.79 22.44% $10.08 3487 

Tokyo (Japan) 19561.96 21534.35 10.08% $5.67 3674 

Shanghai (China) 2465.29 2937.11 19.14% $4.02 1472 

Hong Kong (China) 25130.35 28282.99 12.55% $3.93 2365 

Euronext 52.05 68.8 32.18% $3.92 1208 

London (UK) 6734.23 7541.69 11.99% $3.76 2108 

Shenzhen (China) 7259.49 9186.29 26.54% $2.50 2167 

Toronto (Canda) 14347.16 16541.99 15.30% $2.10 1561 

Boombay (India) 36254.57 38874.31 7.23% $2.05 5461 

Notes: YTD is the year-to-date return calculated by the subtraction of price on July 14th, 2019 and January 

1st, 2019 divided by the price of initial date. It measures the performance of stock market during the calculation 

period. The second and third column indicates the price in each market. Market capitalization is measured in 

terms of trillion US$. The last column displays the number of listed companies in corresponding market. All 

data are obtained from World Federation of Exchange2. 

Figure 1.1 depicts the closing price of SSECI and SZECI from January of 2014 to 

September of 2019. Both indices are capitalization-weighted and indicate the historical 

performance of A share and B share listed on two exchanges. Noteworthy, Under the 

same driving forces, the dynamics of SSECI and SZECI are quite similar. 

From Figure 1.1, it can observe two considerably volatile periods during 2007-2009 

driven by global financial crisis and 2015-2016 driven by domestic excessive speculation. 

It is interesting to note that it only took less than two years to drive SSECI from the 

lowest point at 1011.5 in 2006 up to the historical high at 6092 in 2007, the price 

increased more than 6 times with an average growth of more than 300% per year during 

2006-2007. However, it only took one year for SSECI to plunge to the second lowest 

point driven by global financial crisis in 2008.  

The history repeated itself again in the middle June of 2015 with a three-week slump 

shaking off 30% Chinese share, more than 1400 companies filed for a trading halt in 

response to this unexpected huge drop and to avoid further losses. In an attempt to call a 

halt on further drop and stabilize the market, Chinese government poured considerable 

money into the market as an emergent rescue solution. Another slump occurred again on 

August 24th, 2015 after three-week peace, marking the largest fall since 2007 by 8.49% 

value lost in a single day.  

2 https://www.world-exchanges.org/our-work/statistics 

https://www.world-exchanges.org/our-work/statistics
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Figure 1.1 : Daily closing price of SSECI and SCZCI3 

 

 

The lack of experience, inefficient regulation and uncontrollable fictitious transactions 

are the main reasons that lead the China stock market to be a highly speculative place. 

Dominated mainly by irrational and immature individual investors instead of relatively 

well-behaved institution since the establishment, Chinese authority has made huge 

efforts to gradually reshape its stock market to a well-behaved market. This research 

briefly overviews the historical events occurred in the China stock market in Table 1.2. 

Among these events, some are characterized as milestones in opening the market. For 

instance, QFII program officially launched in 2002 allows the qualified foreign 

institutional investors to purchase A shares in local currency in SZE. These foreign 

investors consist of asset management companies, insurance companies, securities firms, 

commercial banks, and others such as pension funds, charity foundations, endowment 

funds, and sovereign wealth funds. QFII was initially administrated by distributing the 

limited quota to qualified institutions. Only qualified investors are allowed to invest in 

the China A share market. This limitation was officially terminated in 2019 in response 

to the intense trade war between China and US, as well as a major effort in pushing the 

opening-up Chinese financial market forward. The inclusion of A share in benchmark 

Emerging Markets Index by global index compiler Morgan Stanley Capital International 

(MSCI) in 2018 marks another milestone in the history of the China stock market. 

 

 

 

                                                        
3 Data source: Shanghai Stock Exchange and Shenzhen Stock Exchange.  
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Table 1.2 : Major events in the history of the China stock market 

Date Events 

1990 Launch of Shanghai Stock Exchange. 

1991 Launch of Shenzhen Stock Exchange. 

1992 Foundation of Chinese Securities Regulatory Commission (CSRC). 

1994 Suspension of Initial Public Offering (IPOs) after 75% shares losses. 

1996 10% daily limits adopted and ever since to avoid excessive speculation. 

