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Mathematical Modelling of convective flow, heat, and mass transfer over a stretching or 

shrinking surface is studied to show the effects of Soret-Dufour by considering different 

types of fluids (Newtonian, non-Newtonian and Hybrid nanofluid). The mathematical 

models that have been investigated are as follows: Two-dimensional model of double-

diffusive MHD Casson and Maxwell fluid flow over an exponentially permeable 

shrinking sheet, two-dimensional model of hybrid nanofluid flow past an exponentially 

permeable shrinking or stretching sheet, three-dimensional model of double-diffusive 

MHD Newtonian fluid flow and heat transfer over an exponentially stretching or 

shrinking sheet and the two-dimensional model of triple diffusive Sodium Chloride and 

Sucrose water over a nonlinear permeable shrinking sheet. The mathematical model is 

formed by a set of partial differential equations such as continuity, momentum, energy, 

and concentration. Similarity transformation is applied to transform the partial 

differential equations into ordinary differential equations. The MATLAB bvp4c program 

is the main mathematical program that is used to obtain the final numerical solutions for 

the reduced ordinary differential equations. The numerical results for the skin friction 

coefficient, local Nusselt number, local Sherwood number, and the profiles of velocity, 

temperature, and concentration are presented via plots to analyze the impact of governing 

parameters (buoyancy ratio, shrinking/ stretching, suction, mixed convection, magnetic 

field, Brownian motion, thermophoresis parameter, radiation parameter, Prandtl number, 

Soret number, Dufour number, Schmidt number, Deborah number, Eckert number, 

Lewis number) in the model. The MATLAB bvp4c program is also implemented to 

develop stability analysis when dual numerical solutions exist. Positive eigenvalue 

shows that the solution is stable and physically reliable. On the other hand, the negative 

eigenvalue represents the unstable solution and is rejected. In the presence of dual 

solutions, the first solution is accepted as the stable solution and the second solution is 

unstable. It is found that the temperature of the fluid increases with the increment of the 

Dufour number while fluids concentration is inclined with increased Soret number. 

Besides, all the governed parameters affected the variations of the fluid flow, heat 

transfer, mass transfer, and the profiles of velocity, temperature, and concentration. 
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Pemodelan matematik bagi aliran pemindahan haba dan jisim terhadap lapisan meregang 

atau mengecut dikaji untuk menunjukkan kesan Soret-Dufour dengan 

mempertimbangkan pelbagai jenis cecair (bendalir Newtonian, bendalir bukan-

Newtonian, nanobendalir hibrid). Model matematik yang dikaji adalah: Model dua 

dimensi MHD dwiresapan aliran bendalir Casson dan Maxwell terhadap lapisan telap 

mengecut secara eksponen, model dua dimensi aliran nanobendalir hibrid merentasi 

lapisan telap meregang atau mengecut secara eksponen, model tiga dimensi MHD 

dwiresapan aliran bendalir Newtonian dan pemindahan haba terhadap lapisan telap 

meregang atau mengecut secara eksponen dan model dua dimensi triresapan Natrium 

klorida dan cecair Sukrosa merentasi lapisan telap mengecut secara tak linear. Model 

matematik dibentuk daripada set persamaan pembezaan separa iaitu keselanjaran, 

momentum, tenaga, dan kepekatan. Penjelmaan keserupaan diaplikasikan untuk 

mengubah persamaan pembezaan separa menjadi persamaan pembezaan biasa. Dalam 

kajian ini, program MATLAB bvp4c adalah program matematik utama yang digunakan 

untuk mendapatkan penyelesaian berangka bagi persamaan pembezaan biasa yang 

diturunkan. Keputusan berangka untuk pekali geseran kulit, nombor Nusselt setempat, 

nombor Sherwood setempat, dan profil halaju, suhu dan kepekatan dibentangkan melalui 

graf untuk menganalisis kesan parameter (nisbah daya apungan, regangan/kecutan, 

sedutan, olakan campuran, medan magnet, gerakan Brown, parameter termoforesis, 

parameter radiasi, nombor Prandtl, nombor Soret, nombor Dufour, nombor Schmidt, 

nombor Deborah, nombor Eckert, nombor Lewis) yang terdapat di dalam model. 

