

UNIVERSITI PUTRA MALAYSIA

BIOCOMPATIBILITY BETWEEN FLORA AND FAUNA UNDER SIMULATED OUTDOOR AND INDOOR BIOPARK

MAKE JIWAN

FP 2000 26

BIOCOMPATIBILITY BETWEEN FLORA AND FAUNA UNDER SIMULATED OUTDOOR AND INDOOR BIOPARK

By

MAKE JIWAN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Agriculture
Universiti Putra Malaysia

August 2000

To God, Mom, Dad, brothers and sisters, lovely daughter Ellwylnea Dorantez, beloved wife, and to all the animals and flowers that have enriched my life

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science.

BIOCOMPATIBILITY BETWEEN FLORA AND FAUNA UNDER SIMULATED OUTDOOR AND INDOOR BIOPARK

 $\mathbf{B}\mathbf{y}$

MAKE JIWAN

August 2000

Chairman: Professor Dr. Dahlan Ismail

Faculty: Agriculture

The biocompatibility between flora and fauna in BioPark was evaluated. A group of 20 heads of *Cervus timorensis* (Timorensis), 5 heads respectively of *Axis axis* (Axis), *Cervus unicolor brookei* (Sambar) and *Muntiacus atherodes* (Muntjac) were studied in Outdoor BioPark. In Indoor BioPark, 16 heads of *Callosciurus prevostii borneansis* (Prevost's squirrel), 10 heads of *Tragulus javanicus* (Kancil) and 6 heads of *Tragulus napo* (Pelandok) were used for the purpose of study. In Outdoor BioPark, the biocompatibility between the deer species with *Acacia mangium* and its natural vegetation were studied. Meanwhile in Indoor BioPark, introduced flora species were used.

The study found that the undergrowth vegetation of A. mangium plantation was biocompatible with the tested deer species. With monthly forage yield of

UPM

183.28 kg (DM) per ha or 1392.93 MJ ME per ha with 75% total available forage grazed, the *A. mangium* undergrowth could be stocked with 5 to 9 heads of Muntjac, or 1 to 3 heads of Timorensis, or 2 to 7 heads of Axis, or 1 to 2 heads of Sambar deer. Based on captive feeding habit and requirements of the Mousedeer species, the area also could be stocked with Kancil and Pelandok with allowable carrying capacity of 18 to 42 heads of Pelandok and 44 to 132 heads of Kancil, respectively.

It was found that some of the deer was not biocompatible with A. mangium stands. Of all the deer species tested, it was found that only Sambar and Muntjac were biocompatible and did not cause any significant debarking damage on the matured stands of A. mangium. Biocompatibility between deer species and A. mangium was influenced by tree bark architecture (bark surface coarseness) and taxonomy (thickness), deer species, number of individual stags stocked and the animal's feed management.

The biocompatibility between Prevost's squirrel, Pelandok and Kancil with introduced flora in Indoor BioPark had found that feed factor in terms of quantity and availability together with the availability of juvenile individuals were the most associated factors with the animal's herbivory. Other factors were includes the animal's stocking rate and plant's species used.

Understanding of the factors associated with the animals herbivory could help in the development and management of an ecologically balanced and healthier BioPark ecosystem. BioPark management measures in relation to flora-fauna biocompatibility were fully discussed through out the study. Healthier and ecologically balanced BioPark not only contributed to the fauna and flora well-being but also to the satisfaction of visitors and their better understanding towards conservation. This study concluded that the biocompatibility between flora and fauna was influenced by many manageable factors.

Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

BIOKESERASIAN ANTARA FLORA DAN FAUNA DI DALAM BIOPARK LUARAN DAN DALAMAN YAND DISIMUŁASIKAN

Oleh

MAKE JIWAN

Ogos 2000

Pengerusi: Profesor Dr. Dahlan Ismail

Fakulti: Pertanian

Biokeserasian antara flora dan fauna dalam BioPark telah dikaji. Kumpulan yang terdiri daripada 20 ekor *Cervus timorensis* (Timorensis), 5 ekor *Axis axis* (Axis), 5 ekor *Cervus unicolor brookei* (Sambar) dan 5 ekor *Muntiacus atherodes* (Kijang) telah dikaji di dalam BioPark Luaran. Dalam BioPark Dalaman, 16 ekor *Callosciurus prevostii borneansis* (Tupai Gading), 10 ekor *Tragulus javanicus* (Kancil) dan 6 ekor *Tragulus napo* (Pelandok) telah digunakan untuk tujuan kajian. Dalam Outdoor BioPark, biokeserasian antara spesies rusa dengan *Acacia mangium* dan tumbuhan semulajadinya telah dikaji. Dalam pada itu, dalam BioPark Dalaman, flora yang digunakan adalah kesemuanya terdiri daripada spesis yang diperkenalkan.

Kajian mendapati bahawa tumbuhan bawah yang terdapat di kawasan penanaman *A. mangium* adalah bersifat bioserasi dengan spesies rusa yang dikaji. Dengan pengeluaran foraj bulanan sebanyak 183.28 kg (berat kering) ataupun 1392.93 MJ ME per ha dengan 75% jumlah foraj digunakan, tumbuhan bawah *A. mangium* boleh menampung sebanyak 5 ke 9 ekor Kijang, atau 1 ke 3 ekor rusa Timorensis, atau 2 ke 7 ekor rusa Axis atau 1 ke 2 ekor rusa Sambar. Berdasarkan kajian sifat pemakanan dan keperluan dalam sangkar, kawasan ini juga dapat membekalkan makanan kepada Kancil dan Pelandok dengan jumlah penstokan antara 18 ke 42 ekor Pelandok dan 44 ke 132 ekor Kancil, masing-masingnya.

Didapati bahawa ada antara spesies rusa berkenaan tidak bioserasi dengan pokok *A. mangium*. Dari kesemua spesies rusa yang dikaji, didapati cuma Sambar dan Kijang yang bersifat bioserasi dan tidak menyebabkan kerosakan pembuangan kulit yang bererti terhadap pokok *A. mangium*. Biokeserasian antara rusa dengan *A. mangium* adalah dipengaruhi oleh sifat arkitek (kekasaran permukaan) dan taksonomi kulit pokok (ketebalan), spesies rusa, bilangan individu rusa jantan distok dan pengurusan permakanan haiwan berkenaan.

Biokeserasian antara *C. prevostii borneansis*, *T. napo* dan *T. javanicus* dengan flora yang diperkenalkan dalam Indoor BioPark, adalah didapati bahawa faktor pemakanan dari segi kuantiti dan kedapatan dan kedapatan individu juvenil

adalah faktor yang paling berkaitan dengan tingkahlaku pemakanan haiwan berkenaan. Faktor lain yang dikenalpasti termasuk kadar penstokan dan spesies tumbuhan yang digunakan.

Pemahaman faktor yang berkaitan dengan pemakanan haiwan dapat membantu dalam pembangunan dan pengurusan BioPark supaya berada dalam keadaan kestabilan ekologi dan persekitaran BioPark yang sihat. Langkah-langkah pengurusan BioPark dari segi biokeserasian flora dan fauna dibincangkan dengan terperinci dalam kajian ini. Keadaan ekosistem BioPark yang sihat dan stabil dari segi ekologinya bukan sahaja menyumbang kepada pembentukan dan kebajikan haiwan tetapi juga untuk kepuasan pengunjung dan permudahkan pemahaman mereka terhadap konservasi. Kajian ini menyimpulkan bahawa, biokeserasian antara flora dan fauna adalah dipengaruhi oleh faktor yang boleh-urus.

ACKNOWLEDGEMENTS

My heartiest appreciation to my Supervisory Committee Chairman Prof. Dr. Dahlan Ismail for his supervision, constructive criticisms, advices and friendship. I am extremely grateful for the many hours he spent on stimulating discussions, advice in seminar presentations as well as the preparation of this thesis.

My sincere thanks also forwarded to my Supervisory Committee Members Assc. Prof. Dr. Mustafa Kamal and Dr. Halimatun Yaakub for their valuable advice, attention and constructive criticisms in completing this study.

