INDUCTION OF SUPPRESSIVE SOIL IN THE MANAGEMENT OF FUSARIUM WILT ON BANANA SEEDLINGS

ADELINE TING SU YIEN

FP 2001 5
INDUCTION OF SUPPRESSIVE SOIL IN THE MANAGEMENT OF
FUSARIUM WILT ON BANANA SEEDLINGS

By

ADELINE TING SU YIEN

Thesis Submitted in Fulfilment of the Requirement for the
Degree of Master of Agricultural Science in the Faculty of Agriculture
Universiti Putra Malaysia

April 2001
For my Beloved ones:

Pa, Ma, Eve, Jarrod,
and, Steve;

"Yesterday, it was a wish,
Today, it is a meaningful wonder,
Tomorrow, it will be an inspiration,
and always will be."

Thank You for Everything.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Agricultural Science.

INDUCTION OF SUPPRESSIVE SOIL IN THE MANAGEMENT OF
FUSARIUM WILT ON BANANA SEEDLINGS

By

ADELINE TING SU YIEN

April 2001

Chairman: Professor Sariah Meon, Ph.D.

Faculty: Agriculture

This study determined the potential of using artificially ‘induced’ suppressive soil to suppress the development of Fusarium wilt on susceptible banana seedlings (cultivar Berangan). Trichoderma harzianum (UPM 40) was selected as the microbial antagonist, and calcium nitrate (Ca(NO₃)₂) as the soil amendment. Both biotic and abiotic components, respectively, were incorporated into the soil to mimic the contents of naturally existing Fusarium suppressive soils. The potential of T. harzianum as a biocontrol agent was confirmed from the series of antagonism tests, with positive results in lysis, antibiosis and mycoparasitism tests. In vitro tests determined that T. harzianum required early establishment prior to challenge with Fusarium oxysporum f. sp. cubense race 4 (FocR4), to ensure effective antagonistic activity. Both T. harzianum and FocR4 tolerated pH 5-8, and Ca²⁺ concentrations within 5–750 ppm. Soil pH was not affected by Ca(NO₃)₂ application, indicating
compatibility of inoculating *T. harzianum* together with Ca(NO₃)₂ application. When tested on Berangan seedlings in the glasshouse, treatment with Ca(NO₃)₂ alone provided better disease suppression compared to treatment with both *T. harzianum* and Ca(NO₃)₂, and treatment with *T. harzianum* alone. Treatment with Ca(NO₃)₂ alone recorded low disease incidence (DI) of 51% as compared to 59% and 69% from combined treatments and *T. harzianum* alone, respectively, 8 weeks after inoculation. Calcium reduced the population of FocR4, promoted plant growth, and induced host resistance through increased peroxidase and polyphenoloxidase activity, and phenol content. Increased in enzymatic activities and phenol content was related to extensive cell wall lignification as revealed by histological observations, resulting in resistance to FocR4 hyphal penetration. The formation of Ca-pectate also contributed to host resistance. Biocontrol efficiency of *T. harzianum* was dependent on soil environment, as the glasshouse trial did not suppress disease incidence, contrary to its antagonistic effect in *in vitro* tests. *T. harzianum* did not induce host resistance, instead, predisposed the seedlings to infection by increasing root growth and infection sites. Disease suppression achieved through treatment with Ca(NO₃)₂ was dependent on Ca²⁺ availability in the soil and Ca²⁺ content in the plant tissues. A more frequent application using suitable rates is then suggested as follow-up studies.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains Pertanian.

INDUKSI TANAH PENINDAS DALAM PENGURUSAN PENYAKIT LAYU FUSARIUM PADA ANAK POKOK PISANG

Oleh

ADELINE TING SU YIEN

April 2001

Pengerusi: Profesor Sariah Meon, Ph.D.