Program MATLAB bvp4c juga dilaksanakan untuk membangunkan analisis kestabilan 

apabila dua penyelesaian berangka wujud. Nilai eigen positif menunjukkan bahawa 

penyelesaiannya stabil dan boleh dipercayai secara fizikal. Sebaliknya, nilai eigen 

negatif mewakili penyelesaian yang tidak stabil dan ditolak. Dengan kehadiran dual 

penyelesaian, penyelesaian pertama diterima sebagai penyelesaian stabil dan 

penyelesaian kedua tidak stabil. Didapati bahawa suhu bendalir meningkat dengan 

penambahan nombor Dufour manakala kepekatan cecair meningkat dengan peningkatan 
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nombor Soret. Selain itu, semua parameter yang menakluk mempengaruhi variasi aliran 

bendalir, pemindahan haba, pemindahan jisim, dan profil halaju, suhu, dan kepekatan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Fluid Dynamics 

As stated by the American Heritage Dictionary, fluid dynamics is “a branch of practical 

science concerned with the flow of liquids and gases”, and it is extended as a sub-

discipline of fluid mechanics. Mechanics is the eldest physical science that studies the 

interactions of forces on both inactive and moving objects. Statics is the subdivision of 

mechanics concerned with bodies at rest, while dynamics is concerned with bodies in 

motion. Fluid mechanics is a branch of science and it studies the behavior of fluids at 

rest and in motion, as well as their connections with solids or other fluids at the 

boundaries. Rouse and Ince (1957) and Tokaty (1971) provide excellent histories of fluid 

dynamics. By applying the particular case, motion with zero velocity that refers to fluids 

at rest, fluid mechanics can be referred to as fluid dynamics. 

Fluid dynamics are separated into various branches as well. Among them, 

hydrodynamics is the study of the movement of essentially incompressible fluids (for 

example, liquids, particularly water, and gases moving at low speeds). Some other 

focused branches are hydraulics, Gas dynamics, aerodynamics, meteorology, 

oceanography, and hydrology. Hydraulics explains the liquid flows inside pipes and 

exposed channels while the fluids flow with large density changes. For instance, gases 

flowing through nozzles at high speeds are dealt with gas dynamics. On the other hand, 

aerodynamics is related to the flow of gases (particularly air) above rockets, automobiles, 

and, aircraft, etc. at low or high speeds, and meteorology, hydrology, and oceanography 

are involved with natural flows of fluid (Cengel, and Cimbala, 2010).  

1.2 Boundary Layer Flow 

Boundary layer flow talks about a thin layer of viscous fluid adjoining with a solid 

moving surface where the velocity differs from zero (at the wall) to the velocity at the 

boundary. In 1904, Luding Prandtl established the notion of boundary layer flow, which 

revolutionized fluid dynamics knowledge and analysis. The core idea recommended by 

Prandtl is that fluid flow can be separated into two portions: (a) inviscid flow which 

occurs in the main area, (b) the thin layer next to the solid surface named as the boundary 

layer. Following the above idea of Prandtl, by applying the boundary layer conception 

the Navier-Stokes equations can be simplified. He stated that the impact of viscosity on 

fluid flow is more significant for higher Reynolds numbers, Re>>1. 
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Figure 1.1 : Profile of a boundary layer 

(https://history.nasa.gov/SP-4103/app-f.htm) 

 

 

1.3 Heat Transfer 

Heat transfer is the movement of energy between a boundary layer system and its 

surroundings as a result of a temperature differential. Heat transportation from higher to 

lower temperature happen until it reaches the same temperature which is referred to as 

thermal equilibrium. Following Fourier’s law, heat flux can be defined as 

T
q k

n


 


, where 

 

 

k = Thermal conductivity Coefficient,     q = Heat flux, 

n = Normal to the solid surface,      T = Temperature. 

 

 

The negative indication implies that the heat flow is causing the temperature to drop. 

Conduction, convection, and radiation are the three ways of heat transport (Figure 1.2). 

• Conduction: The transfer of heat between two solid bodies by conduction, 

also known as diffusion, occurs when they come into direct touch. The heat 

burners on a stove, for example, will transmit heat to the bottom of a pot, and 

the pot will then conduct heat to its substances.  

• Convection: The transmission of heat between the liquid and the solid surface 

is known as convection. Convection can happen in three ways such as natural, 

forced, and mixed convection. 

https://history.nasa.gov/SP-4103/app-f.htm
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• Natural Convection: Natural or free convection arises when fluid motion is 

affected by buoyancy forces that happen due to disparities of temperature in 

the fluid. The fluid’s motion isn’t controlled by external or internal factors 

but is instead influenced only by density changes. Fluid density differences 

may stem from temperature differences, concentrations, or composition 

(Rudramoorthy and Mayilsamy, 2006). 

