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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

MICROALGAE STRAINS SELECTION AND MEDIUM CONSTITUENTS 

OPTIMIZATION TO ENHANCE CALCIUM CARBONATE BIOMINERAL 

PRECIPITATION BY Chlorella vulgaris AND Synechocystis sp. ATCC 27178 

By 

KAVITHRAASSHRE A/P ARUMUGAM 

January 2022 

Chairman: Mohd Shamzi Mohamed, PhD 

Faculty: Biotechnology and Biomolecular Sciences 

Rapid urbanisation has led to accelerated consumption of concrete. Portland Cement, a 

key binder in concrete is the most used human-made materials contributing to 

anthropogenic CO2 emission. Alternatively, microbially-mediated construction 

processes and materials could pave ways to more sustainable routes based on the 

biomineralization process. Precipitation of mineral carbonates by certain 

microorganisms’ metabolic activities can improve the behaviour of concrete or create 

new construction material. In this study, the potential of eight microalgae strains to 

undergo calcium carbonate (CaCO3) precipitation to produce cementitious biomineral 

were assessed, in a process commonly termed as microbially-induced calcium carbonate 

precipitation (MICP). Initially, these microalgae were cultivated in a medium containing 

12 mM CaCl2.2H2O and 0.18 to 5.0 mM NaHCO3 and measured for pH, cell growth, 

calcium concentrations and total alkalinity. Chlorella vulgaris and Synechocystis sp. 

ATCC 27178 registered the highest apparent precipitation rate at 0.7 and 0.4 mM/day, 

respectively, in 5.0 mM NaHCO3 medium. Morphological examination of CaCO3 

deposit by SEM-EDX and XRD confirmed it as calcite crystalline structure. These 

strains were also screened for urease, which catabolises urea as the additional substrate 

for cell growth and carbonate source for MICP. Consequently, strains having urease 

activity were cultured in BG-11 medium fixed with 12 mM CaCl2.2H2O and 5 mM 

NaHCO3 but at varying urea concentrations (0 to 0.4 g/L) to investigate urea’s effect on 

CaCO3 precipitation. Carbonic anhydrase and urease activity were assayed, of which, C. 

vulgaris produced the highest precipitation at 0.30 g/L (in 0.2 g/L urea-containing 

medium) with highest specific urease (SU) activity of 0.127 U/mg/min (on day 2). 

Synechocystis sp. produced 0.411 g/L of CaCO3 (in 0.15 g/L urea-containing medium) 

with the highest SU of 0.317 U/mg/min (also on day 2). Enhancement to the modified 

BG-11 (with 12 mM CaCl2.2H2O and 5 mM NaHCO3) with urea at 0.2 g/L (C. vulgaris) 

and 0.15 g/L (Synechocystis sp.) was achieved through Plackett-Burman Design (PBD), 

followed by Steepest Ascend Method to search for an effective range, and optimised by 

Response Surface Method (RSM). PBD screening indicated three significant variables, 
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i.e., NaNO3, NaCH3COO and K2HPO4 and two positive variables: NaNO3 and

NaCH3COO, affecting the response in C. vulgaris and Synechocystis sp., respectively.

Validating the prediction by RSM, modified BG-11 medium optimized with NaCH3COO

(39.5 mM), K2HPO4 (0.32 mM) and NaNO3 (19.25 mM) exhibited a productivity of

CaCO3 precipitation at 81.6 mg/L/day. It was a 279% improvement over C. vulgaris

cultivation using modified BG-11 medium fixed with 12 mM of CaCl2.2H2O, 5 mM of

NaHCO3 and 0.2 g/L of urea. For Synechocystis sp., by setting NaCH3COO (60.04 mM)

and NaNO3 (0.57 mM), this led to the productivity of 83 mg/L/day. It was 183% more

improvement against Synechocystis sp. cultivated under identical pre-optimized

modified BG-11 medium conditions as C. vulgaris but with 0.15 g/L of urea.
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Abstrak tesis yang dikemukakan kepada Senat of Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

PEMILIHAN STRAIN MIKROALGA DAN PENGOPTIMUMAN UNSUR 

MEDIA UNTUK PENINGKATAN PEMENDAKAN BIOMINERAL KALSIUM 

KARBONAT OLEH Chlorella vulgaris DAN Synechocystis sp. ATCC 27178. 

