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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment

of the requirement for the degree of Doctor of Philosophy

ROBUST SPATIAL DIAGNOSTIC METHOD AND PARAMETER
ESTIMATION FOR SPATIAL BIG DATA REGRESSION MODEL

By

MOHAMMED BABA ALI

July 2022

Chair: Professor Habshah Midi, PhD
Institute: Mathematical Research

The existing spatial data compression method, namely the Adaptive Spatial Com-

pression Clustering (ASDC) is a very potent method of compressing big data. How-

ever, the presence of global outliers in the spatial data affects the formation of spatial

dispersion function which subsequently affects the outcome of the spectral cluster-

ing; this, in effect, affects spatial contiguity. Hence, a new robust spatial compression

technique, which we call Outlier Resistant Adaptive Spatial Clustering (ORASDC)

is proposed. Simulation results of synthetic spatial fields and real data applica-

tion reveal that the proposed method is worthwhile in treating the effect of outliers

with over 99% region of similarity retained and over 90% of data similarity main-

tained. Further research may be carried out to improving the processing speed of the

ORASDC and to determining the optimum number of clusters that correspond to a

specific data size.

The score statistics (Sci) is formulated to identify spatial outliers in big data.

Nonetheless, the method not only suffers from masking and swamping effects, but

also takes long computational running time. To rectify this problem, a new diag-
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nostic measure that adopts location adjacency to construct spatial weights, metric

distance reciprocal (MDR) and exponential weight (EW), are developed. Difference

between spatial residuals are calibrated to incorporate adjacency effect into spatial

outlier residual. Results of simulations in large sample sizes have shown remarkable

performance of the proposed methods where both diagnostics measures successfully

detect spatial outliers with minimum swamping effect. Applications of our methods

to real data have also shown good performance.

This thesis also concerned on the establishment of diagnostic measures for the iden-

tification of spatial influential observations (IOs), which are outliers in the x and y

directions of spatial regression models. Some of the classical techniques of iden-

tification of IOs have been adapted to spatial models. Nonetheless, those adapted

methods fail to correctly identify the IOs and show high swamping and masking

effects. Thus, we propose a new measure of spatial studentized prediction residu-

als that incorporate spatial information on the dependent variable and residual. To

the best of our knowledge, no research is done on the classification of spatial ob-

servations into regular observations, vertical outliers, good and bad leverage points.

Hence, the ISRs−Posi and ESRs−Posi plots are established to close the gap in the lit-

erature. The results signify that the ESRs−Posi plot, followed by the ISRs−Posi plot

were very successful in classifying observations into the correct groups. The numer-

ical examples and simulation study have shown that the proposed methods possess

almost 100% accurate detection and 0% swamping, against their competitors that

have lower detection rates and higher swamping rates.

Outliers in spatial applications usually keep vital information about the model; a sit-

uation that calls for method that is effective in accommodating the spatial outliers in

a special way. Variance Shift Outlier Model (VSOM) in the classical regression is

promising in keeping such observations in the model by downweighting their effect

in the model. To date, no research has been done to obtain spatial representation of

VSOM. To fill the gap in the literature, we formulated the VSOM in the spatial re-

gression model which we call Spatial Variance Shift Outlier Model (SVSOM) using

the Residual Maximum Likelihood (REML). Weights based on the detected outliers

are used to accommodate the spatial outliers via revised model with the help of the

SVSOM. The results of simulation study and real data set indicate that our proposed

method has significant improvement in parameter estimation and outlier accommo-

dation.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH TEGUH BERDIAGNOSTIK RUANG DAN PENGANGGARAN
PARAMETER BAGI MODEL REGRESI DATA RAYA RUANG

Oleh

MOHAMMED BABA ALI

Julai 2022

Pengerusi: Professor Habshah Midi, PhD
Institut : Penyelidikan Matematik

Kaedah pemampatan data ruang sedia ada, iaitu Adaptive Spatial Compression Clus-

tering (ASDC) merupakan kaedah yang sangat sesuai untuk memampatkan data

raya. Walau bagaimanapun, kehadiran titik terpencil global dalam data ruang men-

jejaskan pembentukan fungsi penyebaran ruang yang seterusnya menjejaskan hasil

pengelompokan spektrum; ini, sebenarnya, menjejaskan keterkaitan ruang. Seterus-

nya, teknik pemampatan ruang baharu yang teguh, yang kami panggil sebagai Outlier