• Forced Convection: When an outside source forces fluid to flow over a 

surface to form an artificially-induced convection current, the phenomenon is 

known as forced convection. An external source can be of different types, 

including a pump, fan, or suction appliance (Rathore and Kapuno, 2011). The 

external sources will result in a fluid with higher speed, and hence lower 

thermal resistance. It is well known that forced convection is more successful 

than natural convection. Forced convection will be more likely to transport 

significant amounts of heat energy more efficiently and produce quicker 

results.   

• Mixed Convection: There is always some natural convection with forced 

convection in the presence of gravitational force. This applies to every forced 

convection scenario (Dawood et al., 2015), Natural convection, which 

happens spontaneously and transfers heat along with forced convection, is 

often called mixed convection. The interaction of buoyant and pressure forces 

is also defined as mixed convection. Temperature, flow, shape, and direction 

all influence the quantity of convective form that contributes to heat transfer. 

Mixed convection is widely utilized in high-power output devices that run at 

extremely high temperatures and when forced convection is insufficient to 

disperse the requisite heat. 

• Radiation: Radiation refers to a heat transfer system between two bodies that 

are at different temperatures and have a distance between them. 

Electromagnetic waves in the atmosphere create heat transportation in 

radiation (Siegel and Howell, 1992). A common phenomenon of radiation is 

the earth gets heated by the sun’s energy. 

Figure 1.2 : Profile of heat transfer 

(https://byjus.com/physics/heat-transfer-conduction-convection-and-radiation) 

Convection 

Conduction 

Heat 

Radiation 

https://byjus.com/physics/heat-transfer-conduction-convection-and-radiation
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1.4 Mass Transfer 

A net movement of mass from one area to another is referred to as mass transfer. Mass 

transfer, also defined as diffusive and convective transportation of chemical species 

inside boundary layer flow. Diffusion is the term used to describe mass transfer that 

occurs as a result of random molecule mobility in a laminar-flow fluid. Convective mass 

transfer refers to mass transfer that occurs as a result of a difference in concentration 

between species at the surface and the fluid above the surface. The simplest form of mass 

transfer can occur in a resting medium, where the force is caused by concentration 

changes in adjacent parts of the medium, which is known as molecular diffusion. The 

mass transfer will diffuse from a greater concentration to a lesser concentration caused 

by mass flow. The evaporation of water from a river to the atmosphere, as well as the 

purifying of blood in the liver and kidneys, are all examples of mass transfer procedures 

in nature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 : Profile of mass transfer 

(http://ecoursesonline.iasri.res.in/mod/page/view.php?id=2367) 

 

 

1.5 Double Diffusive Convection 

Convective motions develop into a fluid while only one parameter, such as temperature 

variations, impacts the density. When gradients of two or more diffusing properties are 

significant, a completely new set of phenomena may occur, and perception based on 

fundamental thermal convection may be incorrect. In several methods of interest, for 

example, instabilities can emerge even as the net density falls vertically, and the system 

would thus be regarded hydrostatically steady in a single-component fluid. In the event 

of a double or multiple component fluid, diffusion, which is a stabilizing impact in a 

fluid containing a single solute, might act to liberate potential energy in the component 

that is weightiest at the top. According to Huppert and Turner (1981), the fluid must have 

two or more components with distinct molecular diffusivities, and selected components 

must contribute opposing behavior to the vertical density gradient for double-diffusive 

 

High Ion Concentration 

Membrane 

Low Ion Concentration 

http://ecoursesonline.iasri.res.in/mod/page/view.php?id=2367
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convection to occur. In oceanography, salt and heat concentrations have different 

gradients and diffuse at separate rates, which is an example of double-diffusive 

convection. The entry of cold water from the iceberg has an impact on both of these 

variables.   

1.6 Triple Diffusive Convection 

Multicomponent convection is the phenomenon where the density depends on three or 

additional agencies having diverse molecular diffusivities. Particularly if the density 

depends on three components with different molecular diffusivities is referred to as triple 

diffusive convection. A triple diffusive scheme behaves another way compare to double-

diffusive systems. This is because adding a slower diffusing feature to the bottom layer 

of a double-diffusive system that would otherwise yield a finger interface could result in 

the formation of a diffusive interface. Likewise, adding the same feature to the topmost 

layer of a different system could alter the interface from diffusive to salt finger 

(Shivakumara and Naveen Kumar, 2014). 

