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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

EXPLICIT TWO-DERIVATIVE RUNGE-KUTTA TYPE METHODS
FOR SOLVING THIRD-ORDER ORDINARY AND RETARDED

DELAY DIFFERENTIAL EQUATIONS

By

LEE KHAI CHIEN

June 2022

Chairman : Assoc. Prof. Norazak Senu, PhD
Institute : Mathematical Research

In this study, two types of explicit two-derivative Runge-Kutta type (GTDRKT
and TDRKT) methods are constructed for the numerical integration of general
and special type of third-order ordinary differential equations (ODEs). Improved
two-derivative Runge-Kutta type (TDIRKT) methods are derived for solving
third-order ODEs in the form of f (u,u′,u′′). B-series and rooted tree theory
are used to derive order conditions and coefficients for GTDRKT and TDRKT
methods. Stability, consistency and convergence analysis of the proposed methods
are investigated. The Local Truncation Error (LTE) for GTDRKT, TDRKT and
TDIRKT methods are computed and analysed for u,u′ and u′′. For TDIRKT
methods, the previous term, k−i is implemented in the formulation and the
relevant order conditions are introduced for constructing the proposed methods.
Exponentially-fitting and trigonometrically-fitting techniques are implemented into
both GTDRKT and TDIRKT methods by constructing coefficients with principle
frequency based. These proposed methods are developed based on the idea of
integrating initial value problems (IVPs) exactly with numerical solution in the
form linear composition of the set functions eωx and e−ωx for exponentially-fitted
and eiωx and e−iωx for trigonometrically-fitted for solving third-order ordinary
differential equations with exponential and oscillatory solutions.

Brief introduction on Retarded Delay Differential Equations (RDDEs) is provided.
Stability, consistency and D-convergence for both TDRKT and TDIRKT methods
when applied to RDDEs with constant delay, using Newton interpolation methods to
evaluate the delay term are discussed and analysed. In solving third-order RDDEs,
Newton interpolation is used to approximate the delay term and solve the subsequent
equations through TDRKT and TDIRKT methods. In numerical test, numerical
results are illustrated using efficiency curves where maximum global error versus
the CPU time taken. Number of function evaluations for all proposed methods
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and selected existing methods are computed with different endpoints and step size.
Results exhibited the proposed methods work effectively for solving general and
special type of third-order ODEs as well as third-order RDDEs.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH JENIS RUNGE-KUTTA DUA TERBITAN TAK TERSIRAT
UNTUK MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA

DAN LENGAH TERLAMBAT PERINGKAT KETIGA

Oleh

LEE KHAI CHIEN

Jun 2022

Pengerusi : Profesor Madya Norazak Senu, PhD
Institut : Penyelidikan Matematik

Dalam kajian ini, dua jenis kaedah jenis Runge-Kutta dua terbitan tak tersirat
(RKDTTTU dan RKDTTT) diterbitkan untuk menyelesaikan persamaan pembezaan
biasa (PBB) umum dan istimewa peringkat ketiga. Kaedah jenis Runge-Kutta
Dua Terbitan Tak Tersirat penambahbaikan (RKDTTTP) diterbitkan untuk
menyelesaikan persamaan pembezaan biasa peringkat ketiga dalam bentuk
f (u,u′,u′′). Siri-B dan teori pokok berakar digunakan untuk memperoleh syarat
peringkat dan pekali bagi kaedah RKDTTTU dan RKDTTT. Analisis kestabilan,
kekonsistenan dan penumpuan bagi kaedah tersebut dikaji. Ralat pangkasan
setempat bagi kaedah RKDTTTU, RKDTTT dan RKDTTTP ditafsir dan dianalisis
untuk u,u′ dan u′′. Bagi kaedah RKDTTTP, Sebutan sebelum, k−i ditambah ke
dalam formulasi dan syarat peringkat diperkenalkan untuk membina kaedah tersebut.
Teknik suai-eksponen dan suai-trigonometri diaplikasi ke dalam kaedah RKDTTTU
dan RKDTTT dengan menerbitkan pekali yang berasaskan prinsip frekuensi.
Kaedah tersebut diterbitkan berdasarkan idea mengintegrasikan masalah nilai awal
dengan penyelesaian berangka dalam bentuk komposisi linear bagi set fungsi eωx

dan e−ωx untuk suai-eksponen dan eiωx dan e−iωx untuk suai-trigonometri bagi
menyelesaikan persamaan pembezaan biasa peringkat ketiga yang mempunyai
penyelesaian berbentuk eksponen dan ayunan.