2001 Issuing rules to maintain market order as state-owned firms initially offered to public. 

2002 Launch of Qualified Foreign Institutional Investor (QFII) program for foreign investors 

2005 Elimination of non-tradable shares mostly state-owned or politically connected. 

2005 IPOs suspended to avoid loss due to elimination of non-tradable shares plan. 

2007 Trading taxes increased from 0.1% to 0.3% followed by a 21% price drop within 2 months 

2007 Reaching the highest record of SSECI in history on October 16 th at 6124. 

2008 A 65% plunge due to the global financial crisis turns China to be the worst performer. 

2008 Cutting the trading tax back to 0.1% on April 24th, 2008 to stabilize the market. 

2008 IPOs suspended quietly on October. 

2008 Two-year economic stimulus plan with 4 trillion Yuan injected to economy on October. 

2009 The index gained 80% back in the year, IPOs resumed as market recovery from crisis. 

2010 Implementation of the securities margin trading. 

2015 30% value lost within three weeks, “Black Monday” on August 24th with 8.49% loss. 

2016 An unsuccessful attempt to adopt circuit break to halt excessive market speculation. 

2018 Inclusion of A share in benchmark Emerging Markets Index by global complier MSCI. 

2018 Regarded as the worst performer in 2018 with 25% loss due to China-US trade war. 

2019 Removing the quota limitation initially set to QFII to purchase A shares in China. 

2020 Severely impacted by the COVID-19 Pandemic outbreak and contagion.  

Some other efforts have been made to liberalize the market and create a level playing 

field for investors in the China stock market. For instance, before 2005, almost 70% 

shares in the China stock market were state-owned or owned by financial institutions 
which were literally governed by the center or local government. Starting from 2005, 

Chinese authority made huge efforts to eliminate the non-tradeable shares issued at the 

early stage of the establishment of stock market and initially held by state or politically 

connected institutional investors. An unstated contract between investors and regulators 

prevents the liquidation of non-tradable shares to protecting the interests of public 

investors.  

Meanwhile, some experiences appear to be bitter memories in the history of the China 

stock market. For instance, on January 4th, 2016, Chinese authority adopted circuit 

breaks to prevent the excessive speculation activity and maintain the stability of the 

market. This attempt was found to be a huge failure and suspended only four days after 

the implementation with roughly 7% daily price drop both on the January 4th and 7th.  

Although Chinese government has made considerable efforts to bridge the gap between 
Chinese stock market and the advanced, experienced stock market in developed 

countries by implementing a slew of boldly reform policies, it is still far from an efficient 

market as its financial development is still ongoing (see Girardin & Joyeux, 2013). 

Especially as long as the less informed and biased behavior of individual investors 

prevail in the market, the considerable level of uncertainty is still unavoidable (see Bailey 

et al., 2009). This can be witnessed by the unexpected acute volatility during 2015-2016. 

After almost 150% increasing from June 2014 to June 2015, the China stock market was 
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characterized as heavily overvalued and the government constantly warned the investors 

to avoid the excessive risk exposure. According to Nicholas Lardy, once price falls even 

slightly it will result in a sharp market correction due to the market bubble and horrors 

among irrational individual investors4. These horrors eventually led the China stock 

market to recession after June 2015 until 2016 and resulted in considerable losses for the 

majority of market participants.  

The rapid opening-up of domestic financial sector in quite recent years and the 

uncertainty of highly integrated global economy shed new light on Chinese stock market. 

It is now characterized as a market with considerable opportunities along with huge risks 

(see Lin, 2018,  Lin et al., 2019). Therefore, volatility forecasting is getting more crucial 

for risk management, asset pricing, and investment portfolio in the China stock market.  

1.3 Problem Statement 

The ups and downs in the stock market is similar to roller coaster. This makes the stock 

market to be an attractive destination, especially for investors who has strong risk 

preference. Opportunity is always accompanied by risk in the stock market. In real 

investment, investors are more concerned about the fluctuation of price or the return of 

price which is actually the difference between the buying price and the selling price. Few 

investors pay attention to the fluctuation of returns which is essentially the volatility. 

However, ignoring the volatility of returns could induce a failure in investment. 

Normally, high return indicates high risk due to the fact that return is a compensation of 
taking risk. In this regard, to avoid excessive loss, investors are encouraged to acquire 

more knowledge about volatility. This is more urgent in China stock market regarding 

that the market is more volatile than that of developed country due to the fact that China 

stock market is mostly dominated by irrational individual investors rather than 

institutional investors. In this regard, along with relatively less efforts made to examine 

the dynamics of volatility in China stock market, this research makes attempts to add the 

literature in this strand. In this research, this research seeks to identify the superior 

methods which could provide accurate volatility forecasts in the China stock market. In 

particular, this research investigates the role of high-frequency data, distribution 

assumption and trading volume in volatility forecasting. 