1.7 Stream Function 

Simple flows can be used to explain the stream function. If no friction exists, the flow 

between two parallel plates must be dispersed uniformly throughout the gap between 

them. Because there is no friction to slow the fluid near the walls, the velocity will be 

the same all the way across. As a result, we can estimate that one-fourth of the total flow 

occurs in the first quarter of the channel’s width, as illustrated in Figure 1.4. Imagine 

floats or dye streams introduced at regular intervals across the channel to designate out 

pathways, with an equal flow between each pair of lines. The steam function describes 

how a streamline interacts with a reference streamline. This line remains constant along 

a streamline, distinguishing it from other lines (Thompson, 2013).  

 

Figure 1.4 : Stream function in a uniform flow 
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1.8 Different Types of Fluid 

1.8.1 Newtonian Fluid  

The linear relationship between shear stress and deformation rate is assumed in 

Newtonian fluids theory. At zero shear stress, a Newtonian fluid has a constant viscosity 

with a zero shear rate, meaning that shear rate and shear stress are proportional to each 

other. Water, organic solvents, inorganic salt solutions with low molecular weight, thin 

motor oil, glycerin, molten metals, light-hydrocarbon oils, and air are just a few 

examples of this type of fluid. If τ is shear stress, μ is viscosity and k is shear rate then, 

k  (Islam and Hossain, 2020). 

1.8.2 Non-Newtonian Fluid 

If the strain rate does not have a linear relation with the shear stress, the fluid is 

considered non-Newtonian. The shear stress is measured as the proportion of the force 

acting on the area in the direction of the forces perpendicular to the area. It is defined as 

xy F A  . 

where, 𝑥 = direction of the shear stress, and 𝑦 = the direction of the area. For instance, 

synthetic lubricants, paints, sugar syrup, clay coating, certain oils, and drilling muds are 

usual examples of non-Newtonian fluids (Rehman et al., 2019). The differential, integral, 

and rate types are used to classify non-Newtonian fluid models in general. The 

differential and rate types have been researched in greater depth out of these. In the 

present thesis, Casson and Maxwell non-Newtonian fluid are considered. 

a. Casson Fluid: Casson fluid is a shear-thinning liquid with an infinite 

viscosity at zero rates of shear, yield stress below which no flow occurs, and 

a viscosity of zero at an infinite rate of shear. When shear stress exceeds yield 

stress, it deforms; in the opposite case, it solidifies. Jelly, tomato sauce, honey, 

chocolate, and concentrated fruit juice are the most well-known Casson fluids 

(Ibrahim et al., 2017). 

b. Maxwell Fluid: A Maxwell substance is a viscoelastic material that has both 

viscosity and elasticity. Maxwell model has been proposed by Maxwell and 

it is also known as a Maxwell fluid. He was the first person to model a non-

Newtonian fluid. The Maxwell model illustrates a substantial with a linear 

Hookean spring attached in series with a Newtonian dashpot (Kumar et al., 

2012). It is also identified as an iso-stress model since two elements (spring 

and dashpot) are both dependent on the same stress ( s d    ). The 

model is depicted in Figure 1.5. 
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Figure 1.5: The Maxwell model 

(https://www.sciencedirect.com/topics/engineering/maxwell-model) 

 

 

The total strain ( t ) is equal to the sum of elastic and viscous strains ( d , s ):   

t d s   
 

 

It is easier to differentiate the strain equation and then write the spring and dashpot strain 

rates in terms of the stress to find a single equation that relates the stress to the strain:  

 

t d s
E

 
  


     

 

1.8.3 Nanofluid 

A nanofluid is made up of nanometer or micrometer-sized particles whose diameter 

ranges from 0 to 100 nanometers. The most common nanoparticles mixed in nanofluids 

include metals, carbides, oxides, and carbon nanotubes, while the most popular base 

fluids are water, oil, and ethylene glycol. Choi proposed the term nanofluids in 1995 and 

claimed that adding a tiny amount of nanoparticles to the base fluid (<1% volume 

percentage) doubles the thermal conductivity. This is because nanometer-sized 

nanoparticles operate like fluid molecules, according to Khanafer et al., (2003). Das et 

al., (2006) explained that the physical and chemical features of nanoparticles increase 

the thermal conductivity of the fluid as well as the heat transfer rate. Nanofluids’ unique 

qualities allow them to be used in a variety of engineering systems, ranging from 

improved nuclear reactors to drug delivery systems.  

1.8.4 Hybrid Nanofluid 

According to Ali, (2020), hybrid nanofluids are a relatively new type of nanofluid that 

contains two or more nanoparticles. It has a high thermal conductivity outer layer and a 

phase change material inner core with thermal storage capabilities because of latent heat 

received or released during phase shift. These hybrid nanoparticles can be employed in 

a heat transfer gel, sensors, thermal interface materials, and biological applications 

(Mohapatra et al., 2011). In comparison to the constituent polymer or inorganic 

nanoparticles, the hybrid nanoparticles may have better physical or chemical properties. 