Pengenalan ringkas terhadap Persamaan Pembezaan Lengah Terencat (PPLT)
dibekalkan. Kestabilan, konsistensi dan penumpuan-D bagi kaedah RKDTTT and
RKDTTTP dibincangkan dan dikaji, di mana kaedah tersebut diaplikasi terhadap
PPLT dengan lengah malar dan kaedah interpolasi Newton digunakan untuk menilai
sebutan lengah. Dalam penyelesaian PPLT peringkat ketiga, interpolasi Newton
digunakan untuk menganggar sebutan lengah dan diselesaikan selanjutnya dengan
menggunakan kaedah RKDTTT dan RKDTTTP. Dalam ujian berangka, keputusan
berangka digambarkan menggunakan lengkung kecekapan di mana logaritma ralat
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sejagat maksimum berbanding masa CPU diambil. Bilangan penilaian fungsi bagi
semua kaedah yang diterbitkan dan kaedah sedia ada yang terpilih dikira dengan
titik akhir dan saiz langkah yang berbeza. Keputusan menunjukkan kaedah yang
diterbitkan dalam kajian ini cekap dalam menyelesaikan persamaan pembezaan biasa
umum dan istimewa peringkat ketiga dan juga PPLT peringkat ketiga.

iv
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CHAPTER 1

INTRODUCTION

1.1 Differential Equations

Differential equations are mathematical equations or formulas for unknown
functions comprise of one or a few variables that associate with the values of the
function itself to its derivatives of various orders. Also, differential equations can
be expressed as the equations which comprise of dependent variables with respect
to other independent variable. Various disciplines such as physics, medicines,
biology, economics and astronomy can be formulated through differential equations.
In medical field, differential equations are utilised to model spread of disease,
outlining dynamics of infectious diseases and constructing control strategies to limit
evolution and spread of diseases. In economics, differential equations are used to
figure out optimum investments strategies, gross domestic product, consumption,
income and investment. In biology, differential equations can be utilised to model
biological processes on various levels ranging from DNA molecules or biosynthesis
phospholipids on the cellular level. There are numerous types of differential
equations, consist of ordinary, delay, partial and fractional differential equations.

1.1.1 Ordinary differential equations

Ordinary differential equations (ODEs) with initial value problem(IVPs) can be
defined as:

u(n+1) = f (t,u(t),u′(t),u′′(t), ...,u(n)(t)) (1.1)

where

u(0) = u0,u
′(0) = u′0, ...,u

(n)(0) = u(n)0 , t ≥ 0.

and n is the order of differential equation.

Theorem 1.1 Let m1,m2, ...,mn, f all continuous functions on the open
interval, I such that x0 ∈ I. Then the linear differential equation with order-
n, u(n) + m1u(n−1) + ... + mn−1u′ + mnu = f (t) with the initial conditions
u(x0) = u0,u′(x0) = u′0, ...,u

(n−1)(x0) = u(n−1)
0 , has a unique solution u = φ(x)

throughout the interval (Gustafson and Wilcox, 1998).

In this research, the conditions of the theorem are satisfied by the third-order linear
ordinary differential equations in (1.1) with n=3.
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1.1.1.1 Criteria of Oscillatory and Nonoscillatory for Third-order Linear
Differential Equations

Criteria of oscillatory and nonoscillatory for third-order ordinary differential
equations referred to Ghawadri et al. (2018) are mentioned as follow

u′′′(x)+α(t)u′(x)+β (x)u(x) = 0. (1.2)

The solution of equation (1.2) is oscillatory if both α(x) and β (x) are constant,
negative and fulfil the following requirement:

−β (x)− 2
3
√

3
(−α(x))3/2 > 0, (1.3)

then two linear independent oscillatory solutions are exist and zeroes of any
oscillatory solutions are split in which the oscillatory solution of equation (1.3) is
linear combination of them. The solution of equation (1.3) is oscillatory iff it has
infinity of zeroes clustering in (0,+∞) and nonoscillatory if and only if it has finite
number of zeroes in (0,+∞) (Lazer, 1966). We focus on the condition β (x) = 0 as
follow:

1. u′′′(x) = α(x)u′(x),α(x) > 0, the solution of characteristic roots equations
contains exponential function if that equations are real and one of them is
zero.