Fakulti: Pertanian

Kajian ini menentukan potensi menggunakan tanah penindas ‘buatan’ untuk menindas kejadian penyakit layu Fusarium pada anak pokok pisang yang peka (kultivar Berangan). Trichoderma harzianum (UPM 40) dipilih sebagai mikrobial antagonistik, manakala kalsium nitrat (Ca(NO₃)₂) dipilih sebagai bahan pemulih tanah. Kedua-dua komponen biotik dan abiotik ini ditambah ke dalam tanah untuk meniru komposisi sebenar tanah penindas Fusarium yang sediakala. Potensi menggunakan T. harzianum sebagai agen kawalan biologi terbukti dari siri ujian antagonistik yang dijalankan, dengan keputusan positif dalam ujian lisis, antibiosis dan parasitism. Ujian in vitro telah mengesahkan pentingnya T. harzianum diinokulat lebih awal sebelum didedahkan kepada Fusarium oxysporum f. sp. cumbense ras 4 (FocR4), supaya efisiensi aktiviti antagonistiknya terjamin. T. harzianum dan FocR4 diperhatikan mempunyai toleransi terhadap pH 5-8, serta kepekatan Ca²⁺ 5-750 bsj. Aplikasi Ca(NO₃)₂ tidak mempengaruhi pH tanah, sekaligus membuktikan
kesesuaian menginokulat *T. harzianum* bersama rawatan Ca(NO₃)₂. Apabila druji pada anak pokok pisang Berangan, rawatan dengan Ca(NO₃)₂ sahaja menunjukkan potensi paling baik untuk menindas insiden penyakit *Fusarium*, berbanding rawatan dengan kedua-dua *T. harzianum* dan Ca(NO₃)₂, dan rawatan menggunakan *T. harzianum* sahaja. Rawatan dengan Ca(NO₃)₂, mencatatkan insiden penyakit yang rendah sebanyak 51% berbanding 59% dan 69% oleh rawatan kombinasi dan *T. harzianum* sahaja, 8 minggu selepas rawatan. Kalsium juga mengurangkan populasi FocR4 dalam tanah, mengalakkan pertumbuhan anak pokok pisang, dan mengalakkan sistem pertahanan teraruh melalui peningkatan aktiviti enzim peroxidase, polyphenoloxidase dan kandungan fenol. Peningkatan aktiviti enzim ini dikaitkan dengan lignifikasi pada dinding sel sebagai manana yang diperhatikan dari ujian histologi, yang meningkatkan keresistanan kepada penembusan hifa FocR4. Pembentukan Ca-pektat dalam sel juga memperkukuhkan lagi ketahanan hos terhadap serangan penyakit. Efisiensi *T. harzianum* sebagai agen kawalan biologi terhadap FocR4 dipengaruhi oleh keadaan tanah, kerana ujian di rumah kaca membuktikan *T. harzianum* tidak menindas insiden penyakit *Fusarium*, yang berlawanan dengan keputusan dari ujian *in vitro*. *T. harzianum* juga tidak mengalakkan ketahanan teraruh, malah mengalakkan kejadian penyakit melalui pertumbuhan akar dan tapak jangkitan. Kesan penindasan penyakit dipengaruhi oleh kedapatan Ca²⁺ dalam tanah dan kandungan Ca²⁺ dalam tisu tumbuhan. Dengan itu, kawalan yang lebih berkesan dijangka dicapai jika kekerapan aplikasinya ditambah, dengan menggunakan kadar yang sesuai, dan penentuan ini memerlukan kajian yang selanjutnya.
ACKNOWLEDGEMENTS

I thank the good Lord for His providence and immense strength in the many moments of my life. Putting Him in the center has made all things come together.

I also wish to express my sincerest gratitude and appreciation to Prof. Dr. Sariah Meon, who played the many roles of a mentor, supervisor, teacher and advisor to perfection. Not forgetting, Dr. Jugah Kadir and Dr. Anuar Abdul Rahim, whose continuous guidance has helped me tremendously in the on-going of my research work and the preparation of my thesis.

Many thanks too, to the staffs in the Pathology Laboratory; Mr. Khir, Mr. Johari and Mr. Nazri, for their advice and assistance in the preparation of materials. To my friends; Siew Eim, Ee Fong, Kam Loong and Khairul, thank you for sharing and making these two years memorable.

To my dearest Pa, Ma, Eve and Jarrod, thank you for your love, support and encouragement. And, for my dear Steve, thank you for always inspiring, and putting colours into my life.
I certify that an Examination Committee met on 19th April 2001 to conduct the final examination of Adeline Ting Su Yien on her Master of Agricultural Science thesis entitled “Induction ofSuppressive Soil in the Management of *Fusarium* Wilt on Banana Seedlings” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

HIRYATI ABDULLAH, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

SARIAH MEON, Ph.D.
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

JUGAH KADIR, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia.
(Member)

ANUAR ABDUL RAHIM, Ph.D.
Faculty of Agriculture,
Universiti Putra Malaysia.
(Member)

MOHD. GHAZALI MOHYIDIN, Ph.D.
Professor/Deputy Dean of Graduate School
Universiti Putra Malaysia

Date: 04 MAY 2001
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Agricultural Science.