Thanks a lot to the staff of Multi Spp. Unit, Mr. Khairulnizam and Mr. Maridon for their assistance and the staff of the Department of Animal Science. Thanks also given to IRPA for funding of this study (Project No. 51233) and also PASCA for funding my study.

Thank you,

TABLE OF CONTENTS

			Page
DE	DICAT	ION	ii
AB	STRAG	CT	iii
AB	STRAI	ζ	vi
AC	KNOW	LEDMENTS	ix
AP	PROV	AL SHEETS	X
DE	CLAR	ATION FORM	xii
LIS	T OF	TABLES	xvi
		FIGURES	xviii
GL	OSSAF	RY OF ABBREVIATIONS	XX
СН	APTE	R	
1	INT	RODUCTION	1
	1 1	Justification	4
	1 2	Objectives	5
2	LIT	ERATURE REVIEW	6
	2 1	What is BioPark?	6
	2 2	Plants-Herbivore Biocompatibility	8
		2 2 1 Adaptations of Plants to Mammalian Herbivores	9
		2 2 2 Adaptations of Mammalian Herbivores to Plants	11
	2 3	Effects of Herbivory	17
	2 4	Carrying Capacity	20
3	GEN	NERAL METHODOLOGY	24
	3 1	Site Description	24
		3 1 1 Outdoor BioPark	24
		3 1 2 Indoor BioPark	26
	3 2	History of Animal's Used and Selection Criteria	27
	3 3	Animals Feed Management	28
		3 3 1 Mousedeer (Kancil and Pelandok)	29
		3 3 2 Prevost's Squirrel	30
		3 3 3 Muntjac	30
		3 3 4 Deer (Sambar, Timorensis and Axis)	31
	3 4	Plant Selection In Relation to Indoor BioPark Study	32

		34	
		34	
		36	
4.2	••	36	
		39	
		39 42	
		43	
1.2		43	
	•	51	
4.5		53	
		52	
		53	
		69	
	$\boldsymbol{\varepsilon}$	81	
4.6		82	
4.6		98	
		98	
		103	
		100	
		109	
4.7	Conclusion	118	
DI A	NTS_ANIMALS RIOCOMPATIRII ITV IN INDOOD		
		119	
		119	
3.2		121	
	•	121	
		124	
5.3		126	
		128	
		129	
		130	
3.0		130	
		135	
57			
3.1		139	
		139	
<i>5</i> 0	Grant sign	143	
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 PLA	4.2 Methodology 4.2.1 Floristic Study of Outdoor BioPark. 4.2.2 Deer Preference Test. 4.2.3 Forage Intake. 4.2.4 Debarking Damage. 4.3 Browsing and Debarking Damage Assessment. 4.4 Data Classification and Analysis. 4.5 Result. 4.5.1 Floristic Composition of Acacia mangium Plantation. 4.5.2 Deer Preference Test. 4.5.3 Forage Intake. 4.5.4 Deer Debarking Damage. 4.6 Discussion. 4.6.1 Forage Composition and Quality. 4.6.2 Forage Utilisation and Forest Carrying Capacity. 4.6.3 Deer Herbivory and It's Impact on Acacia mangium Plantation and Factors Associated. 4.7 Conclusion. PLANTS-ANIMALS BIOCOMPATIBILITY IN INDOOR BIOPARK 5.1 Introduction 5.2 Methodology 5.2.1 Effect of Prevost's Squirrel and Pelandok Densities on Plant Damage 5.2.2 Effect of Feed Quantity on Plant Damage 5.3 Plant Arrangement 5.4 Damage Assessment 5.5 Data Analysis 5.6 Result 5.6.1 Plant Damage in Relation to Animal Densities 5.6.2 Plant Damage in Relation to Diet Quantity.	

