

UNIVERSITI PUTRA MALAYSIA

PROCESS IMPROVEMENT THROUGH SIX SIGMA METHODOLOGY - MV MACHINE DEFECTIVE REDUCTION

ZALIZAN BIN MUID

FK 2000 41

PROCESS IMPROVEMENT THROUGH SIX SIGMA METHODOLOGY - MV MACHINE DEFECTIVE REDUCTION

ZALIZAN BIN MUID

MASTER OF SCIENCE UNIVERSITY PUTRA MALAYSIA

2000

PROCESS IMPROVEMENT THROUGH SIX SIGMA METHODOLOGY - MV MACHINE DEFECTIVE REDUCTION

By

ZALIZAN BIN MUID

Thesis Submitted in Fulfilment of the Requirements for The Degree of Master Science in the Faculty of Engineering, University Putra Malaysia

April 2000

To my Beloved, Parents, Wife and Children:

You are the reason for all of this.

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirements for the degree Master of Science.

PROCESS IMPROVEMENT THROUGH SIX SIGMA METHODOLOGY -MV MACHINE DEFECTIVE REDUCTION

By

ZALIZAN BIN MUID

April 2000

Chairman : Ir. Haji Mohd Rasid Osman

Faculty : Engineering

Six Sigma tools and methodologies have innovated a solution for quality improvement. In Auto Mount Department of Sony Technology Malaysia in Bangi, Selangor, MV machine defective reduction project was performed as part of quality improvement efforts. Six Sigma tools and methodology were employed to conduct this project. This involved four simple but rigorous steps called Measure-Analyze-Improve-Control (MAIC) where tools such as Process Map, Measurement System Analysis (MSA), Cause and Effect Diagram, Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), Design of Experiment (DOE) and Statistical Process Control (SPC) were used. The objective was to obtain knowledge about sources of variability that cause the defects and then to improve process capability to attain Six Sigma capability. The sources of variability are the machine input factors such as nozzle, z-carriage, feeder cassette, XY table and head unit to generate corresponding outputs (i.e. defectives). Upon identifying the variables, actions were taken to eliminate and to control the identified

variability contributors. The project provides excellent insight into the power of Six Sigma as a process improvement tools. It provides significant process knowledge based on facts and data and facilitates the information sharing. As a result, the machine improved by more than 50%, which accounts for the annual savings of more than RM50,000.

Abstrak thesis yang dikemukakan kepada Senat University Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains.

PROCESS IMPROVEMENT THROUGH SIX SIGMA METHODOLOGY -MV MACHINE DEFECTIVE REDUCTION

Oleh

ZALIZAN BIN MUID

April 2000

Pengerusi : Ir. Haji Mohd Rasid Osman

Fakulti : Kejuruteraan

Kaedah Six Sigma dirumus khusus untuk meningkatkan kualiti. Sehubungan itu, jabatan Auto Mount di Sony Technology Malaysia di Bangi, Selangor, telah menjalankan projek "MV machine defective reduction" sebagai sebahagian daripada inisiatif untuk meningkatkan kualiti. Menerusinya, kaedah Six Sigma diterapkan dalam mengendalikan projek ini. Ianya melibatkan empat langkah yang kelihatan mudah tetapi rumit iaitu "Measure-Analyze-Improve-Control" (MAIC) yang merangkumi beberapa instrumen seperti "Process Map", "Measurement System Analysis" (MSA), "Cause and Effect Diagram", "Failure Mode and Effect Analysis" (FMEA), "Fault Tree Analysis" (FTA), "Design of Experiment" (DOE) dan "Statistical Process Control" (SPC). Matlamat projek ini adalah untuk mengenalpasti punca-punca variasi yang mencetuskan kemerosotan kualiti, disamping bertujuan meningkatkan keupayaan mesin MV. Punca-

punca variasi tersebut adalah input-input mesin itu sendiri seperti "nozzle", "z-carriage", "feeder cassette", "XY table" dan "head unit" yang bertindak menghasilkan output. Setelah mengenal pasti punca-punca variasi, tindakan diambil untuk menghapus dan mengawalselia pencetus-pencetus variasi yang dikenal pasti tadi. Sesungguhnya, projek ini berjaya menonjolkan keupayaan Six Sigma sebagai satu kaedah peningkatan proses yang unggul. Selain itu, ia juga menghasilkan satu proses "knowledge" yang penting, berteraskan fakta dan data serta memudahkan proses perkongsian maklumat. Akhirnya, kaedah ini berjaya meningkatkan keupayaan pengendalian operasinya 50% lebih cekap berbanding sebelumnya, yakni penjimatan kos tahunan melebihi RM50,000.

ACKNOWLEDGEMENTS

An expression of appreciation is extended to my project Chairman, Tuan Haji Mohd Rasid Osman, and member of Supervisory Committee, Dr. Megat Mohammad Hamdan Megat Ahmad and Dr. Ir. Md Yusof Ismail, from the Department of Mechanical and Manufacturing, Engineering Faculty of University Putra Malaysia (UPM) for their guidance, and sharing of invaluable knowledge with me. Thank you also to Mr. Nashad Emir, a Six Sigma Master Black Belt, for his feedback and supplying suggestions for the success of the project.