Oleh 

KAVITHRAASSHRE A/P ARUMUGAM 

Januari 2022 

Pengerusi: Mohd Shamzi Mohamed, PhD 

Fakulti: Bioteknologi dan Sains Biomolekul 

Pembandaran yang pesat menyebabkan penggunaan konkrit secara meluas. Simen

Portland merupakan bahan asas bagi konkrit dan juga menyumbang kepada pelepasan 

CO2 antropogenik. Oleh itu, proses dan bahan pembinaan yang berasaskan mikrob 

melalui proses biomineralisasi dapat menjurus kepada haluan pembinaan yang lebih 

baik. Pembentukkan mineral karbonat oleh aktiviti metabolik mikroorganisma dapat 

mengukuhkan kualiti konkrit dan menjurus kepada penciptaan bahan binaan baru. Kajian 

ini menguji potensi lapan strain mikroalga dalam pembentukkan biomineral simen iaitu 

kalsium karbonat (CaCO3) dan proses tersebut dikenali sebagai pemendakan kalsium 

karbonat berasaskan mikrob. Mikroalga berkenaan dikultur dalam media yang 

mengandungi 12 mM CaCl2.2H2O dan 0.18 hingga 5.0 mM NaHCO3. Nilai pH, 

pertumbuhan sel, konsentrasi kalsium dan jumlah kealkalian turut diukur. Chlorella 

vulgaris dan Synechocystis sp. ATCC 27178 didapati mencatat kadar pemendakan yang 

tertinggi, iaitu 0.7 dan 0.4 mM/hari dalam media yang mengandungi 5.0 mM NaHCO3. 

Pemeriksaan morfologi ke atas deposit CaCO3 melalui SEM-EDX dan XRD 

mengesahkan pembentukkan  struktur kristal kalsit. Mikroalga juga disaring untuk enzim 

urease, yang meghidrolisasikan urea sebagai substrat tambahan bagi pertumbuhan sel 

dan sumber karbonat. Strain yang mempunyai enzim urease dikultur dalam media BG-

11 yang mengandungi 12 mM CaCl2.2H2O, 5.0 mM NaHCO3, dan 0 hingga 0.4 g/L urea 

untuk mengkaji kesan urea terhadap pemendakan CaCO3. Aktiviti enzim karbonik 

anhidrase dan urease turut diuji. C. vulgaris didapati menghasilkan pemendakan 

sebanyak 0.301 g/L CaCO3 (dalam media yang mengandungi 0.2g/L urea) dengan 

aktiviti spesifik urease (SU) tertinggi iaitu 0.127 U/mg/min (pada hari ke-2). 

Synechocystis sp. pula menghasilkan 0.411 g/L CaCO3 (dalam media yang mengandungi 

0.15g/L urea) dengan nilai SU yang tertinggi iaitu 0.317 U/mg/min (pada hari ke-2). 

Seterusnya, penambahbaikan terhadap media BG-11 yang mengandungi 12 mM 

CaCl2.2H2O, 5 mM NaHCO3 dan 0.2 g/L urea (C. vulgaris) dan 0.15 g/L urea 

(Synechocystis sp.) dicapai melalui Rekabentuk Plackett-Burman (PBD), diikuti dengan 

Kaedah Pendakian Kecuraman dan Kaedah Permukaan Sambutan (RSM). Hasil 
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penyaringan PBD mendapati NaNO3, NaCH3COO dan K2HPO4 mempengaruhi 

tindakbalas ke atas C. vulgaris manakala, NaNO3 dan NaCH3COO mempengaruhi 

tindakbalas ke atas Synechocystis sp. Bagi mengesahkan hasil RSM, media BG-11 

diubahsuai lagi dengan 39.5 mM NaCH3COO, 0.322 mM  K2HPO4 dan 19.25 mM 

NaNO3. Hasil mencatatkan produktiviti pemendakan CaCO3 pada 81.6 mg/L/hari dan 

peningkatan sebanyak 279% berbanding kultur C. vulgaris dalam media BG-11 yang 

mengandungi 12 mM CaCl2.2H2O, 5 mM NaHCO3 dan 0.2 g/L urea. Manakala bagi 

Synechocystis sp., 60.04 mM NaCH3COO dan 0.57 mM NaNO3 menghasilkan 

produktiviti sebanyak 83 mg/L/hari. Ia menunjukkan peningkatan sebanyak 183% 

berbanding Synechocystis sp. yang dikultur dengan media BG-11 yang menyamai 

keadaan media C. vulgaris tetapi dengan 0.15 g/L urea. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background of the study 