According to Andersen & Bollerslev (1998), actual volatility is unobservable. This 

presents the issue of properly measuring the actual volatility. In quite recent years, 
squared daily return is widely regarded as the measurement of actual volatility until the 

introduction of realized volatility (RV). The widely available high-frequency intraday 

data results in increasing attention shifting from traditional measurements of actual 

volatility, mostly based on daily returns, to RV constructed from intraday returns. 

Against this backdrop, a large amount of literature on RV estimation and forecasting has 

emerged for the past decades.  

                                                        
4 Nicholas Lardy, False Alarm on a Crisis in China, New York Times, 26 August 2015 
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However, the popularity of RV gives rise to the concerns on the performance of 

traditional volatility forecasting methods, especially the GARCH-type models which are 

well-known for the superiority in reproducing the volatility clustering feature of daily or 

lower frequency returns, rather than intraday returns. In addition to introducing RV-

based models, a small number of researches have made efforts to improve the forecasting 
ability of traditional GARCH-type models by taking advantage of high-frequency data. 

For instance, Hol & Koopman (2002) and Zhou (2017) incorporate RV measures into 

the variance equation of GARCH model, but the results are discouraging. On the 

contrary, Fuertes et al. (2015) augment the GARCH model with RV as an incremental 

variable, showing a result that this augmentation leads to the largest forecasting accuracy 

gains. However, Jones (2003) demonstrates that the GARCH model is not able to 

reproduce the unconditional distribution of financial returns at frequencies higher than 

24 hours. 

Rather than incorporating the measures of RV to reflect the information contained in 

high-frequency data, a second strand in the literature substitutes daily return with 

intraday return and directly feeds intraday return into the GARCH model. This is 

inspired by Rahman et al. (2002) who point out that the distribution property of intraday 
return is similar with the daily return in the stock market and can be properly 

characterized by the GARCH model. However, no further evidence is provided by 

Rahman et al. (2002) with regard to the performance of GARCH model estimated by 

intraday returns (expressed as intraday GARCH for the remainder of this paper) in 

volatility forecasting. Chortareas et al. (2011) further investigate the forecasting ability 

of intraday GARCH using 15-min intraday return series in the foreign exchange market. 

The findings show that by incorporating high-frequency data rather than daily data into 

the traditional GARCH, the model’s forecasting ability largely improves. Nevertheless, 

by fitting GARCH to intraday return series in the China commodity futures market, Jiang 

et al. (2017) state that no improvement is obtained and intraday GARCH is even worse 

than traditional GARCH in volatility forecasting.  

Although limited researches pay attention to intraday GARCH in light of the increasing 

number of available RV-based models, the findings provided by Martens (2001) and 

Pong et al. (2004) with the statement that the higher the frequency of the return series is, 

the better are the out-of-sample volatility forecasts provided prompt us to apply intraday 

GARCH to the China stock market which has yet to be studied.  

Another challenge posed by a GARCH application is the non-normally distributed 

properties of return series that are generally characterized as excess skewness, fat tail, 

and high peak. Neglecting these properties could draw misleading results according to 

Wilhelmsson (2006). Hamilton & Susmel (1994) are among the earliest to evaluate the 

performance of the GARCH model in volatility forecasting under different error 

distribution assumptions, followed by Chong et al. (1999), Lopez (2001), Wilhelmsson 

(2006), Shamiri & Isa (2009), and Dritsaki (2017), among others. A general consensus 
is that the GARCH model estimated under non-normal distribution provides more 

accurate forecasts than normal distribution since it is more capable of reproducing 

asymmetric and leptokurtotic stylized facts of return series.  
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There is in fact scant research providing evidence on the improvement of the GARCH 

model at volatility forecasting under different distribution assumptions in the China 

stock market. Su & Fleisher (1998) are the first to examine the stylized facts of return 

series in this market and estimate GARCH under normal and non-normal distribution 

assumptions. Although non-normal distribution outperforms in their research based on 
the output of the in-sample estimation, forecasting improvement is not discussed. More 

recent literature provided by Liu et al. (2009) and Zhou et al. (2019) evaluate the 

forecasting performance of the GARCH model under different distribution assumptions 

in the China stock market and suggest a non-normal distribution is superior to a normal 

distribution.  

