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Institute: Mathematical Research

The many-body physics in physics require the use of Thermal Field Theory (TFT) 
or statistical field theory m ethods. TFT can describe a  large ensemble of interact-

ing particles in a thermodynamic environment. However, it will involve the use of 
path integral techniques, the ability to calculate for abelian interactions like quantum 
electrodynamics (QED) and non-abelian interactions like quantum chromodynam-

ics (QCD). The first success o f T FT was a n u nderstanding a nd q uantitative study 
of phase transitions (or phase changes) of the matter within quantum field theory 
(QFT). There are two formalisms of TFT or QFT at finite temperature in Real Time. 
Real Time Formalism (RTF) is fully consistent with some suitable changes in the 
structure of the Bogoliubov transformation (BT). In the complex t plane, there is a 
one-parameter family of paths within RTF. This parameter is σ , which manifests in 
the Feynman rules for two popular choices of propagators, and they are σ = 0,1/2. 
The first choice for the path i s a  closed contour when σ  = 0 , which explains why 
the associated formalism is known as closed-time path (CTP) formalism. The sec-

ond choice for path parameter σ reproduces the Feynman rules of an operatorial 
approach to quantum thermal field theory known as ThermoField Dynamics (TFD) 
in which this parameter equals to 1/2. The propagator was given in the momentum 
space, but it is also appropriate to work in the mixed coordinates where the Green’s 
functions are defined as functions of the time coordinate and the spatial momentum. 
The propagator in mixed space showed that there is an unexpected simple relation be-

tween any temperature dependent T �= 0 graph and its temperature independent T = 0 
counterpart, through a multiplicative scalar operator which carried the entire temper-

ature dependence. In RTF, we usually use Boltzmann-Gibbs (BG) statistics to study 
the condensed matter phenomena like QED plasma and QCD plasmas, the early uni-

verse including other many-body physics phenomena. In this thesis, we have shown 
systematically that an operator description for a theory defined in RTF with an ar-

bitrary σ does indeed exist. Therefore, some works gathering those formalisms are
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given through two popular choices for contour parameter σ , i.e. σ = 0 and 1/2

for both CTP and TFD, respectively. By analogy, the viewpoint suggests modifying

Transformation Matrix by adding a new parameter λ and use the new transformation

in the definition of the thermal propagator, which leads to the fermion field propa-

gator as well to the scalar field propagator, for specific values of λ . Then, we com-

pute the scalar propagator, and tadpole self-energies within scalar QED. However,

we want to treat them in a systematic and comprehensive way when one considers

these components of propagator in different bases. Thereafter, we use those compo-

nents to compute the tadpole self-energies in momentum space and the mixed space

(momentum-time) within RTF. Hence, we have studied explicitly the photon-photon

interaction within RTF (for any value of the arbitrary parameter σ ), which allows for

a path integral description. Indeed, the photon interaction has an application with the

cosmic microwave background (CMB) radiation. Note that the photon self-energy

is the same for both approaches in RTF, in which one considers the relevant effec-

tive 2n-photon vertex in a thermal photon gas where n ≥ 2 at low energy within

QED in both spaces. In addition, we constructed the propagator in TFD with Tsallis

statistics. Next we consider two applications: the thermal photon-photon interac-

tion within QED at low energy for scalar Tsallis thermal propagator, and the phase

of e+e− annihilation into hadrons is considered through a single photon exchange

within QCD at high temperature for fermion Tsallis thermal propagator. In addition,

we have observed that a non-extensive MIT bag equation of state obtained with the

help of the Tsallis distributions given. Our study is relevant to the Deconfinement

Phase Transition from a Hadronic Gas (HG) to a Quark-Gluon Plasma (QGP) or

Partonic Plasma (PP). We investigate the behavior of some thermodynamic quanti-

ties of the system, such as the energy density, the pressure, the interaction measure

and entropy.
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MOHAMMED ABDULMALEK ABDULRAHEEM AHMED