The rapid development of modern societies has led to a drastic impact on global 

warming, and this reality is none more so exemplified than in the construction sector. As 

much as it is crucial to driving a nation’s economy, its major activity nonetheless 

inevitably contributes to the liberation of Green House Gases (GHG) through the massive 

consumption of concrete. Cement is an essential key binder ingredient of concrete used 

predominantly due to its relatively low cost and high strength (Ivanov et al., 2015). It is 

used widely for the construction work of roads, buildings and sealing of cracks on 

existing historical buildings for conservation purposes. Demand-wise, about 3.7 – 4.4 

billion tons of production materials are expected to be consumed by 2050 (Lee et al., 

2018). The transformation process of cement through the decarbonization of natural 

limestone is very energy-intensive. During production, the calcination of 1-ton 

limestones will emancipate approximately 0.814 tons of carbon dioxide (CO2),

accounting for 6-8% of global anthropogenic CO2 emissions  (Choi et al., 2017; Ivanov 

et al., 2015). 

For this reason, scientific development in sustainable environmental initiatives and low-

cost biomaterials for construction uses or other multidisciplinary fields are requisites to 

mitigate CO2 emissions. Microbially-mediated construction processes utilizing 

biomineralization pathways are among the top initiatives to curb this problem. Many 

researchers have explored the possibilities of manipulating the “Microbially Induced 

Calcium Carbonate Precipitation” (MICP) metabolic process in microorganisms that 

could yield biocement material as a viable alternative to conventional cement (Gleaton 

et al., 2019; Irfan et al., 2019). The novel idea of employing MICP is reliable as the 

phenomenon is quite common in nature and manifested in many bacteria, algae, and 

fungi, albeit occurring very slowly over long geological times for certain 

microorganisms. The criteria of microorganisms to produce calcium carbonate (CaCO3), 

a cementitious biomineral, include the effect of physicochemical aspects such as pH, 

nucleation site for precipitation, concentration of calcium, and concentration of dissolved 

inorganic carbon (DIC), urease and carbonic anhydrase activity (Ariyanti et al., 2012). 

Besides that, the formulation of growth media of microorganisms is important in 

increasing the production of biocement. 

Biocement can bind porous materials together and reinforce their mechanical properties, 

such as strength and impermeability (Omoregie et al., 2019). This natural binder can be 

added into a specialized matrix for soil stabilization or serves as an exterior material of 

a building to remediate cracks, pores or voids on which it provides adequate strength 

within a month (Choi et al., 2017; Lee et al., 2018; Seifan et al., 2018). MICP process 

can be divided into Biologically Induced Mineralization (BIM) and Biologically 

Controlled Mineralization (BCM). BIM occurs when the minerals are formed due to the 
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microorganism’s metabolic activity, whereas in BCM, mineral formation is entirely 

governed by the microorganisms’ cellular activity and directly synthesized at a specific 

location (Saad et al., 2018). MICP process employs many established pathways such as 

photosynthesis, dissimilatory sulphate reduction, ammonification of amino acids, 

denitrification, and urea hydrolysis. These pathways produce inorganic CaCO3 as an end-

product which will be transformed as a potential biocement (Anbu et al., 2016; Anitha 

et al., 2018).  

To date, much of the research on biocement development place their focus on ureolytic 

bacteria such as Sporosarcina pasteurii, Bacillus pasteurii, and Brevundimonas sp.,  

which utilizes urea as a potential substrate to produce additional carbonate source and 

favours the production of inorganic CaCO3 precipitation (Choi et al., 2017; Wei et al., 

2015). Regardless, the utilization of bacteria still has a few disadvantages, such as the 

generation of toxic by-products, unpleasant odour and expensive treatments. This leaves 

a gap in fulfilling the needs for sustainable construction materials and environmentally 

friendly processes. For the past few decades, microalgae and cyanobacteria have shown 

enormous potential in a wide breadth of applications such as soil remediation, CO2 

sequestration, removal of heavy metals and radionuclides contaminants, but exploratory 

works on biocement are still confined to the laboratory working stage, and biotreatments 

trials in structural applications are yet to be tested. Few studies in the laboratory stage 

have unravelled the biomineralization activity of microalgae and cyanobacteria such as 