2. u′′′(x) = −α(x)u′(x),α(x) > 0, the solution of characteristic roots equations
contains oscillatory function if that equations are real and another two are
conjugate roots.

1.1.2 Delay differential equations

Delay differential equations (DDEs) is differential equations where the state variable
appears with delayed term and the time derivatives at the current time depend on
the solution and its derivative at previous times. There are various type of DDEs,
comprised of retarded DDE, variable DDE, state-dependent DDE, neutral DDE and
stochastic DDE (Bellen and Zennaro, 2003). Among these DDEs, retarded DDEs,
has been widely used in various fields, including disease modelling, homoclinic
and heteroclinic bifurcations, population dynamics. The solution of this type of
DDE depends on not only a single initial condition at time, t = t0, but also on the
former history of the system. Time delay, τ in the constant time-delay system can be
categorized into a discrete delay, derivative-dependent delay, state-dependent delay
and time-dependent delay, which serves as the previous critical information that is
important to approximate the solutions at forthcoming times. In engineering field,
time delays are utilised in controlling feedback loops which is crucial to stabilise
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and control output system. Several methods arised to solve delay differential
equations. Variational iteration and homotopy perturbation methods are used to
solve delay differential equations in electrodynamics (Kocak and Yildirim, 2009).
Pseudo-inverse method with Galerkin approximations can be used to predict
feedback gain for closed-loop control system which includes time-periodic delay.
(Kandala and Vyasarayani, 2018).

In general, retarded delay differential equation consists of delay value, u(n)(x− τi),
τi = τi(x,u(x), ...,u(n−1)(x)), i = 0, ...,n− 1 without the delay in state derivative
value and is given by

u(n) = f (x,u(x),u′(x),u′′(x), ...,u(n−1)(x),u(x− τ0),u
′(x− τ1),u

′′(x− τ2), ...,

u(n−1)(x− τn−1)), x ∈ [v,w].
(1.4)

where

u(k)(t) = φ
(k)(t), k = 0,1, ...,n−1, x≤ v,

and n is the order of differential equation, τ is the delay term of the system, x− τ is
the delay argument.

Meanwhile, neutral delay differential equation involve both solutions of the delay
values, u(k)(x−τk), k = 0, ...,n−1 and the derivative of state variable itself, u(n)(x−
τn), which can be presented as follow:

u(n) = f (x,u(x),u′(x),u′′(x), ...,u(n−1)(x),u(x− τ0),u
′(x− τ1), ...,

u′′(x− τ2), ...,u
(n−1)(x− τn−1),u

(n)(x− τn)), x ∈ [v,w],
(1.5)

where

u(k)(t) = φ
(k)(t), k = 0,1, ...,n, x≤ v.

τi = τi(x,u(x), ...,u(n−1)(x)), i = 0, ...,n.

n is the order of differential equation, τi is the delay term of the system.

The delay term, τk is measurable as physical quantity that is scalar in function.
Function f in both equations (1.4) and (1.5) are assumed to be continuous and non-
negative as well as satisfies the Lipschitz condition in u(t) for all x ∈ [v,w]. Initial
function, φ(t) which is known to be defined in [ρ,x0], where

ρ = min
1≤i≤n

{ min
1≤i≤n

(x− τk)}. (1.6)

Based on the idea derived by Bellen and Zennaro (2003), the delay term can be
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categorised into three conditions, comprising constant delay case (τk is a constant),
variable or time-dependent delay case (τk = τk(t)) and state-dependent delay case
(τk = τk(t,u(t), ...,u(n−1)(t))). In this thesis, we focus on solving general and
special type of third-order ordinary differential equations and third-order retarded
delay differential equations with constant delay. The types of third-order retarded
DDEs we focus throughout the thesis are as follow:

Type I RDDE:

u′′′ = f (x,u(x),u(x− τ)), x ∈ [x0,xn],

u(x0) = u0, u′(x0) = u′0, u′′(x0) = u′′0 .
(1.7)

Type II RDDE:

u′′′ = f (x,u(x),u′(x− τ),u′′(x− τ)), x ∈ [x0,xn],

u(x0) = u0, u′(x0) = u′0, u′′(x0) = u′′0 .
(1.8)

1.2 Two-derivative Runge-Kutta method

The general formula of s-stage explicit two-derivative Runge-Kutta method for
numerical integration of first-order initial value problems (IVPs) as proposed by
Chan and Tsai (2010) in the form of

un+1 = un +h
s

∑
i=1

bi f (tn + cih,Ui)+h2
s

∑
i=1

Big(tn + cih,Ui) ,

Ui = un +h
s

∑
j=1

ai, j f
(
tn + cih,U j

)
+h2

s

∑
j=1

Ai, jg
(
tn + cih,U j

)
, (1.9)

where i = 1, ...,s for i≥ j and g-evaluation is the derivative of f -evaluation.