Jun 2022

Pengerusi: Hishamuddin Bin Zainuddin, PhD
Institut: Penyelidikan Matematik

Masalah berbilang-jasad dalam fizik memerlukan penggunaan Teori Medan Terma

(TMT) atau kaedah teori medan statistik. TMT dapat memerihal suatu ensembel

besar zarah-zarah bersaling tindak dalam persekitaran termodinamik. Namun, ini

melibatkan penggunaan teknik kamiran lintasan dan kebolehan untuk mengira sal-

ing tindakan abelan seperti teori elektrodinamik kuantum (EDK) dan saling tindakan

tak-abelan seperti kromodinamik kuantum (KDK). Kejayaan pertama TMT adalah

kefahaman dan kajian kuantitatif peralihan fasa (atau perubahan fasa) bagi jirim

dalam teori medan kuantum (TMK). Terdapat dua formalisme TMT atau TMK pada

suhu terhingga bagi masa nyata. Formalisme Masa Nyata (FMN) adalah konsisten

sepenuhnya dengan beberapa perubahan dalam struktur matriks transformasi Bo-

goliubov (BT) yang dibuat. Dalam satah t kompleks, terdapat famili lintasan satu

parameter dalam FMN. Parameter ini adalah σ yang tampak dalam petua Feynman

bagi dua pilihan popular dalam perambat iaitu σ = 0,1/2. Pilihan pertama lintasan

adalah kontur tertutup apabila σ = 0, yang menjelaskan kenapa formalisme berkaitan

dipanggil formalisme lintasan masa-tertutup (LMT). Pilihan kedua bagi parameter

lintasan σ menerbit semula petua Feynman bagi pendekatan operator kepada teori

medan terma yang dikenali sebagai Dinamik MedanTermo (DMT), apabila parame-

ter bersamaan dengan 1/2. Perambat ini diberi dalam ruang momentum, sementara

itu ia turut berlaku dalam koordinat campuran apabila fungsi Green ditakrif sebagai

fungsi koordinat masa dan momentum spatial. Perambat dalam ruang campuran ini

menunjukkan bahawa terdapat hubungan mudah antara graf bersandar keada suhu

T �= 0 dengan padanan T = 0 yang tak bersandar kepada suhu, melalui suatu op-

erator scalar pendaraban yang membawa keseluruhan persandaran suhunya. Dalam

FMN, lazimnya kita menggunakan statistik Boltzmann-Gibbs (BG) untuk mengkaji

fenomena jirim terkondensasi seperti plasma EDQ dan plasma KDK, alam semesta

awal serta pelbagai fizik berbilang jasad. Dakan tesis ini, kita dapat tunjukkan se-

cara sistematik bahawa perihalan operator bagi teori tertakrif dalam FMN dengan
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sebarangan σ turut wujud. Dengan itu, beberapa kajian mengumpulkan formalisme-

formalisme tersebut melalui dua pilihan popular parameter kontur σ , iaitu σ = 0

dan 1/2 bagi masing-masing LMT dan DMT dibuat. Secara analogi, pandnagan

yang disarankan adalah untuk mengubah Matriks Transformasi dengan menambah

suatu parameter baharu λ dan menggunakan transformasi baharu ini dalam takrifan

perambat terma yang membawa kepada perambat medan fermion dan juga peram-

bat medan skalar bagi beberapa nilai tentu λ . Kemudian, kami kirakan perambat

skalar, dan swa-tenaga gelung tunggal dalam EDK scalar, namun, kta berkehen-

dakkan suatu pengolagan yang sistematik dan komprehensif apabila mempertim-

bangkan komponen-komponen kuantiti tersebut dalam asa berlainan. Sejurus itu,

kita gunakan komponen tersebut untuk mengira swa-tenaga gelung tunggal dalam

ruang momentum dan ruang campuran (momentum-masa) dalam FMN. Dengan itu,

kita kaji secara eksplisit, saling tindakan foton-foton dalam RTF (bagi setiap nilai

parameter sebarangan σ ) yang membolehkan perihalan kamiran lintasan. Malahan,

saling tindakan foton dalam sinaran mikrogelombang latarbelakang (SML) telah

diambil sebagai suatu aplikasi. Perhatikan bahawa swa-tenaga foton adalah sama

dalam kedua-dua pendekatan dalam RTF, yang mana verteks 2n-foton relevan dalam

gas foton pada tenaga rendah dalam EDK bagi kedua-dua ruang. Sebagai tambahan,

kita bangunkan perambat dalam FMN bagi statistik TG. Kemudian, kita pertimbang

dua aplikasi: saling tindakan foton-foton terma dalam EDK pada tenaga rendah bagi