AINI IDERIS, Ph.D,
Professor
Dean of Graduate School,
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ADELINE TING SU YIEN

Date: 03.05.2001.
TABLE OF CONTENTS

DEDICATION 2
ABSTRACT 3
ABSTRAK 5
ACKNOWLEDGEMENTS 7
APPROVAL 8
DECLARATION 10
LIST OF TABLES 13
LIST OF FIGURES 17
LIST OF ABBREVIATIONS 21

CHAPTER

I INTRODUCTION 22

II LITERATURE REVIEW 27
Banana Plant 27
Fusarium wilt 29
The Disease 29
The Pathogen Fusarium oxysporum f sp cubense 31
Disease Symptoms 35
Disease Epidemiology 38
Factors Affecting Disease Spread and Development 41
Control Measures 43
Suppressive Soil 47
Components of Suppressive Soil 49
Soil Physical and Chemical Characteristics 49
Soil Amendments 50
Antagonistic Microorganisms 56
Host Induced Defense Mechanisms 59

III MATERIALS AND METHODS 63
Preparation of Fungal Isolates 63
Morphological Identification of Fungal Isolates 63
Development of Mechanisms of Suppressiveness 65
 Establishment of the Mode of Antagonism 65
 Effect of pH on the Growth of
 UPM 40 and FocR4 69
 Effect of Ca\(^{2+}\) on the Growth of
 UPM 40 and FocR4 71
 Uptake of Ca\(^{2+}\) by Banana Seedlings 73
 Glasshouse Trials 74
 Soil Mixture 74
 Planting Material 74
 Inoculum Production 74
 Experimental Layout and Design 75

IV RESULTS AND DISCUSSION 87
 Characterization and Identification of Fungal Isolates 87
 Development of Mechanisms of Suppressiveness 90
 Mode of Antagonism of *T. harzianum*
 against FocR4 90
 Effect of pH on the Growth of
 T. harzianum and FocR4 98
 Effect of Ca\(^{2+}\) on the Growth of
 T. harzianum and FocR4 101
 Uptake of Ca\(^{2+}\) by Banana Seedlings 104
 Efficiency of 'Induced' Suppressive Soil 106
 Effect of 'Induced' Suppressive Soil
 on Seedling Growth 137
 'Induced' Systemic Resistance Biochemical Responses 140

V CONCLUSION 148

BIBLIOGRAPHY 152
APPENDICES 164
BIODATA OF THE AUTHOR 190
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Treatments used in glasshouse trial</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>Type of stains used for detection of lignin, suberin and Ca-pectate</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>Antagonistic activity of T. harzianum (UPM 40) against Fusarium oxysporum f. sp. cubense race 4 (FocR4)</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>The effect of volatile inhibitors produced by T. harzianum towards growth of FocR4</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>Effect of pH on growth of T. harzianum and FocR4 on agar (aerial growth) and in broth (mass weight)</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>Effect of different Ca$^{2+}$ concentration (ppm) on the growth of T. harzianum and FocR4 on agar (aerial growth) and in broth (mass weight)</td>
<td>102</td>
</tr>
<tr>
<td>7</td>
<td>Area Under Disease Progress Curve (AUDPC) of Fusarium wilt under different treatment</td>
<td>109</td>
</tr>
<tr>
<td>8</td>
<td>Disease Index of seedlings according to weeks</td>
<td>116</td>
</tr>
<tr>
<td>9</td>
<td>pH of root tips, rhizosphere and bulk soil under the influence of various treatments</td>
<td>133</td>
</tr>
</tbody>
</table>
10 Effect of different treatments on mean pseudostem length, diameter and root growth

11 ANOVA Table for Double Plate Test

12 ANOVA Table for Culture Filtrate Test

13 ANOVA Table for Ca²⁺ Test

14 ANOVA Table for cfu of isolates in Ca²⁺ treated soils

15 ANOVA Table for Disease Incidence

16 ANOVA Table for Ca²⁺ Content

17 Table for contrast comparison for Ca²⁺ Content using GLM

18 ANOVA Table for cfu of FocR4 at root tips, rhizosphere and soils

19 Table for contrast comparison for pH values using GLM

20 Table for contrast comparison on seedling growth using GLM

21 ANOVA Table for seedling growth
Table for contrast comparison for enzyme activity using GLM.......................... 170