To enhance the forecasting ability of the intraday GARCH model, this research also 

takes a number of non-normal distribution assumptions into account in regard to the fact 

that the property of intraday return is consistent with daily return according to Antoniou 

et al.(1998) and Rahman et al. (2002). To the best of our knowledge, no study has yet to 

investigate the forecasting ability of intraday GARCH under different distribution 

assumptions in the China stock market.  

The Mixture of Distribution Hypothesis (MDH) presented by Clark(1973) and the 
Sequential Information Arrival Hypothesis (SIH) introduced by Copeland (1976) and 

extended by Jennings et al. (1981) and Smirlock & Starks (1985) give rise to a strand of 

literature focusing on the relation between trading volume, one of the most notable 

proxies for information flow, and volatility. MDH suggests a strong, contemporaneous, 

and positive correlation between volume and volatility and is widely supported by the 

majority of studies in this field, such as Tauchen & Pitts (1983), Karpoff (1987), 

Andersen (1996), Chuang et al. (2009), and Chuang et al. (2012).  However, with respect 

to the forecasting ability of trading volume, MDH states that trading volume is not able 

to provide further information which can improve the accuracy of volatility forecasting. 
On the contrary, SIH suggests that traders receive information in a sequential, random 

fashion and shift their demand curves accordingly. Equilibrium is reached once all 
traders have reacted to the information flow. Therefore, a lead-lag relation exists 

between trading volume and volatility.  

Empirical research presents mixed results when testing SIH. After comparing 31 

different statistical models and using squared return as the proxy for actual volatility, 

Brooks (1998) concludes that the predictive power of trading volume is negligible. 

Similarly, Kambouroudis & McMillan (2016) also support that the contribution of 

trading volume in volatility forecasting is insignificant. On the contrary, Chiang et al. 

(2010) re-examine the findings provided by Brooks(1998) and show that trading volume 

has strong predictive power on volatility forecasting if RV replaces squared return as the 

proxy of actual volatility. Consistent with Chiang et al. (2010), Tseng et al. (2015) also 

support SIH when investigating the volume-volatility nexus in the exchange traded fund 

market. The conflicting results highlight the importance of the measurement of actual 

volatility.  
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The arrival of GARCH-MIDAS introduced by Engle et al. (2009) and Engle et al. (2013) 

sheds new light on volatility modelling and forecasting by taking advantage of low 

frequency data as long-run component of volatility predictors. Typically, for a GARCH-

MIDAS application, the short-run component of total conditional volatility is captured 

by the GARCH process. On the other hand, the long-run component of total conditional 

volatility is captured by Mixed Data Sampling (MIDAS) of Ghysels et al. (2004).  

Asgharian et al. (2013) apply the GARCH-MIDAS approach to examine the importance 

of macroeconomic variables in volatility forecasting. Among all alternatives, GARCH-

MIDAS with monthly RV outperforms the traditional GARCH. Pan & Liu (2018) extend 

GARCH-MIDAS to asymmetric GARCH-MIDAS and conclude that the asymmetric 

GARCH-MIDAS significantly improves upon the other competitors without considering 

the leverage effects. This is in line with the findings presented by Wang et al.(2020). 

In fact, quite limited researches have focused on investigating the predictive power of 

the GARCH-MIDAS approach in contrast to the large number of studies pay attention 

to the in-sample estimation. Moreover, the existing literature evaluates the predictive 

ability of the GARCH-MIDAS approach by comparing GARCH-MIDAS that adopts a 

low frequency variable as its long-turn determinant to the traditional GARCH without 
combining the same variable due to unavailability of high frequency data. However, if 

the traditional GARCH is estimated by including the same variable that is adopted by 

GARCH-MIDAS but with higher frequency, one obtains a more consistent and reliable 

result.  

In response to this concern, this research investigates the role of trading volume and data 

frequency by including monthly volume in the GARCH-MIDAS approach and also daily 

volume in traditional GARCH models. Hence, this research not only extends the current 

research on the forecasting performance of trading volume to the GARCH-MIDAS 

approach, but also provide a more consistent comparison to evaluate the forecasting 

ability of the mixed data sampling approach. Since the evaluation is based on different 

frequencies, this research further examines the role of data frequency in volatility 

forecasting.  