perambat terma Tsallis skalar, dan pertimbangan fasa pemusnahan e+e− ke hadron

melalui tukar-ganti foton tunggal dalam KDK pada suhu tinggi bagi perambat terma

fermion Tsallis. Sebagai tambahan, kita turut menjumpai persamaan keadaan beg

MIT tak-ekstensif, diperolehi dengan bantuan taburan Tsallis. Kajian kita adalah

relevan kepada Peralihan Fasa Nyahkurungan dari gas hadronic (HG) ke Plasma

Quark-Gluon (PQG) atau Plasma Parton (PP). Kita turut kaji perlakuan beberapa

kuantiti termodinamik sistem, seperti ketumpatan tenaga, tekanan, ukuran saling tin-

dakan dan entropi.
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CHAPTER 1

INTRODUCTION

1.1 Brief Introduction to thermal field theory

In Quantum Field Theory (QFT) at zero temperature is often assumed to ignore its

computations in this level of energy. This is because, under typical conditions, ther-

mal energy is too small to excite virtual particles; for example, at ambient tem-

perature, T = 273K, thermal energy is just 25× 10−3 eV, despite the fact that an

electron’s rest energy is 511 keV. However, given the incredibly high temperatures

that dominate the early cosmos, their contributions cannot be ignored. This will be

critical for the mechanism of particle creation. Thermal field theory will be used to

investigate these contributions. To describe a Thermal Field Theory (TFT), there are

two commonly used real time formalisms (RTF). The first is the Schwinger-Keldysh

formalism (also known as the closed time path formalism (CTP)). Secondly, an oper-

ator formalism, called ThermoField Dynamics (TFD), was suggested by Takahashi

and Umezawa. Both approaches are tailor-made for calculating Green functions

(Schwinger (1961); Keldysh (1965); Takahashi and Umezawa (1996)). While the

complete theory can be reconstructed from Green functions in principle, for practical

and theoretical reasons, an operator formulation of TFT may be useful. In particular,

it could illustrate why it is important to double the degrees of freedom for the real

time formalism, and the standard Green’s function is replaced by four Green’s func-

tions with arguments on two different parts of the corresponding integration contour

represented by 2×2 matrix in both formalisms CTP and TFD. However, in contrast

to TFD, there are no mutually commuting representations of the basic operator al-

gebra. The RTF represents the propagators of fermionic and scalar bosonic fields in

matrix form. So, a close comparison between the CTP and TFD can be made. We

find that TFD and CTP are in many ways the same in form; in particular, the two

approaches are identical in stationary situations. However, TFD and CTP are quite

different in time-dependent out of equilibrium situations. The main source of this

difference is that the time evolution of the density matrix itself is ignored in CTP

while in TFD it is replaced by a time-dependent Bogoliubov transformation (BT).

The BT constructed which connects the doubling of field degrees of freedom in the

RTF of the non thermal vacuum state to the thermal vacuum in this case, leads to

Green’s function at finite temperature “propagator” as an expectation value in the

thermal vacuum. The RTF can be applied to describe the systems in thermal equi-

librium, and also on an extension to describe nonequilibrium situations. As well in

RTF, the number of independent fields doubles as mentioned earlier. Instead of a sin-

gle scalar field φ , we encounter two scalar fields, φ1 and φ2, called type-1 and type-2

fields, respectively. In other words, we have two types of vertex now, where each

type has only fields that emerge from it and has its usual value, e.g. the four-particle

vertex, fields of type-2 are not mixed with fields of type-1. Because of the anti-time

ordering, the vertex involving fields of type-2 has a relative minus sign. The prop-

agator at finite temperature is given in many works for the momentum space. In

1
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TFT, we can use Fourier transformed to represent the propagator in the mixed space

at finite temperature. Fourier transforming these elements of the propagator in the

energy variable, this transformation leads to obtaining the propagator for the general

contour, in the mixed space. The transformed propagator is a function of time and

the spatial component of momentum. Such a (mixed space) representation is quite

helpful to study some graphs at finite temperature.