General formula of s-stage explicit two-derivative Runge-Kutta Nyström method for
numerical integration of second-order initial value problems (IVPs) as proposed by
Chen et al. (2015b) is as follow

un+1 = un +hu′n +h2
s

∑
i=1

bi f
(
tn + cih,Ui,U ′i

)
+h3

s

∑
i=1

Big(tn + cih,Ui) ,

Ui = un +hciu′n +h2
s

∑
j=1

ai, j f
(
tn + cih,U j,Ui

)
+h3

s

∑
j=1

Ai, jg
(
tn + cih,U j

)
,

(1.10)

i = 1, ...,s for i≥ j.
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Lately, there are some modifications are done for the classical two-derivative Runge-
Kutta methods into special form in order to reduce the computational cost by
replacing multiple f -evaluations reduced into one (Chan and Tsai, 2010). The s-
stage explicit two-derivative Runge-Kutta method for solving first-order ODEs is
defined as

un+1 = un +h f (tn,un)+h2
s

∑
i=1

big(tn + cih,Ui) ,

Ui = un + cih f (tn,un)+h2
s

∑
j=1

ai, jg
(
tn + cih,U j

)
, (1.11)

where i = 1, ...,s for i ≥ j. The coefficients of bi,ci and ai, j can be represented in
Butcher tableau in Table 1.1.

Table 1.1: Two-derivative Runge-Kutta methods for integrating first-order
ODEs in Butcher tableau

0 0
c1 a2,1 0
c2 a3,1 a3,2 0
...

...
...

. . . . . .

cs as,1 as,2
. . . as,s−1 0

b1 b2 . . . bs−1 bs

The general formula of s-stage explicit two-derivative Runge-Kutta method for
numerical integration of second-order initial value problems (IVPs)

un+1 = un +hu′n +
h2

2
f (tn,un,u′n)+h3

s

∑
i=1

big
(
tn + cih,Ui,U ′i

)
,

Ui = un + cihu′n +
h2

2
f (tn,un,u′n)+h3

s

∑
j=1

ai, jg
(

tn + cih,U j,U ′j
)
,

U ′i = u′n + cih f (tn,un,u′n)+h2
s

∑
j=1

a′i, jg
(

tn + cih,U j,U ′j
)
,

where i = 1, ...,s for i ≥ j and g-evaluation is the derivative of f -evaluation. The
coefficients of bi,ci, ai, j and a′i, j can be represented in Butcher tableau in Table 1.2.
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Table 1.2: Two-derivative Runge-Kutta methods for integrating second-order
ODEs in Butcher tableau

0 0 0
c1 a2,1 0 a′2,1 0
c2 a3,1 a3,2 0 a′3,1 a′3,2 0
...

...
...

. . . . . .
...

...
. . . . . .

cs as,1 as,2
. . . as,s−1 0 a′s,1 a′s,2

. . . a′s,s−1 0

b1 b2 . . . bs−1 bs b′1 b′2 . . . b′s−1 b′s

1.3 B-series and Rooted tree theory

B-series, also indicated as Butcher series, is a well-known algebraic method for
interpreting numerical solutions of ordinary differential equations, which comprised
of approximate solutions. The numerical properties of the numerical methods can
be determined and assessed through the formulation and interpretation of B-series.
In recent, B-series is highly utilised as the apporach to construct high-order and
effective methods, particularly Runge-Kutta methods and multivalue methods.