1.4 Research Questions 

The research questions of this research are as follows (also see Figure 1.2). 

a) What are the roles of high-frequency data and distribution assumption in volatility

forecasting?

To answer this question, this research further answers the following questions. 1) How 

do the high-frequency data influence the accuracy of volatility forecasting? 2) Which 

distribution assumption could better capture the stylized facts of high-frequency data? 3) 

How does the performance of intraday GARCH in volatility forecasting? 
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b)  What is the role of trading volume in volatility forecasting? 

To answer this question, this research further answers the following questions. 1) How 

does the trading volume influence the accuracy of volatility forecasting? 2) What is the 

performance of GARCH-MIDS approach in volatility forecasting? 

 

Figure 1.2 : Research questions of this research  

 

 

1.5 Research Objectives 

The general objective of this research is improving the accuracy of volatility forecasting 

in the China stock market. To achieve this objective, this research makes efforts to 

incorporate data with different frequencies and predictors into model estimation. In fact, 

improving the forecasting ability by model modification and using appropriate predictors 

are the main two strands in literature. Hence, the main objective is comprised of the 

following specific objectives (also see Figure 1.3). 

a)   To investigate the role of high-frequency data and distribution assumption in 

volatility forecasting. 

This specific objective consists of three sub-objectives as follows. 1) To compare the 
performance of traditional GARCH to intraday GARCH. 2) To find out the best 
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distribution to capture the stylized facts of high-frequency data. 3) To compare the 

performance of intraday GARCH to RV-based models. 

b) To investigate the role of trading volume in volatility forecasting.

This specific objective consists of three sub-objectives as follows. 1) To extend the 

current research on the relation between trading volume and volatility to GARCH-
MIDAS approach. 2) To compare the performance of GARCH-MIDAS approach to both 

traditional GARCH and intraday GARCH. 

Figure 1.3 : Objectives of the research 

1.6 Significance of Research 

As the world second largest economy and the largest emerging economy, Chinese 

economic performance has been already under the world spotlight. Heavily dominated 

by the speculative investors, Chinese stock market presents its unique nature which 

makes the investment activity in Chinese stock market similar to gambling at a casino or 

riding the roller coaster.  Although a series of reform and opening-up strategies have 

been undertaken and are still on the way, it is far away from efficient market. For instance, 

unexpected huge fluctuations can be observed from time to time. Ineffective regulations 

implemented by central government lead to the frequent occurrence of fictitious 

transactions, and the fake financial statements can be easily found from listed companies.  
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These situations implicate that seeking profits in Chinese stock market is quite risky and 

highlight the importance of capturing the dynamics of volatility in Chinese stock market 

to reduce the risk exposure. Especially during its financial sector transition period, 

Chinese stock market is widely regarded as a market with huge opportunities 

accompanied by huge risk. Hence, investigating the behavior of Chinese stock market 
volatility could facilitate participants to avoid losses resulted from the market fluctuation 

and has practical significance. Moreover, the findings of this research also facilitate 

participants as well as regulators of the other emerging economies whose stock market 

is also in the similar transition period.   

Although there are enormous RV-based methods presented by literature to forecast 

volatility after the advent of RV in recent years, this research aims at investigating the 

performance of traditional volatility methods in volatility forecasting by incorporating 

high-frequency data and non-normal distribution assumptions. In other words, this 

research does not rule out the superiority of traditional time series method in the light of 

more and more RV-based methods available. On the contrary, this research intends to 

provide clear evidence to support that the traditional time series method could remain its 

superiority over RV-based methods in volatility forecasting by using high-frequency 
data as well as incorporating proper distribution to capture the stylized facts of financial 

series.  

Another theoretical significance of this research is that this research tests the 

Heterogeneous Market Hypothesis (HMH) based on Chinese stock market. According 

to HMH, speculative behavior dominates the stock market on a short-term time basis. If 

the high-frequency data provide significant improvements on volatility forecasting in 

particular in Chinese stock market which is characterized as a market with highly 

speculative investors, HMH could not be rejected. 

The long-lasting dispute on the contribution of trading volume to improving the accuracy 

of volatility forecasting is originated from two conflicting hypotheses known as the 

Mixture of Distribution Hypothesis (MDH) which rules out the possibility that trading 
volume could help to improve the accuracy of volatility forecasting and the Sequential 

Information Arrival Hypothesis (SIH) which supports that trading volume could 

contribute to improve the accuracy of volatility forecasting.  