In RTF, the elements of the propagator matrix are usually given in the momentum

space. It is simple to check that the basic finite temperature propagator factorizes

again by Fourier transforming this to mixed space. What is more impressive is that

although the propagator is a matrix, each element of the matrix can be factorised by

the same thermal operator (Das (2006); Das et al. (2018)). In this regard, the first ele-

ment of the propagator consists of the sum of two parts; the first one is a non-thermal

part, and the second is the thermal part, and the integration is taken over a real, con-

tinuous, energy p0 with the presence of the delta function. The finite temperature

contribution is trivial to obtain, thus suggesting the possibility of a “real time” per-

turbation theory (Kapusta and Gale (2006)). It is interesting that perturbation theory

at finite temperature can be formulated directly in both RTF and ITF. The RTF will be

adopted in this thesis. In RTF, we usually use the Boltzmann-Gibbs (BG) statistics to

study condensed matter phenomena like hot and dense plasmas, then early universe,

many-body physics and so on. As we know, the Gaussian distribution is signature of

the BG statistical mechanics (Tsallis (1988)). There are, however, quasi-stationary

states related to the q-Gaussian distributions (Tsallis (2009)). Analogous to Gaus-

sian distribution optimize BG-equilibrium states, q-Gaussians can play roughly the

same role in Tsallis statistics. Moreover, we can obtain BG statistics from Tsallis

statistics, when the parameter q goes to the unity, so we can say BG statistics is a

particular instance of Tsallis statistics.

1.2 Problem Statement

One of the main issues of real time thermal field theory is the many-body physics.

The problem here is to determine the thermal propagator of the system. There are

various approaches to study the thermal effect. Some researchers compute the one-

loop in scalar QED for the photon in the momentum space and the 1/2 basis. On the

other side, it is not easy to study the scalar propagator and the fermion propagator at

finite temperature for Tsallis statistics. This motivates us to find a generalization of

the thermal matrix, study the photon self-energy in the mixed space in a new basis,

and construct ThermoField Dynamic with Tsallis statistics and introduce some ap-

plications. In many-body physics, the TFT has been used to describe response func-

tions, namely the mean value of physical observables such as energy, free energy,

entropy, and so on, which will be completely parallel to the TFT at zero temperature.

This necessitates the development of a method for calculating physical mean values.

As a result, we should employ propagators at finite temperature in RTF. In the Real

Time Thermal Field Theory, there is a one-parameter family of paths in the complex

2



© C
OPYRIG

HT U
PM

t. This parameter σ has two popular choices appearing in the Feynman rules for the

elements of the propagator in momentum space (Schwinger (1961); Keldysh (1965);

Takahashi and Umezawa (1996); Gozzi and Penco (2011); Das and Kalauni (2016)).

To construct the thermal propagator in the mixed space we use Fourier transformed to

represent the thermal propagator in the mixed Das (2006); Das et al. (2018), which is

of our interest here. In our research, we are interested in the transformations matrix at

finite temperature for the general path (Xu (1996)). We introduce a very convenient

representation, which is constructed from linear combinations of the components of

the RTF, for both scalar and fermion fields. The results are represented the propa-

gators with the chemical potential in both spaces momentum and mixed (Lundberg

and Pasechnik (2021)). We next construct the thermal scalar propagator and a tad-

pole self-energy in two different bases in the momentum space (Chou et al. (1985);

Landsman and van Weert (1987); Smilga (1997); Ghiglieria et al. (2020)) as well as

the mixed space (Das (2006); Das et al. (2018)). Then, we proceed to study the pho-

ton self-energies for effective photon vertex, e.g. the tadpole diagram of photons for

the four-photon vertex within QED in one basis. In addition, there are some research

has emerged that studied the TFT of the Tsallis statistics (Rahaman et al. (2021))

in real time. This is our technique to investigate the thermodynamic variables of a

hot and dense system in TFD with Tsallis statistics, for which we will construct the

propagator in TFD with Tsallis statistics to study the thermal photon-photon inter-

action within QED. We will also study the phase of e+e− annihilation into hadrons

within QCD (Thoma (2000b); Chekerker et al. (2011)). This is relevant to the De-

confinement Phase Transition from a hadronic matter to a QGP (Bhattacharyya and

Mukherjee (2020)).