A special thanks to HV Auto Mount Department of Sony Technology Malaysia Sdn. Bhd. for granting me the opportunity to conduct this project in the department. Sincere appreciation is expressed to HV Auto Mount engineers and technicians for their sharing of working experience and support. To Engineering Faculty, UPM, and the many others who have made contributions, please know that you have my thanks.

TABLE OF CONTENT

Page

DEDICATIONABSTRACT	
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	viii
DECLARATION	x
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi

CHAPTER

I.	INTRODUCTION	1
	Project Background	1
	Problem Definition	4
	Objectives	8
II.	LITERATURE REVIEW	10
	Definitions of Six Sigma	10
	Six Sigma Evolution	11
	Why Choose Six Sigma and Not Other Quality Programs	13
	Philosophy and Background	17
	Tools and Techniques	20
	Six Sigma Experts	25
	The Impact of Six Sigma Improvement	28
	Applications in Manufacturing	31
	Soldering Process	31
	Electrical Distribution and Control	31
	Steel Cutting Machine	32
	Molding Process	33
	Nozzle Area Production	34
	Polystyrene Process	35
	Applications in Non-Manufacturing	35
	Design and Producibility	35
	Software Faults	36
	PC Software Installation	37
	Knowledge Preservation	38
	Proposal Process	39

III.	MATERIALS AND METHOD	40
	Six Sigma Implementation Process Map	40
	Phase I : Measure	42
	Phase II : Analyze	43
	Phase III : Improve	46
	Phase IV : Control	49
IV.	RESULTS AND DISCUSSIONS	51
	Phase I : Measure	51
	Phase II : Analyze	54
	Phase III : Improve	62
	Phase IV : Control	75
V.	CONCLUSIONS AND RECOMMENDATIONS	80
	Conclusions	80
	Recommendations	82
REFERENCE	ES	85
APPENDICE	S	
А	Six Sigma Project Master Strategy	88
В	Rules of Thumb	89
С	Logical Flow for Selecting a Control Chart	93
D	Cost of Poor Quality Calculation(Per Annual)	94
E	FMEA for MV Machine	96
F	Examples of SOPs	110
G	Summary Statistics for Philips Part (1-163-011-91)	116
Н	Examples of Preventive Maintenance Check Sheet	117
BIODATA O	F AUTHOR	127

LIST OF TABLES

Table		Page
1.	Defective Breakdown for Auto Mount Department	5
2.	Attribute Measurement System Evaluation	56
3.	Repeatability and Reproducibility Result	57
4.	FMEA Example	60
5.	Examples of Improvement Actions Summary	62
6.	Factors and Level	65
7.	DOE Result	67
8.	First Multiple Regression Result	67
9.	Second Multiple Regression Result	68
10.	Current and Propose Specifications	74
11.	Examples of Control System Summary	76

LIST OF FIGURES

Fi	gur	e	Page
	1.	Auto Mount Process Flow	4
	2.	Position Out Defects (a) X Position Out (b) Y Position Out (c) θ Position Out	6
	3.	Chip Mounting Process Diagram	7
	4.	Six Sigma Implementation Process and the Use of Six Sigma Tools	41
	5.	Quality Characteristic Measure	48
	6.	Pareto of Defectives in Auto Mount	51
	7.	Pareto of Position Out Defective by Line	52
	8.	Run Chart for Line 2 from 13/3/99 to 21/4/99, before Six Sigma Implementation	53
(9.	Cause and Effect Diagram with CNX	58
	10.	Detailed MV Machine Process Flow	59
	11.	Fault Tree Analysis (FTA) for Failures in Blow Timing	61
	12.	Run Chart for Line 2 from 27/6/99 to 12/7/99, after Six Sigma Implementation	64
	13.	End Count Method	66
	14.	Marginal Means Plot	69
•	15.	Pareto of Coefficients	70
	16.	Process Capability Measures Chart	72
	17.	Comparison between Current versus Propose Cavity Dimension	74

18.	Examples of out of control symptom from c-chart	78
19.	Examples of p-chart	79

LIST OF ABBREVIATIONS

ASQ American Society for Quality BB Black Belts Chief Executive Officer CEO COPQ Cost of Poor Quality CNX Control - Noise - Experimental CPC Chip Placement Checker DET Detection Design of Experiment DOE Defect Part Per Million DPPM FMEA Failure Mode and Effect Analysis FTA Fault Tree Analysis GB Green Belts GE General Electric HV Home Video IPO Input-Process-Output KISS Keep It Simple Statistically LCL Lower Control Limit LSL Lower Spec Limit MAIC Measure - Analyze - Improve - Control MSA Measurement System Analysis

NG	No Good
OCC	Occurrences
PC	Pin Checker
РМ	Preventive Maintenance
PPM	Positive Process Management
PWB	Printed Wiring Board
ROI	Return on Investment
RPN	Risk Priority Number
SEV	Severity
SOP	Standard Operating Procedure
SPC	Statistical Process Control
STM	Sony Technology Malaysia
UCL	Upper Control Limit
USL	Upper Spec Limit
UPM	University Putra Malaysia

CHAPTER I

INTRODUCTION

Project Background

For past several years industry has been bombarded with a plethora of quality improvement philosophies, tools and techniques which are often not fully explained or synthesized in a way that clearly depicts the "Big Picture." It seems like there has been a constant push to generate more and more pieces for the quality improvement puzzle without sufficient knowledge on how to put them all together properly (Berdine et al., 1998).