Table for contrast comparison for phenol content using GLM.......................... 170

ANOVA Table for Enzyme Activity.. 170

ANOVA Table for Phenol Content.. 171

ANOVA Table for Enzyme Activities according to weeks............................. 171

ANOVA Table for Phenol Content according to weeks.................................. 172

Means Comparison Table for Ca^{2+} Test.. 172

Means Comparison Table for cfu of isolates in Ca^{2+} treated soils.................. 173

Means Comparison Table for Disease Incidence................................... 173

Means Comparison Table for Ca^{2+} Content...................................... 175

Means Comparison Table for cfu of FocR4 at root tips, rhizosphere and soil........ 178

Means Comparison Table for Seedling Growth................................... 179
34 Means Comparison Table for Enzyme Activity.......... 180

35 Means Comparison Table for Enzyme Activity
according to weeks... 181

36 Means Comparison Table for Phenol Content
according to weeks... 187
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diagrammatic representation of application of treatments according to time frame</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>Trichoderma harzianum (Rifai), (A) 3 day old culture on PDA, and SEM micrographs showing (B) conidiophores, (C) swollen phialides and (D) phialospires</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>Fusarium oxysporum f. sp. cubense (FocR4), (A) 7 day old culture on PDA, and SEM micrographs showing (B) a microconidia and (C) a macroconidia</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>Dual culture test, (A) formation of inhibition zone showing inhibitory effect by T. harzianum towards FocR4 and eventual overgrowth (B)</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>Failure to produce normal colonies by mycelial plugs from inhibition zone (0 cm) as compared to control and from 2 cm-zone</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>Diameter of FocR4 single colony according to different filtrate sampling time</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>Initiation of mycoparasitism by growth of T. harzianum hypha alongside the hypha of FocR4</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>Antagonistic effect of T. harzianum towards FocR4 at (A) pH 7, (B) pH 4 and (C) pH 9</td>
<td>100</td>
</tr>
</tbody>
</table>
Colony forming units (cfu) of *T. harzianum* and FocR4 recovered from soils treated with various Ca²⁺ concentrations

Longitudinal root sections from treated seedlings showing presence of Ca-pectate (A) as compared to untreated root sample (B)

Disease assessment scale (0-4) was developed based on foliar-associated symptoms

Effect of different treatments (T1-T4) on disease progress of *Fusarium* wilt on banana seedlings of the Berangan cultivar

Infected pseudostems were discoloured (A) and split at the base (B), as compared to healthy uninfected pseudostem (C) and (D)

Mycelium of FocR4 on the surface of dead pseudostem tissues

Infected seedlings (A) rhizomes with reddish vascular strands, (C) roots with yellowish reddish streaks, and (D) pseudostem with visible reddish streaks, uninfected rhizome (B) and pseudostem (E)

Development of internal symptoms in the rhizome (A) 25%, (B) 50% and complete discoloration of vascular tissues (C), uninfected rhizome (D)

Cross section of a portion of a root tissue showing hypha of FocR4 penetrating through cell walls into adjacent cells
SEM micrograph showing infected root tissues with gel formation in the xylem vessels

SEM micrograph showing uninfected tissues

Lignification thickened cell walls to resist hypha penetration

Uninfected tissues were not lignified but retained its shape and turgor

Presence of Ca-pectate in tissues stained reddish brown with Alizarin Red S (A), as compared to tissues without Ca-pectate (B)

Ca\(^{2+}\) content in root tissues in relation to DI

Ca\(^{2+}\) content in root of seedlings treated with various treatments, 8 weeks after treatment

Mean colony forming units (cfu) count of FocR4 recovered from root tips, rhizosphere and soil 8 weeks after inoculation

SEM micrograph showing spores of *T. harzianum* attached to conidia of FocR4. Failure to germinate affected the antagonistic activity of *T. harzianum*

SEM micrograph showing root colonization by *T. harzianum* which provided ‘protection’ from FocR4 colonization
Parasitization of FocR4 conidia by *T. harzianum* (A) resulted in growth of abnormal colonies as observed on FSM, 7 days after incubation.

pH value of root tips, rhizosphere and bulk soil.