6	GEN	ERAL DISCUSSION AND CONCLUSION	147
	6.1	Biocompatibility of BioPark's Flora-Fauna and	
		Management Implications	147
		6.1.1 Outdoor BioPark's Deer-Fauna Biocompatibility	147
		6.1.2 Indoor BioPark's Flora-Fauna Biocompatibility	156
	6.2	Habitat Improvement for BioPark	167
		6.2.1 Outdoor BioPark (Acacia Forest Plantation)	167
		6.2.2 Indoor BioPark Habitat Enhancement	176
	6.3	Designing For Herbivore Resistance: Combining Flora with	
		Fauna	178
	6.4	Conclusion	184
RE	FEREN	CES	186
		CES	205
BIC	DATA	OF AUTHOR	228

LIST OF TABLES

Table		Page
1	Types and quantity of diets given for two different	
	Mousedeer species	34
2	Types and quantity of diets given to Muntjac	35
3	Types and quantity of diets given to each deer species	36
4	Lists of flora selected and used	37
5	Bark thickness of surveyed trees and shrubs	59
6	Common undergrowth species in <i>A. mangium</i> plantations and their nutritive values	61
7	Compositional differences between A. mangium leaves and pods	62
8	Total available edible forage biomass (dry matter basis) and metabolisable energy (ME) in each paddock	63
9	Total biomass and metabolisable energy of different edible forage per hectare under A. mangium plantation	64
10	Monthly Dry Matter Yield (MDMY) of undergrowth forage at five cuttings interval	68
11	Average time (minutes) spent on each forage species over six paddocks	69
12	Selective Index, Biological Index and Preference Index of herbage found under <i>A. mangium</i> plantation.	70
13	Types and frequency of damage occurred during the 1st day until	
1.4	the 7 th day of releasing on six different paddocks	72
14	Browsing and debarking preference of Timorensis deer	73
15 16	Effect of bark thickness on debarking	79
	to their biomass	81
17	Mean Stem Debarked at GBH (SGBH) and Damage Severity Index (DSI) inflicted by different deer species on different tree species	86
18	Total trees debarked and Damage Severity Index (DSI) caused by	
19	Muntjac on different plant species	88
20	Different on total trees debarked by all deer species	90
20	Qualitative description of debarking damage performed by each	02
21	deer species on each tree species	92
21	Types of damage caused by three deer species on A. mangium	02
22	Stems	93
22	Debarking lethality on major tree species	96
23	Ecological carrying capacity of A. mangium forest per hectare	106

24	(DSI) inflicted by Prevost's squirrel on different plant species	131
25	Plant Biomass Removed (PBR) and Damage Severity Index (DSI)	131
23	inflicted by different plant species by juveniles and adult squirrels	132
26	Effect of Pelandok densities on Plant Biomass Removed (PBR)	132
20	and damage severity index (DSI)	134
27	Effect of diet quantity on different plant species damage caused by	134
21	Prevost's squirrel	135
28	Effect of feed abundance on Plant Biomass Removed (PBR) and	133
20	Damage Severity Index (DSI) by Kancil on different plant species	136
29	Effect of feed abundance on Plant Biomass Removed (PBR) and	150
2)	Damage Severity Index (DSI) of tested plants caused by Pelandok	137
30	Lists of poisonous ornamental plants	171
31	Feed intake of Pelandok	212
32	Feed intake of Kancil	212
33	Feed intake of Prevost's squirrel	213
34	Dry matter feed intake of Muntjac	213
35	Dry matter feed intake of free ranging Timorensis, Sambar and	
	Axis deer	213
36	Nutritional value of diet given to Mousedeer	214
37	Nutritional contents of banana and papaya fed to Prevost's squirrel	214
38	Chemical and nutritional contents of deer's diets	214
39	Successful combination of BioPark's animals	215
40	Unsuccessful combinations in BioPark	216
41	Causes of Mousedeer mortality in Indoor BioPark	219
42	Breeding performance of Prevost's squirrel (1997-1999)	220
43	Statistical information about Prevost's squirrel	220
44	Fawning and rearing success of deer	220
45	Enclosure size for handling BioPark's animals	224
46	A list of food plants for Muntjac, deer, Mousedeer and squirrels	225
47	BioPark roles of naturally available vegetation in A. mangium	
	plantation	226
48	List of fruit and seeds bearer plants for Outdoor BioPark's animals	227