Some of the popular quality improvement tools and philosophies are Total Quality Management (TQM), ISO 9000, Baldrige Criteria, Statistical Process Control (SPC), Design of Experiment (DOE), Deming, Juran, Re-Engineering and Quality Function Deployment (QFD). These tools or philosophies create pieces of quality improvement puzzle. The questions are whether the pieces fit together or a set of disjointed pieces. The generation of this puzzle frustrates many people, managers in particular, who may lead the quality improvement efforts unsuccessful (Berdine et al., 1998).

The results of this puzzle can be seen in a manufacturing environment. Management would impose one idea after another without clearly explains how to solve the problems in an effective and systematic manner. The people who are working for the company or department are forced to follow the ideas or methods from the management, which sometimes created a lot of confusion, tension and stress. This environment stimulates fire fighting among the people and usually end up with an increased in quality defect level.

As in Auto Mount department of Sony Technology Malaysia Sdn. Bhd. (STM), quality defect level has hardly been improving. Many activities have been carried out, but there is no significant improvement in quality trend. Quality improvement efforts have made the employees very disillusioned. Management has come up with several policy, rules or guidelines such as back to basic, focus team, small group activity, audit program, production innovation, employee suggestion and bottom up versus top down to improve the quality, however, none of these activities seem to produce the desired result. The quality could be improved for a very short period as the trend went up back to its "comfort zone". Employees were extremely frustrated.

In addition, management continues to stress on quality improvement and sometimes blaming the employees for the level of quality produced. The puzzle of quality improvement is regenerated and sets of quality rules are re-emphasized. Nevertheless, employees do not seem to bother because the "history" has taught them.

SONY corporate management has innovated a solution for quality improvement. The management has launched Positive Process Management (PPM) in 1997 where this activity integrates ISO 9000 Quality System and Management of Process Performance through 6 Sigma methodology. The mission of the PPM activity is "Through Positive Process Management, Sony seeks to become the world reference in management quality, making a contribution to society through our business activities and delivering high quality products and services that conform to the requirements of our customers." (PPM Activity Promotion Office, 1998)

In order to kick off the PPM activity for Auto Mount department, a project to reduce Auto Mount defective was selected. This project was set as an example of how Six Sigma methodologies can be applied for process improvement.

Six Sigma methodologies have motivated the employees to continue the effort of quality improvement. It provides the tools to accomplish the task. It is the process of continued learning and the application of proven methodologies for today's companies to gain the knowledge required to sustain leading positions in world technology, production and service (Schmidt et al., 1998).

Problem Definition

A drive to improve quality continuously has been an important performance measure in any industry especially in manufacturing. In STM, the company quality policy "Customer Satisfaction by Everyone, Zero Complaint and Zero Defect" is the goal for every employee. Every department, starting from Auto Mounting, the first process, until final inspection in General Assembly has set an aggressive quality target as one of the most important challenge for success.

In Auto Mounting department, many types of machines are used to insert or mount components onto PWB (Printed Wiring Board). The following illustrates the process flow that describes the Auto Mount process.

Figure 1: Auto Mount Process Flow

Auto Mount process involves five main machines: JV, AV, RH insertion and CHIP mounting. CHIP mounting process consists of HD, MV1, MV2, MPA and .eflow machine. There are 14 lines of CHIP mounting process in the department. At the end of the process, the Pin Checker (PC) and the Chip Placement Checker (CPC) will inspect the PWB quality. The inspection results measure the output of the process. If one or more of the mounted components in the PWB fail to comply the quality specifications, the PWB will be rejected and it will be sent for repair. The performance of the machine depends on the number of mounted components that meet the quality specifications. The quality performance is measured in defect parts per million (dppm).

Auto Mount quality trends between April 1998 to March 1999 is shown on Table 1.

Defectives	April'98 – September'98 (Unit Parts)	October'98 – March'99 (Unit Parts)
JV Missing	4961	3212
AV Missing	5962	5705
RH Missing	14660	12141
Chip Missing	11729	9317
Shifted	6275	7675
Standing	4852	2718
Position Out	20457	22501
IC Zure	4849	3789
Bara-Bara	482	571
Others	2417	1478
Total	76644	67107

Table 1: Defective Breakdown for Auto Mount Department

(Source: Auto Mount Department, 1999)

As can be seen Table 1, position out defective has been the top defective for this department. This defective is produced in chip mounting process. The diagram of Position Out defects is shown in Figure 2:

Figure 2: Position Out defects (a) X Position Out; (b) Y Position Out; (c) θ Position Out (HV Auto Mount Department, 1999)