Chlorella kessleri, Mychonastes sp., Nannochloropsis sp., Gloeocapsa sp., 

Synechococcus sp., Thraustochytrium striatum and Scytonema sp. occurring mainly 

through photosynthesis pathway and has a great potential to be used as biocement that 

comparable to bacteria (Bundeleva et al., 2014; Gleaton et al., 2019; Irfan et al., 2019; 

Zhu et al., 2015, 2018). The primary role of microalgae in carbonate precipitation is their 

ability to create an alkaline environment through their various physiological activities, 

including photosynthesis, urease and carbonic anhydrase activities. Photosynthesis plays 

a significant role by increasing DIC availability in the immediate habitats as the CO2 

consumed is subsequently converted into a carbonate source in the metabolic pathway 

of microalgae.  

Similarly, an increase in urease activity will lead to hydrolysis of urea which enhances 

the precipitation of CaCO3 by providing additional carbonate sources (Peng & Liu, 

2019). The presence of carbonic anhydrase intracellularly and extracellularly facilitates 

the conversion of CO2 to bicarbonate ion (HCO3
-) or vice versa, leading to an increase in 

the alkaline pH of the medium and facilitating CaCO3 precipitation (Zawar et al., 2016). 

CaCO3 precipitate is permanently removed as a solid in various polymorphs depending 

on its growth condition. It may form three anhydrous polymorphs: calcite, aragonite, 

vaterite, or two hydrated crystalline phases: monohydrocalcite and ikaite (Krajewska, 

2018). Calcite is usually considered the most stable and least soluble polymorph, 

appropriating for biocement applications (Bundeleva et al., 2014; Zhu et al., 2018). 

Besides that, electronegative cell surface and exo-polymeric substances (EPS) serve as a 

nucleation site, and a high degree of saturation state due to metabolic changes 

surrounding the cell facilitates the formation of CaCO3  (Zawar et al., 2016). Moreover, 

the medium formulation is equally important in the mixotrophic cultivation of 

microalgae to enhance the growth and provide additional nucleation sites for 

precipitation of CaCO3. The medium composition must fulfil all necessities for cell 
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growth and metabolite production by providing sufficient energy for biosynthesis and 

cell maintenance (Chin et al., 2020). Therefore, major attention is needed to optimize 

medium composition to maximize microalgal biomass and MICP activity.  

1.2 Problem Statements 

Portland Cement is more popular among concrete producers as it has been used since the 

18th century, and the acceptance of biological processed material in the construction 

community is still low. This leaves a gap in fulfilling the needs for sustainable 

construction materials and environmentally friendly processes. The exploratory works 

on the potential of local microalgae as a source of CaCO3 for biocement material have 

been limited to the laboratory working stage. Besides that, the cultivation of calcification 

experiments on potential microalgae strains is confined to small scall development in a 

sterile environment. The occurrence of any cross-contamination may affect the 

biomineralization activity of microalgae strains. 

1.3 Scope of the Study 

This study determined that the microalgae strains- available in the local depository could 

potentially induce CaCO3 biomineral precipitation. The assessment primarily considered 

the microalgal cellular growth and biomineralization capacity as they were affected by 

varying bicarbonate concentrations. For strains indicating positive CaCO3 deposition, 

the resulting biomineral would be further characterized through Scanning Electron 

Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray 

Diffractometry (XRD) analyses. Following that, the biomineralization activity of the best 

MICP microalgae species was examined based on their ability to grow in a mixotrophic 

condition. The optimization of medium composition was done using statistical methods. 

The selected medium compositions and parameters were based on the literature review, 

and they would be screened for their significance towards the productivity of CaCO3 via 

Plackett-Burman Design. The identified significant factors were optimized via the 

steepest ascent method and, lastly, through the Central Composite Design to determine 

the optimal level of maximized biogenic CaCO3. 

1.4 Objective of This Study 

1. To determine the highest capacity of biomineralization of calcium carbonate

precipitates by microalgae strains obtained from local depositories.

2. To investigate the effect of urea concentrations and physicochemical

parameters on the kinetic urease and carbonic anhydrase activity of the selected

MICP microalgae.

3. To optimize the significant factors affecting the productivity of CaCO3

precipitation by the selected MICP microalgae using statistical methods of

Plackett-Burman Design (PBD) and Response Surface Methodology (RSM).
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