Encapsulating inorganic nanoparticles with polymers, for example, can progress their 

chemical stability and disposability, mechanical properties and improve the thermal 

σ σ E 
η 

https://www.sciencedirect.com/topics/engineering/maxwell-model


© C
OPYRIG

HT U
PM

 

8 

stability of the polymers, make it easier to modify the inorganic nanoparticles by 

applying commoners with reactive groups, and give common polymers extra functions 

like magnetism and fluorescence (Qi et al., 2014). Depending on the type of 

nanoparticles utilized to create the hybrid nanofluids, they can be classified into three 

groups:  

1.  metal composites such as Al2O3/Cu, MgO/Fe, Al2O3/Ni, and Al/CNT; 

2.  ceramic compounds such as Al2O3/Cu, MgO/Fe, Al2O3/Ni, and Al/CNT; and 

3.  polymer mixtures such as polymer/TiO2 and polymer/CNT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Hybrid nanofluid 

(Water 2020, 12, 1723; doi:10.3390/w12061723) 

 

 

1.9 Classification of Fluid Flow 

1.9.1 Viscous Fluid Flow 

A viscous fluid prevents movement and item passage through it. These fluids may flow 

slowly or not at all, depending on their viscosity. The elements that make up a fluid 

determine the viscosity of the fluid (or resistance). The viscosity of a substance is 

determined by its temperature, such as liquid’s viscosity become low and gases viscosity 

become high as the temperature rises. A fluid with extraordinarily high viscosity may 

have qualities that make it behave more like a solid than a liquid. Butter is a common 

example of viscous fluid. Glass is a liquid that cools and hardens into a solid-like 

condition.   
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1.9.2 Compressible and Incompressible Flow 

Depending on the amount of density variation throughout the flow, a flow can be 

characterized as compressible or incompressible. If the density of a flow stays virtually 

constant throughout, it is assumed to be incompressible. The volume of each part of the 

fluid remains constant along its trip when the flow (or the fluid) is incompressible. 

Compressible flow is a field of fluid mechanics that deals with fluids that change density 

drastically in reply to pressure changes.  High-speed airplanes, gas pipelines, jet engines, 

commercial uses like abrasive blasting, and a variety of other disciplines all benefit from 

compressible flow research (Zohuri, 2017).  

1.9.3 Magnetohydrodynamics (MHD) Flow 

Magnetohydrodynamics (MHD) is the study of how magnetic fields interact with 

flowing, conducting fluids. Many natural and artificial flows are affected by magnetic 

fields. In industrial, they are frequently used to pump, stir, heat, and levitate liquid 

metals. The earthly magnetic field is continued by the motion of the fluid in the earth’s 

core, the solar magnetic field causes solar flares and sunspots, and the galactic magnetic 

field is hypothesized to impact star formation from interstellar clouds. 

Magnetohydrodynamics is the scientific study of these types of fluid flows (MHD). The 

laws of Faraday and Ampere play a part in the mutual interaction of the magnetic and 

velocity field, as does the Lorentz force experienced by a current-carrying body (Soward, 

2002). Hannes Alfven was the first to discover magnetohydrodynamics, for which he 

was awarded the Nobel Prize in Physics (Dessler et al., 1970).  

1.9.4 Steady and Unsteady Flow 

The state of fluid characteristics can be categorized as steady or unsteady at any point in 

a fluid flow. The term steady denotes that there is no change over time at a given position. 

The fluid characteristics within a device can fluctuate during steady flow, but they 

remain constant at any fixed point. Steady flows can be characterized arithmetically by 

0P t   where P = P (x, y, z) represent the fluid properties as velocity, density, and 

pressure. Turbines, boilers, condensers, pumps, and refrigeration systems, for example, 

can closely approach steady flow conditions.  The flow is unsteady or non-steady if its 

properties (velocity, density, and pressure) change over time or are simply time-

dependent. 