For general first-order ODEs, let u : R→ Rd be an analytic function satisfying an
ordinary differential equation u′(t) = f (u(t)), we can denote the B-series of u in the
form as follow:

B(a,u) = a( /0)u+ ∑
t∈RT

hρ(t)

σ(t)
a(t)F(t)(u). (1.12)

where F(t)(u) is called elementary differential attached with the tree t provided
that the differential equations u′ = f ((u(t)) and evaluated at point u, RT is the set
of rooted trees, a(t) ∈ R is the coefficient for the series with tree t, σ(t) ∈ R is the
integer function of tree t, h ∈ R is the stepsize of t and ρ(t) is the order of the tree t.

In the B-series for the results computed by Runge-Kutta method, a(t) represents
the elementary weight based on the coefficients of the Runge-Kutta method. Given
Runge-Kutta method defined by the Butcher tableau (see Table 1.3)

Table 1.3: Runge-Kutta method in Butcher tableau

c A
bT
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where the interrelated elementary weight for the stage number i, elementary weight
Ψ(t) for the method that are corresponding to a tree t can be formulated as follow:

Ψi(τ) = ci,

Ψ(τ) =
s

∑
i=1

bi

Ψi([t1, t2, ..., tn]) =
s

∑
j=1

ai, jΨ j(t1)Ψ j(t2) · · ·Ψ j(tn)

Ψ([t1, t2, ..., tn]) =
s

∑
j=1

biΨ j(t1)Ψ j(t2) · · ·Ψ j(tn) (1.13)

Rooted tree is a connected acyclic graph which contains of specific vertex designated
to be the root. The tree t = [t1, t2, · · · tn] is formed by defining a vertex, which consist
of the root t, attaching the original roots of t1, t2, ..., tn to the root of t. The set of the
rooted trees can be presented as follow:

40 J. C. Butcher

2 Trees and elementary differentials

The starting point is the set of rooted-trees:

T =

{
. . .

}

We can generate members of T recursively by starting with

τ =

and using the operation [·] defined by the following diagram for [t1t2 · · · tm]

· · ·t1 t2 tm

Thus, the tree t = [t1t2 · · · tm] is formed by introducing a vertex, which serves as the root of t, and
attaching the original roots of t1, t2, . . . , tm to the root of t. If there are repetitions amongst the
ti, it is sometimes convenient to write

t = [tk1
1 tk2

2 · · · tkn
n ].

Examples of this notation are shown in Table 1. It is possible to construct functions on T using
this recursion. The order, defined as the number of vertices and written r(t), satisfies the recursion

r(t) =

{
1, t = τ,
1 + r(t1) + r(t2) + · · ·+ r(tm), t = [t1t2 · · · tm].

The symmetry, denoted by σ(t) is defined from the recursion

σ(t) =

{
1, t = τ,∏n

i=1 ki!σ(ti)
ki , t = [tk1

1 tk2
2 · · · tkn

n ].

The density, γ(t), is defined by

γ(t) =

{
1, t = τ,
r(t)γ(t1)γ(t2) · · · γ(tm), t = [t1t2 · · · tm].

Given an autonomous initial value problem

y′(x) = f(y(x)), y(x0) = y0,

certain expressions known as “elementary differentials” arise in the study of the Taylor series for
this problem. To construct these quantities, we need to introduce values of f , f ′, f ′′ evaluated at
y(x). Denote these by

f , f ′, f ′′, . . .

The elementary differential F (t)(y0) is defined making use of f , f ′, f ′′, etc with y(x) replaced by y0.

F (t)(y0) ={
f , t = τ,

f (m)(F (t1)(y0), F (t2)(y0), . . . , F (tm)(y0)), t = [t1t2 · · · tm].

The various functions that have been introduced are included in Figure 1.
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n

The tree t = [t1, t2, ..., tn] is formed by introducing a vertex, which contains root of t
and connecting the set of trees, t1, t2, ..., tn. If there exists repetitions in tree t, it can
be writen as

t =
[
t
k1
1 , tkn

n , ..., tkn
n

]
. (1.14)

The order of rooted tree, which represents the number of vertices of tree t can be
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denoted as ρ(t) satisfies the recursion function

ρ(t) =

{
1, t = τ

1+ρ(t1)+ρ(t2)+ ...+ρ(tn), t = [t1, t2, ..., tn].
(1.15)

The symmetry, σ(t) is defined from the recursion

σ(t) =

{
1, t = τ

1+∏
n
i=1 ki!σ(ti)ki , t = [t1, t2, ..., tn].