However, most existing researches on testing the validity of two hypotheses are focusing 

on the stock markets of developed countries. In this research, this research tests the 

above-mentioned hypotheses by using information from Chinese stock market. More 

importantly, this research extends the extant researches on the forecasting performance 

of trading volume to the GARCH-MIDAS approach. Moreover, considering the fact that 

the existing literature evaluates the predictive ability of the GARCH-MIDAS approach 

by comparing GARCH-MIDAS that adopts a low frequency variable as its long-turn 

determinant to the traditional GARCH without combining the same variable due to 

unavailability of high frequency data, this research provides a more consistent result by 
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estimating traditional GARCH using the same variable that is adopted by GARCH-

MIDAS but with higher frequency. 

In this respect, this research looks to contribute to the literature by (1) providing  clear 

evidence to support that the superiority of traditional time series models in volatility 

forecasting remains by taking advantage of high-frequency data compared with most of 
recent researches focusing on newly-arrived RV based model; (2) incorporating different 

distribution assumptions in GARCH model to capture the stylized facts of high-

frequency data as no study has investigated the role of distribution assumption in 

intraday GARCH forecasting; (3) making the first attempt to evaluate the performance 

of STES in volatility forecasting by using daily RV as the proxy of actual volatility and 

applied to China stock market as previous study only focuses on weekly RV and 

developed countries in STES application; (4) providing a more consistent comparison to 

evaluate the forecasting ability of a mixed data sampling approach as previous study 

generally compares GARCH-MIDAS approach to traditional GARCH without predictor 

incorporated; (5) extending the literature on the forecasting performance of trading 

volume to the GARCH-MIDAS approach as previous study investigates the role of 

trading volume in volatility forecasting using data collected in same frequency; (6) 
presenting clear evidence to support that the forecasting ability strongly relies upon the 

data frequency as limited study makes comprehensive comparisons to reveal the role of 

frequency in intraday GARCH forecasting. 

By doing this research, some useful information and valuable practical suggestions are 

provided to financial assets pricing, risk management, investment decision making. 

Meanwhile, the results could be applied to other financial market, such as future market 

and foreign exchange market, as well as the stock market of other countries especially 

those of emerging countries. 

1.7 Outline of the Thesis 

This research consists of five chapters. This research briefly outlines each chapter as 

follows. 

Chapter 1 introduces the research by presenting research background of Chinese stock 

market, discussing the problem statement, describing the research questions, outlining 

the research objectives, and delivering the practical and theoretical significance of this 

research.  

Chapter 2 reviews literature relevant to this research. This includes the concepts of 

volatility, the main stylized facts of return series, such as volatility clustering, leverage 

effects, and leptokurtosis, the measurements of actual volatility, the volatility estimation 

and forecasting methods adopted by this research, the relation between trading volume 

and volatility, and the literature gaps which this research intends to fill.  
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Chapter 3 describes the research design. To achieve the objectives of this research and 

fill the literature gaps, the research is organized as two sub-studies. This chapter also 

specifies the methodology adopted to conduct the research. This includes the estimation 

methods, the forecasting methods and the evaluation methods. This research also 

presents the data and preliminary analysis of the data. This includes the way this research 

constructs the actual volatility measurements.  

Chapter 4 provides the result of the first sub-study which is the role of high-frequency 

data and distribution assumption in volatility forecasting in Chinese stock market. This 

includes the estimation results, forecasting results and evaluation results.  

Chapter 5 provides the result of the second sub-study which is the role of trading volume 

in volatility forecasting in Chinese stock market. This includes the estimation results, 

forecasting results and evaluation results. 

Chapter 6 concludes. This includes summary of findings, conclusion of empirical 

research, the contribution and implication of this research, and the suggestions for future 

study.   

1.8 Summary of Chapter 

This chapter is designed to introduce the background of the research, the research 

objectives, problem statement and the significance of the research. This research also 

briefly outlines the thesis.  

This research first gives a brief introduction on theoretical and empirical development 
of studies regarding volatility modelling and forecasting in stock market.  In order to 

better understand the characteristics of Chinese stock market, this research presents the 

historical development, important events or milestones, reform and open-up strategies, 

and the its current status in research background. Problem statement and study questions 

specify the problem of extant research and the questions this research intends to address. 

In this respect, this research presents general and specific objectives of this research. 

This research further discusses the practical and theoretical significance along with the 

expected contribution of this study. Lastly, this research briefly outlines the entire thesis.  
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