1.9.5 Stretching and Shrinking Sheet Flow 

When an elastic sheet in an incompressible fluid is stretched by applying stress, 

stretching sheet flow is induced. This sheet has a behavior named elasticity, which refers 

to a sheet’s ability to whether distorting force and then reappearance to its original shape 

and size after the stress is removed. The stretching or shrinking sheet moves at a different 



© C
OPYRIG

HT U
PM

 

10 

velocity according to how far it is from a fixed point. Regardless, a shrinking sheet is the 

polar opposite of a stretched sheet; the sheet is compressed, which affects fluid flow and 

heat transmission rate. Wang (1990) was the first to observe the flow of fluid towards a 

shrinking surface. One of two criteria must be met for a contracting sheet to flow: either 

a stagnation flow is assumed to maintain the shrinking sheet’s velocity in the boundary 

layer, or sufficient suction is provided on the boundary (Miklavcic and Wang, 2006). In 

extrusion operations such as polymer extrusion, metal sheet extrusion, and other 

industrial processes, boundary layer flow caused by a stretching surface is essential. 

Shrinking is relevant to environmental management methods, capillary impacts in 

smaller pores, shrink-swell behavior, and the hydraulic properties of farming clay soils, 

all of which are vital for agricultural enlargement (Batool and Ashraf, 2013). 

1.10 Dimensionless number  

• Soret Number:  The ratio of temperature difference to concentration is called 

the Soret number (thermal diffusion factor). As a result, a higher Soret number 

indicates a greater temperature differential and steeper gradient. Thus the 

increased thermal diffusion factor increases the fluid velocity. The Soret 

number effect, for example, has been applied for isotope separation and in 

combination between gases with a very light and medium molecular weight 

(Srinivasacharya et al., 2015).  

• Dufour Number: The contribution of concentration gradients to the thermal 

energy flux in a flow is denoted by the Dufour number.  It is clear that as the 

Dufour number rises, the temperature rises as well (Srinivasacharya et al., 

2015). Dufour number effects are an important issue because it has an 

extensive range of applications, including moisture migration via air trapped 

in fiber insulation, chemical contaminants spreading into the soil, grain 

storage insulations, and drug diffusion in blood veins (Hayat et al., 2012). 

• Prandtl Number: A number that approximates the proportion of momentum 

diffusivity to heat diffusivity is identified as the Prandtl number (Olson, 

2003). The Prandtl number, along with velocity and pressure, is a 

fundamental number of fluid dynamics. The number is essential because it is 

effective in determining the thermal conductivity of gases at high 

temperatures. It can be formulated as:  

 

Pr
pC

k

 


   

 

 

 

 

 = The dynamic viscosity  =Fluid’s kinematic viscosity 

pC = specific heat at constant pressure  = Thermal diffusivity 

k = Thermal conductivity                 
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The range of Prandtl number for different fluids are as: gases, 0.7<Pr<1; water 

1<Pr<10; liquid metals 0.001<Pr<0.03 etc. 

 

• Schmidt Number: Incropera et al. (2011) define the Schmidt number as a 

measure of the relative efficiency of momentum and mass transmission by 

diffusion in the velocity and concentration boundary layers. It can be defined 

as: 

 
Momentum diffusivity

Sc
Mass diffusivity D


   

 
• Deborah Number: The proportion between the timescale and the 

observation process of the phenomenon is specified as: 

 

ReThetimescaleof theobserved laxationtime
D

Thetimescaleof theobserver observationtime
   

 

The Deborah number is a well-known number in rheology, particularly 

viscoelasticity (Moura-Ramos, and Correia; 2001). 

 

• Ecart Number: The measurement of the kinetic energy of the flow compared 

to the enthalpy differential through the thermal boundary layer, named after 

Ernst R. G. Eckert. In high-speed flows with strong viscous dissipation, the 

Eckert number plays a significant role (Bergman and Incropera, 2011).    

• Lewis Number: The Lewis number is a measure of the comparative 

temperature and concentration boundary layer thickness that is well-defined 

after Warren K. Lewis (1882-1975). It’s used to describe fluid movements 

that involve both heat and mass transport (Cohen, 2007). The ratio of the 

thermal diffusivity to the mass diffusivity is applied to compute the Lewis 

number. It can also be articulated as the ratio of Schmidt number, Sc and 

Prandtl number Pr as follows:  

 

Pr

Thermal diffusivity Sc
Le

Mass diffusivity D


    

 

 

1.11 Parameters Associated with Mathematical Formulation 

• Suction Parameter: Suction is a boundary layer control strategy that aims to 

reduce drag on bodies in an external flow or to reduce energy losses in 

channels. The primary goal of suction through a fluid’s bounding surface is 

to modify the rate of heat transfer from the surface and radically alter the flow 

field. Thus, physical suction increases the heat transfer rate as well as skin 

friction coefficients. Ludwig Prandtl first proposed the suction technique in a 

circular cylinder in 1904 (Berg, 2012).  
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• Magnetic Field Parameter: The forces generated by magnetic fields, can 

control fluid motion. In 1861, the macroscopic formulation for the 

electromagnetic field known as Maxwell’s equation was introduced by James 

Clerk Maxwell to replace the microscopic version named Lorentz force. 