The relation between disease incidence and pH of (A) root tips, (B) rhizosphere and (C) soil.

Effect of FocR4 on mean (A) pseudostem length and diameter, and (B) root weight of banana seedlings, 8 weeks after treatment.

Mean activity for soluble and ionically bound PO and PPO, and phenol content in infected and uninfected seedlings.

Activity of (A) soluble and (B) ionically bound PO in root tissues sampled from 0-8 weeks in comparison to DI (%).

Activity of PPO (C) and the phenol content (D) in root tissues sampled from 0-8 weeks, with comparison to DI (%).

Standard curve for the determination of Ca$^{2+}$ content in root tissues.

Standard curve for the determination of phenol content in root tissues.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOA</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>FAMA</td>
<td>Federal Agriculture Marketing Authority (FAMA)</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>INIBAP</td>
<td>International Network for the Improvement of Banana and Plantain</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agricultural Research and Development Institute</td>
</tr>
<tr>
<td>SIRIM</td>
<td>Standards and Industrial Research Institute of Malaysia</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

The banana industry is a growing fruit industry in most countries worldwide, due to its increasing market demand and relatively low production costs. Most of the bananas produced are mainly for fresh consumption, eaten as dessert fruit or, as staple food because of its high starch content (Valmayor, 1987). Bananas are also commonly used in beer brewing, in vinegar production, in confectioneries to flavour cakes, puddings and muffins, and also as fibre material, wrappers or vegetables (Thurston, 1984; Valmayor, 1987).

As one of the most important fruit crops in many agricultural countries, bananas are produced extensively in Asia (India, Philippines, Thailand, Indonesia, Taiwan), Africa and, South and Central America (Honduras, Panama, Costa Rica, Guatemala) (Hassan and Pantastico, 1990). In Malaysia, it is the second most important fruit crop, accounting for 20% of the total hectarage of fruit plantations (Yaacob, 1991). However, land used for banana cultivation has declined over the years from 40 000 ha in 1993 to 39 000 ha in 2000 (Loh, 2000).
The trading of banana grew significantly in the early 1870’s, beginning with the trading of the Gros Michel (AAA) variety (Ploetz, 1994). This first commercially cultivated variety was considered as an “ideal variety” because of its large fruit, smooth skin texture, and cream coloured flesh that is moderately firm, slightly aromatic and sweet. Most importantly, it has excellent keeping quality and produces high yields (Hassan and Pantastico, 1990). Thus, the Gros Michel variety was extensively cultivated in new plantations, or in plantations of another banana variety known as the Silk variety (AAB) (Snyder and Smith, 1981).

The emergence of *Fusarium* wilt disease (Panama disease), in the late 1890’s, threatened to diminish the banana industry. This disease caused severe losses in fruit yield, and death of plants. In just over 50 years since its first occurrence, it has destroyed more than 40 000 ha of banana plantations in Central and South America (Su et al., 1986).

Initially, only race 1 of the pathogen, *Fusarium oxysporum* f. sp. *cubense* (FocR1) was identified to be pathogenic towards Gros Michel and Silk varieties (Snyder and Smith, 1981). Race 2 (FocR2) and 3 (FocR3) only infect plantain (cooking) varieties, like Bluggoe (ABB), and *Heliconia* spp., respectively (Su et al., 1986).
Most of the Gros Michel plantations infested with FocR1 then, were successfully replanted with the resistant Cavendish variety. However, resistance to disease development soon vanished with the emergence of race 4 (FocR4), which caused destruction in the Cavendish plantations.

FocR4 spread rapidly and vastly. By 1955, banana varieties of Williams (AAA 'Cavendish') in Australia, have succumbed to FocR4 (Ploetz, 1994). In 1974, Cavendish varieties in the Philippines were severely infected (Snyder and Smith, 1981), and by 1977, FocR4 were reportedly recovered from numerous soils in Taiwan and Canary Islands.

The sudden emergence of FocR4 was believed due to independent mutation that may have occurred in the different Asian regions, as suggested by Su et al. (1986). However, Snyder and Smith (1981) claimed that FocR4 was just one of the many races of Foc, which originated from the Southeast Asian region, which remained undetected, as the discovery of some races of Foc in Vietnam that was undiscovered in other parts of the world. Furthermore, banana is a native of the Indo-Malaya countries, and has long established its existence, together with its diversified pathogens.