1.3 Objectives of Research

This work aims to understand better the thermal effect in many-body physics gov-

erned by quantum electrodynamics and quantum chromodynamics. The real time

thermal field theory is used to calculate some physical quantities describing these

systems at a finite temperature, unifying in equilibrium and out of equilibrium pro-

cesses due to the doubling of the degrees of freedom. This method allows us to study

the interactions of scalar and fermion fields in the momentum space as well as the

mixed space. Overall, the objectives of this research are as follows:

1. To generalize the thermal matrix transformation in RTF.

2. To study the thermal self energies in the momentum space as well as the mixed

space for two different bases in RTF.

3. To compute the thermal self-energy of photons in the momentum space as well

as the mixed space in the new basis.

4. To construct the propagator in TFD with Tsallis statistics.

5. To use TFD with TS to study the phase of e+e− annihilation into hadrons in

QCD, and Deconfinement Phase Transition from a HG to a QGP.
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1.4 Thesis Organization

The thesis comprises of nine chapters, and we briefly mention the layout of this

thesis as follows.

Chapter 1 gives a brief introduction, the problem statement, and the objectives of the

current research.

Chapter 2 includes an overview of relevant literature

Chapter 3 contains some definitions and relevant background information related to

the research conducted and the method applied.

Chapter 4 gives transformations matrix at finite-temperature in RTF with an arbitrary

parameter σ . The thermal propagator is presented for both scalar and fermion fields

with the chemical potential in both momentum and mixed spaces.

Chapter 5 introduces a systematic study for studying the scalar propagator and tad-

pole self-energy by considering an arbitrary parameter σ that allows for a path in-

tegral description in RTF. Next, the scalar propagator and a tadpole self-energy are

constructed in two different bases in the momentum space and the mixed space.

Chapter 6 we used the effective Lagrangian at a low temperature to study photon-

photon interaction in RTF with an arbitrary path σ within the new basis. The thermal

scalar propagator in the mixed space without chemical potential is introduced. We

then calculate some electromagnetic properties, such as dielectric tensor and velocity

of light from photon self-energy in the mixed space.

Chapter 7 presents the thermal propagator in ThermoField Dynamic with Tsallis

statistics for scalar field and fermion field. We then study two applications: the first

one in QED at low temperature and the second in QCD at high temperature.

Chapter 8 we give the distribution of particle in ThermoField Dynamic of the Tsallis

statistics for scalar field and fermion field to study the Deconfinement Phase Tran-

sition from a HG to a QGP. We investigate the behaviour of some thermodynamic

quantities of the system, such as the energy density, the pressure and the interaction

measure, etc.

Chapter 9 provides the conclusion of this work. We also make a few suggestions

here for future works.
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Letters, 84(13):2770.

Wilson, K. G. (1974). Confinement of quarks. Physical. Review. D, 10:2445–2459.

Wong, C.-Y. and Wilk, G. (2013). Tsallis fits to pT spectra and multiple hard scat-

tering in pp collisions at the LHC. Physical Review D, 87:114007.

Wong, C.-Y., Wilk, G., Cirto, L. J. L., and Tsallis, C. (2015). From QCD-based

hard-scattering to non-extensive statistical mechanical descriptions of transverse

momentum spectra in high-energy pp and pp̄ collisions. Physical Review D,

91:114027.

Xu, H. H. (1996). Thermodynamic potential in real-time formalisms of thermal field

theory. Communications in Theoretical Physics, 25:443.

Yang, C.-N. and Lee, T.-D. (1952). Statistical theory of equations of state. Theory

of condensation. Physical Review Journals Archive, 87(3):404.

Zhao, Y.-P. (2020). Thermodynamic properties and transport coefficients of QCD

matter within the non-extensive Polyakov–Nambu–Jona-Lasinio model. Physical
Review D, 101(9):096006.

141