Maxwell’s equation has widely been used in solving the real field problem, 

which involves electricity and magnetism. 

• Buoyancy Ratio: The buoyancy ratio is defined as the ratio of the fluid's 

specific weight to the object's specific weight. Alternatively, the weight of the 

ejected fluid minus the weight of the object.  

• Mixed Convection Parameter: The mixed convection parameter, Ri 

measured by the ratio between the Grashof number, Gr, and the square of the 

Reynolds number, Re (Sparrow et al., 1959). It is expressed as the following: 

 
3

w

2

g (T T )Lbuoyancyforce
Gr

viscousforce

 
 

  
 

 

inertial force uL uL
Re

viscousforce


  

   
 

 

 

3 2

w w

2 2 2 2 2

g (T T )L g (T T )LGr
Ri

u L uRe

    
   


 

 

 

Here g, L, β,  , , , , ,wT T u   are defined as gravitational acceleration, 

vertical length, thermal expansion coefficient, kinematic viscosity, the 

temperature of the surface, bulk temperature, the density of the fluid, 

dynamic viscosity, and velocity respectively. 

 

• Thermophoresis Parameter: Thermophoresis, also known as the Soret 

effect, occurs in suspended particle and fluid mixes. The movement of fluid 

molecules in the hot area, as well as high energy levels in this area, causes the 

nanoparticles to be displaced toward the cool region, which is induced by the 

temperature differential. Moving heated particles from the hot region to the 

cold region speeds up the heat transfer process. This force is only significant 

at extremely low fluid velocities, notably in natural convection (Ali, 2020), 

due to the small size of the fluid molecules. 

• Radiation Parameter: The conduction heat transfer contribution to thermal 

radiation transfer is determined by the radiation parameter. It is self-evident 

that raising the radiation parameter raises the temperature within the boundary 

layer (Reddy, 2012).  
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• Brownian Motion Parameter: According to Jang and Choi (2004), 

Brownian motion is the unsystematic movement of particles floating in a fluid 

(liquid or gas) as a result of collisions with fast-moving molecules or atoms 

in the fluid.  The faster the rate of collision amongst the atoms or molecules 

in a fluid, the more suspended components there are. As a result, Brownian 

motion can help nanofluids transmit heat more efficiently.  

• Porosity Parameter: Porosity is an essential parameter for determining the 

microstructure of a material. Concerning the total volume of the material, it 

refers to the volume of spaces that may hold fluid. The pore system, which 

consists of a network of communicative or non-communicating pores and 

small-diameter channels, can be divided into many porosity classes. The 

section of the pore system made up of occluded pores that have no 

communication with the remainder of the pore spaces or the outside is referred 

to as residual porosity or closed porosity. Although this form of porosity does 

not affect mass transfer, it does affect material strength. Additionally, 

communicative pores produce effective or open porosity, which is the 

porosity that accounts for the volume of connected or accessible pores. The 

pore size distribution can be used to refine the description of the pore system 

(Issaadi et al., 2018). 

 

 

1.12 Problem Statement 

Soret and Dufour's effect contribute a vital role in geoscience, chemical engineering, in 

the situation of density variances in flow, and a variety of other domains. However, a 

review of the literature reveals that there have been few attempts to analyze the magnetic 

field effect with Soret-Dufour impact. To address this issue, our research suggests the 

development of a new mathematical model that includes induced effects. (magnetic field, 

suction, Soret-Dufour, Prandtl number, stretching or shrinking). Then, a numerical 

program called the bvp4c MATLAB is applied to solve these governing equations 

subject to the boundary conditions. Also, stability analysis is performed to regulate the 

stability and significance of the solutions when dual solution occurs. Following that, the 

necessary numerical computations are carried out, followed by a comparison of past 

results. 

1.13 Objectives of Research  

The intention of this thesis is to explore the Soret and Dufour impacts on convective heat 

and mass transfer flow of different types of fluid in different areas configurations and 

subjected to various source terms and boundary conditions. The following five problems 

are:  

 

1. The inclined factors of magnetic field and shrinking sheet in Casson fluid 

flow, heat, and mass transfer. 
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2. Double-diffusive convection flow of MHD Maxwell nanofluid in the 

presence of inclined shrinking sheet. 

3. Boundary layer flow and heat transfer of water-based hybrid nanofluid with 

nano-particles of alumina and copper over a permeable exponentially 

stretching and shrinking surface. 