LIST OF FIGURES

Figure		
1	Plant arrangement in relation to Muntjac	49
2	Debarking damage assessment method	50
3	Distribution and abundance of large shrubs and trees (≥ 5 cm GBH)	
	in each paddock	. 54
4	Distribution and abundance of small trees and shrubs	
	$(4.5 \text{ cm} \ge \text{GBH} \ge 1 \text{ cm})$ in each paddock	55
5	Distribution and abundance of undergrowth forage species in each	
	paddock	57
6	Undergrowth forage plant available in two different paddock	58
7	Bark architecture of three different tree species, (A) A. mangium,	
	(B) C. zeylanicum and (C) M. paniculatus	. 60
8	Forage biomass in each paddock in relation to tree stocking	
_	density	66
9	Perspective view of vegetation under high standing tree stocking	
	density and under low standing tree stocking density	
10	Timorensis deer browsing preference	75
11	Defoliation of Musa spp., Calamus spp. and E. guineensis by	
10	Timorensis deer	
12	Timorensis debarking preference	
13	Effect of bark architecture on Timorensis debarking preference	
14	Debarking performance of two different Timorensis ages	
15	Condition in two different paddocks between yearling and adult	85
16	Muntjac browsing and debarking damage on <i>Dillenia</i> spp.,	00
1.7	F. elastica, F. benjamina and Dillenia shoots	. 89
17	Comparison of paddock and A. mangium stands condition between	0.1
10	Axis, Timorensis and Sambar	91
18	Types of debarking performed by Timorensis, Axis and	. 95
19	Sambar deer on <i>A. mangium</i> trees	
20	Prevost's squirrel herbivory damage on <i>T. flumimensis</i> , <i>Helicornia</i>	12/
20	spp., C. lutescens and A. nidus	133
21	Pelandok herbivory on <i>P. ensiformis</i> , <i>N. exalta</i> and	133
21	T. flumimensis	138
22	Paddock and vegetation plan of Outdoor BioPark	206
23	Picture of animals available in Outdoor BioPark	207
24	Detail drawing of Mousedeer exhibit in Outdoor BioPark	208
25	Perspective view of facilities provided in Outdoor BioPark	209
26	Floor plan and facilities provided in Indoor BioPark	210
	- 10 - Pierr with twentier Provider at Million Provider and Inc.	

21	Birth pattern of Kancil colony in BioPark since 1997-1999	217
28	Monthly mortality rate of Kancil in BioPark	218
29	Picture of BioPark's animals offspring	221
30	Differences between common Muntjac and Yellow Muntjac	222
31	Colour variation between two Sambar's fawns	223

GLOSSARY OF ABBREVIATIONS

Most abbreviations used in this thesis are preceded on first mention by the full name. However, those more frequently repeated are listed below for easy reference.

DBH diameter at breast height GBH girth at breast height SGBH stem debarked at GBH

CP crude protein
EE ether extracts
ADF acid detergent fibre
NDF neutral detergent fibre

GE gross energy

ME metabolisable energy
DMD dry matter digestible
DSI damage severity index

DA debarked area

MDMY monthly dry matter yield

DM dry matter
MJ Mega Joule
DMI dry matter intake

PBR percentage of plant biomass removed

PL biomass lost

Ai percentage availability

Ui_{bro} percentage utilisation for browsing damage Ui_{deb} percentage utilisation for debarking damage

Pr_{browse} preference ratio for browsing damage Pr_{debark} preference ratio for debarking damage

SAS Statistical Analysis System
DMRT Duncan Multiple Range Test
CRD Completely Randomised Design

ANOVA Analysis of variance SD Standard deviation

CHAPTER 1

INTRODUCTION

In these modern days of the industrialisation and urbanisation process, destruction of natural habitat through logging, agricultural, housing and industrialisation activities had caused conflict on land use. Utilisation of the available forest resources, idle mining and agricultural lands through plant-animal integration will reduce the conflict besides conserving and improving the natural habitat and landscape. Besides conflict on land use, we also face the conflict on the way we have exhibited and educated the public about the importance of flora and fauna. The possible factors that contributed to this phenomenon was most possibly on the way we had managed and utilised our natural resources such as wildlife and forest resources.