(1.16)

Also, the real function a(t) can be prescribed as

a( /0) = 1, a(t) =
1

γ(t)
, t ∈ T (1.17)

where the density, γ(t) is defined as

γ(t) =

{
1, t = τ

ρ(t)γ1(t)γ2(t) · · ·γn(t), t = [t1, t2, ..., tn].
(1.18)

Autonomous initial value problem of first order ODEs is given by

u′(t) = f (u(t)), u(t0) = u0, (1.19)

elementary differentials F(t)(u0) arise in the Taylor series for this problem. The
elementary differential is defined making use of f , f ′, f ′′ with u(t) replaced by u0

F(t)(u0) =

{
f , t = τ

f (n)(F(t1)(u0),), t = [t1, t2, ..., tn].
(1.20)

The tree function of Runge-Kutta method is demostrated in figure below (see Table
1.4).
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Table 1.4: Tree function of Runge-Kutta method up to four vertices

B-series coefficients 41

Table 1: Examples of tree functions

t r(t) σ(t) γ(t) F (t)(y0)
τ 1 1 1 f

[τ ] 2 1 2 f ′f

[τ2] 3 2 3 f ′′(f , f)

[[τ ]] 3 1 6 f ′f ′f

[τ3] 4 6 4 f ′′′(f , f , f)

[τ [τ ]] 4 1 8 f ′′(f , f ′f)

[[τ2]] 4 2 12 f ′f ′′(f , f)

[[[τ ]]] 4 1 24 f ′f ′f ′f

3 B-series and elementary weights

Recall the formula for B-series (1). The special case in which

a(∅) = 1, a(t) =
1

γ(t)
, t ∈ T,

is of particular interest because it is the Taylor expansion for the exact solution to an initial value
problem.

In the B-series for the result computed by a Runge–Kutta method, a(t) is equal to the “elemen-
tary weight” constructed from the coefficients of the specific method. If the elementary differentials
do not actually exist, the coefficients a(t) still have a significance and they still characterise the
specific Runge–Kutta method from which they were defined.

Given a Runge–Kutta method defined by the tableau

c A
b⊤

,

the corresponding elementary weight Φ(t) for the method and the elementary weight for stage
number i, corresponding to a tree t is given by the recursion

Φi(τ) = ci, i = 1, 2, . . . , s,

Φ(τ) =

s∑

j=1

bj ,

Φi([t1t2 . . . tk]) =

s∑

j=1

aijΦj(t1)Φj(t2) · · ·Φj(tk), i = 1, 2, . . . , s,

Φ([t1t2 . . . tk]) =
s∑

j=1

bjΦj(t1)Φj(t2) · · ·Φj(tk).

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

uρ

1.4 Problem Statement

We consider the solution of general and special third-order ordinary differential
equations (ODEs) and delay differential equations (DDEs) with both oscillatory
and nonoscillatory solutions using two-derivative Runge-Kutta type methods. A
lot of Runge-Kutta type methods are derived recently with high algebraic order to
acquire less dispersion and dissipation error for solving particular ODEs and DDEs.
Hence, various fitting techniques are implemented to the classical Runge-Kutta type
methods to produce some methods with zero dispersion and dissipation. Hence,
two-derivative approach is implemented into the formulation of Runge-Kutta type
methods to improve the accuracy of the solutions with less computational cost.

We concern about constructing two-derivative Runge-Kutta type methods with
yielding less error and less computational cost. The conventional approach
is by developing two-derivative Runge-Kutta type method using Taylor series
expansion and algebraic simplification method and mainly deals with second-order
ordinary differential equations. However, not much two-derivative Runge-Kutta
type methods are developed by researchers to solve third-order ODEs and some
application problems such as thin-film flow and genesio problems. Hence we are
motivated to propose two-derivative Runge-Kutta type methods with classical and
improved version which acquire higher accuracy and less computational time.

It is possible to extend the works into the derivation of two-derivative Runge-Kutta
type methods with fitting techniques for solving third-order ODEs with exponential
and trigonometrical solutions. Exponentially-fitting and trigonometrically-fitting
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techniques are implemented into both classical and improved two-derivative Runge-
Kutta type methods which should provide significant improvement in accuracy
numerically.