4. Three-dimensional model of Newtonian fluid flow and heat transfer over an 

exponentially stretching or shrinking plane in the presence of 

magnetohydrodynamics. 

5. The two-dimensional triple diffusive model of boundary layer flow, heat, and 

mass transfer over an inclined shrinking sheet. 

 

 

The objectives of the current research are to: 

 

1. construct and derive the mathematical model for the various non-linear 

problems,   

2. develop an algorithm to solve the mathematical model numerically via bvp4c 

solver in MATLAB software and conduct the validation tests for the current 

research in comparison with the numerical results in the literature, 

3. provides the formulation and conduct the stability analysis for the dual 

solutions obtained to determine which of the solutions represent a stable flow, 

and   

4. analyzes the influence of the considered parameters on the characteristics of 

the fluid flow, heat and mass transfer along with Soret and Dufour effect. 

 

 

1.14 Scope of Research  

The scope of the study is limited to convective heat and mass transfer over a stretching 

or shrinking surface. Two or three-dimensional, Newtonian or Non-Newtonian (Casson, 

Maxwell, Hybrid nano-fluid) fluids with double or triple diffusive natural or mixed 

convection are considered in the study. Although the study mainly focuses on Soret and 

Dufour effect, other parameters, for example, suction, magnetic field, Brownian motion, 

buoyancy ratio, mixed convection, Deborah number, Lewis number, thermophoresis 

parameter, Ecart number, radiation parameter, also analyzed. 

1.15 Outline of the Thesis 

This thesis contains nine chapters, including the present chapter. The current chapter 

started with the basic discussion of fluid dynamics along with different types of fluid, 

classification of fluid flow. In the last part of this chapter objective, scope, and outline 

of the thesis are described. 
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In Chapter 2, the literature review includes descriptions of prior studies conducted by 

various researchers that are relevant to the study’s topic. Since the study is linked to the 

convective heat and mass transfer of different types of fluid (Newtonian, Casson, 

Maxwell, Hybrid nanofluid) in the presence of the Soret and Dufour effect, related 

research is focused. This chapter is subdivided according to different types of fluid. In 

the last part literature review of stability analysis is described. 

Chapter 3 will explain the methodology with numerical computation, which is used in 

the considered five problems. Initially, it started with the introduction, and then two and 

three-dimensional double-diffusive Newtonian fluid, and two-dimensional triple 

diffusive model of boundary layer flow, heat, and mass transfer are explained. These 

mathematical models are associated with governing equations, boundary conditions, 

similarity transformation, physical parameters (skin friction coefficient, local Nusselt 

number, local Sherwood number), and stability analysis (for dual solutions) 

chronologically and stepped by step. Lastly, an algorithm for the bvp4c program is 

shown with stability analysis.  

Chapter 4 to 6 has experimented with two-dimensional Casson, Maxwell, and Hybrid 

nanofluid’s (Cu-Al2 O3/H2O) flow, heat, and mass transfer, respectively. In three cases, 

stability analysis is performed because of the existence of deal solutions. Every chapter 

contains five sections. All the chapters started with the introduction of the correlated 

problem, the method of the numerical solution is modified from Chapter 3, then stability 

analysis, results, and discussion, and the last section is the conclusion. Tables and figures 

are used to present the findings. The results are presented graphically in the form of the 

velocity, temperature, concentration, skin friction coefficient, local Nusselt number, and 

local Sherwood number profile. In the conclusion part, the consequences of connected 

factors in the system of all the problems are listed.  

The fourth issue of this study, namely the three-dimensional model of Newtonian fluid 

flow and heat transfer over an exponentially stretching plane with the Soret- Dufour 

effect, is narrated in detail in Chapter 7. This chapter begins with an introduction, 

followed by problem formulation (methodology described in Chapter 3), then results and 

discussion, and finally a conclusion. A comparison table is made to check the validity of 

our study. The effects of Soret-Dufour number, mixed convection parameter, buoyancy 

ratio, stretching parameter, magnetic field parameter, Schmidt and Prandtl number are 

demonstrated graphically. 

The final problem with two-dimensional triple diffusive natural convection flow over an 

inclined shrinking plate is explained in Chapter 8. Two distinct components namely, 

Sodium chloride (NaCl) and Sucrose (C12H22O11) with differing concentrations are taken 

to do the study. The effect of buoyancy ratio, radiation parameter, thermophoresis 

parameter with Soret-Dufour impact is observed. 
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The final chapter, Chapter 9, includes a summary of the current study as well as some 

recommendations for future research.  
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