Previously we had exhibited the wildlife in zoological park and flora in botanical garden but the availability of these natural resources in their natural habitat, do not give better economic and educational importance to the country and the public except in national parks, forest parks, or wildlife sanctuaries. Therefore, in order to optimise the utilisation of the natural resources sustainable and to help the public to better understand the importance of both fauna and flora, the application of BioPark concept could fulfil these necessities. According to Gould (1991) the existence of BioPark was due to the recognition of the inseparable relationship between flora,

fauna and humans. The concept of BioPark is to generate the habitat of the appropriate animal by using suitable plants and consideration of other physical and physiological needs of the animals or plants. Dahlan (1998) noted that BioPark elements should exist in a non-barrier area of a balance ecosystem and foremost, Page (1990) noted that the BioPark was a place to tell the story of our evolutionary, ancestry, and the growth of human culture, arts, and artefacts.

The theory and principle of BioPark is to portray life in all their interconnectedness within one bio-exhibit in an ecologically balanced ecosystems. BioPark is not confined to wildlife conservation, recreational, entertainment and education but the concept also can be used in livestock production to give better return to the investor (Dahlan, 1998). The increasing demands for outdoor recreation activities, the availability of BioPark in the urban and suburban areas with beautiful landscape and facilities could fulfil the need. Thus, BioPark is a new idea in utilisation of natural resources of flora and fauna (domesticated or wildlife).

BioPark can be categorised into indoor and outdoor. Almost all the elements for outdoor and indoor BioPark are the same except that indoor BioPark is developed within a building compound. Meanwhile, outdoor BioPark develops in a limited area of a natural ecosystem. Each BioPark has their owns characteristics. Some BioPark developed as single species, and some as multi-species parks. For example, Kuala Lumpur Lake Garden is considered as one multi species BioPark as a whole but the

animals were displayed as mono-species which include Mousedeer Garden, Butterfly Garden and Deer Garden (Fallow deer). Meanwhile, the best example for multi species BioPark is Parliament Garden, which contained various species of deer (Sambar, Timorensis and Chital deer). The aim of BioPark is to promote good animal welfare, genetic diversity and educating the public about animal behaviour and habitat through the simulation of the natural habitat of animals as well as allowing the animals to display of more natural behaviour (Ford and Stroud, 1993).

In general, vegetation, soil, air, macro and micro fauna form our environment. But of all these, vegetation plays a major role in stabilising the structural configuration of nature. Therefore flora is the most important component in BioPark. Vegetation aided the creation of habitat that sustain and enhances BioPark. Therefore, the selection of plant must suit the habitat as well as the animals and human requirements in the BioPark. The environment of the BioPark must look natural and closely resembles the animal natural habitat. Through the integration of indoor and outdoor BioPark, it will be a place for education, inspiration, amusement, entertainment and healing of some diseases (neuro-phsycotheraphy). This contextual approach not only allows for cognitive learning but also encourages effective learning about the animals and plants. Somehow, the success of the application of the BioPark concepts is depending on the understanding of the factors involved.

Without fauna the landscape of the BioPark will not become alive and attractive. Dahlan and Nik Marzuki (1996) noted that small herbivores and pheasants together with exotic and wildlife species were most preferred compared to carnivores, omnivores, reptiles and large mammals. Herbivores like Cervidae and Tragulidae and small mammals like shrews, squirrels and non-predator animals are also suitable. The choice of plants and animals for a BioPark should be based on characteristics of the site and indigenous species. Local or native species of flora and fauna should be the first priority. Fauna species introduced to the BioPark can be monospecies or multispecies combinations (Dahlan, 1998). The flora and fauna used should create a balance landscape that is sustainable. To create such a landscape, biocompatibility issues between flora and fauna need to be considered.

1.1 Justification

The close proximity between flora and fauna in a confined environment often resulted in damage to the flora. The damage is often severe between herbivorous animals and plants that are susceptible and palatable. However, toxic and unpalatable plants will be spared. Nevertheless, their presence might be a threat to these animals as accidental ingestion can lead to animal fatality (Knight and Dorman, 1997). Thus, the relationship between herbivorous animal and plants should be look from both aspects i.e. the impact of animals on plants in relation to their herbivory activities as well as the impact of plants on animals. This is essential because plant is not only