1.5 Objectives of the Study

The construction of efficient direct methods based on Explicit Two-Derivative
Runge-Kutta type methods and Explicit Two-Derivative Improved Runge-Kutta type
methods for numerical integration of general and special type third-order ODEs,
type I and type II RDDEs for constant step size mode. Both methods are extended to
solve exponential and oscillatory third-order ODEs by the implementation of fitting
techniques. The main objectives of this thesis are proposed as below:

1. To develop two-derivative Runge-Kutta type method for solving general third-
order ODEs through B-series and rooted tree theory.

2. To develop two-derivative Runge-Kutta type method for solving special third-
order ODEs in the form of u′′′ = f (x,u(x)) through B-series and rooted tree
theory and extended to solve type I RDDEs with Newton interpolation.

3. To construct exponentially-fitted and trigonometrically-fitted two-derivative
Runge-Kutta type method for integrating third-order ODEs with exponential
and oscillatory solutions.

4. To develop two-derivative Improved Runge-Kutta type with inclusive of
previous increment term for solving special third-order ODEs and type II
RDDEs with Newton interpolation.

5. To construct exponentially-fitted and trigonometrically-fitted two-derivative
Improved Runge-Kutta type methods for numerical integrating third-order
ODEs with exponential and oscillatory solutions.

1.6 Scope of Study

This study focuses on the derivation of GTDRKT methods for solving general
third-order ODEs. Then, TDRKT methods are constructed based on B-series and
rooted tree theory and solve third-order special type of ODEs and retarded DDEs.
In addition, exponentially-fitted and trigonometrically-fitted TDRKT methods is
developed using order condition and frequency principle and these methods are used
to solve third-order ODEs with exponential and oscillatory solutions. Then, we
concentrate on developing improved TDRKT methods, whereby the previous terms,
b−i,k−i are included in the formulation and utilised to solve third-order ODEs in the
form of u′′′ = f (x,u′(x),u′′(x)). Improved TDRKT methods are then extended to
solve third-order ODEs with exponential and oscillatory solutions by implementing
exponentially and trigonometrically fitting techniques.
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1.7 Outline of the Thesis

In this section, we provide a brief description of the thesis. Chapter 1 begins with the
introduction of the general formulation of two-derivative Runge-Kutta type method.
B-series and rooted tree theory, which are crucial to develop order conditions for
Runge-Kutta methods are introduced subsequently. Chapter 2 provides the reviews
of previous works on B-series and numerical solutions for solving third-order ODEs
and DDEs.

In Chapter 3, the derivation of explicit two-derivative Runge-Kutta type methods
are presented for solving third-order general ordinary differential equations (ODEs).
The derivation of order conditions for two-derivative Runge-Kutta type method
using B-series and rooted tree theory are proposed. Stability, consistency and
convergence of purposed methods are studied and the methods are used to solve
general third-order ODEs. In Chapter 4, B-series and rooted tree theory is applied
again for the derivation of explicit two-derivative Runge-Kutta type, TDRKT
methods are presented for solving third-order ODEs in the form of u′′′ = f (t,u(t))
and type I RDDEs. Stability and D-convergence for TDRKT methods applied
to type I RDDEs are discussed. The applications of the purposed methods in
comparison with other existing methods are shown for solving numerical problems.

In Chapter 5, exponentially-fitted and trigonometrically-fitted two-derivative Runge-
Kutta type methods are derived for solving third-order ODEs with exponential and
oscillatory solutions. Fifth-order and sixth-order proposed methods are developed
based on idea of integrating IVPs exactly with numerical solution in the form linear
composition of the set functions eωt and e−ωt for exponentially-fitted and eiωt

and e−iωt for trigonometrically-fitted. Numerical solutions illustrate efficiency of
the purposed methods compared to existing methods for integrating third-order
ODEs with exponential and oscillatory solutions. Chapter 6 discussed the technique
of implementation of previous term, k−i and b−i into the formulation to derive
improved two-derivative Runge-Kutta type methods for solving third-order ODEs.
Fifth-order and sixth-order with improved Runge-Kutta type methods is presented
and used to solve third-order ODEs and type II RDDEs in this chapter.

Chapter 7 begins with the construction of improved two-derivative Runge-
Kutta type method with exponentially-fitting and trigonometrially-fitting technique.
Coefficients of the proposed methods with principle frequency based are derived.
Error analysis of the purposed methods is investigated. The applications of
these proposed methods for solving exponential and oscillatory ODEs are shown.
Finally, conclusion of the thesis is provided in Chapter 8 and future work is also
recommended.
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