Resistant Adaptive Spatial Clustering (ORASDC) telah dicadangkan. Hasil simulasi

medan ruang sintetik dan aplikasi data sebenar mendedahkan bahawa kaedah yang

dicadangkan adalah berkesan dalam merawat kesan titik terpencil dengan lebih 99%

kawasan persamaan dikekalkan dan lebih 90% persamaan data dikekalkan. Kajian

lanjut boleh dijalankan untuk meningkatkan kelajuan pemprosesan ORASDC dan

untuk menentukan bilangan optimum kelompok yang sepadan dengan saiz data ter-

tentu.

Statistik skor ((Sci) dirumuskan untuk mengenal pasti titik terpencil ruang dalam

data raya. Walau bagaimanapun, kaedah ini bukan sahaja mengalami kesan topeng
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dan paya, tetapi juga mengambil masa pengiraan yang lama. Untuk mengatasi

masalah ini, langkah diagnostik baharu yang menggunakan lokasi bersebelahan un-

tuk membina pemberat ruang, iaitu timbal balik jarak metrik (MDR) dan berat ek-

sponen (EW), dibangunkan. Perbezaan antara ralat ruang ditentukur untuk mema-

sukkan kesan bersebelahan ke dalam ralat titik terpencil ruang. Keputusan simu-

lasi bagi saiz sampel yang besar telah menunjukkan prestasi yang luar biasa bagi

kaedah yang dicadangkan dimana kedua-dua ukuran diagnostik sangat berjaya dalam

mengesan titik terpencil ruang dengan kesan paya yang minimum. Aplikasi kaedah

kami kepada data sebenar juga menunjukkan prestasi yang baik.

Tesis ini juga berkaitan dengan pembinaan ukuran diagnostik untuk mengenal pasti

pemerhatian berpengaruh ruang (IOs), yang merupakan titik terpencil dalam arah

x dan y bagi model regresi ruang. Beberapa teknik klasik pengecaman IOs telah

disesuaikan dengan model ruang. Walau bagaimanapun, kaedah yang disesuaikan

gagal mengenal pasti IOs dengan betul dan menunjukkan kesan paya dan topeng

yang tinggi. Oleh itu, kami mencadangkan satu ukuran baharu iaitu ralat ramalan

pelajar ruang yang menggabungkan maklumat ruang pada pembolehubah bersandar

dan ralat. Sepanjang pengetahuan kami, tiada penyelidikan dilakukan untuk mengk-

lasifikasi pemerhatian ruang ke dalam pemerhatian biasa, titik terpencil menegak,

titik tuasan yang baik dan buruk. Seterusnya, plot ISRs −Posi dan plot ESRs −Posi
dibangunkan untuk menutup jurang dalam kesusasteraan. Hasilnya menunjukkan ba-

hawa plot ESRs−Posi , diikuti oleh plot ISRs−Posi sangat berjaya dalam mengklasi-

fikasikan pemerhatian ke dalam kumpulan yang betul. Contoh numerasi dan kajian

simulasi telah menunjukkan hampir 100% pengesanan tepat dan 0% paya, berband-

ing pesaing mereka yang mempunyai kadar pengesanan yang lebih rendah dan kadar

paya yang lebih tinggi

Titik terpencil dalam aplikasi ruang biasanya menyimpan maklumat penting menge-

nai model; keadaan yang memerlukan kaedah yang berkesan dalam menampung titik

terpencil ruang dengan cara yang tersendiri. Variance Shift Outlier Model (VSOM)

dalam regresi klasik menjanjikan dalam mengekalkan pemerhatian tersebut dalam

model tersebut dengan menurunkan kesan beratnya. Sehingga kini, tiada penye-

lidikan telah dilakukan untuk mendapatkan perwakilan ruang VSOM. Untuk mengisi

jurang dalam kesusasteraan, kami merumuskan VSOM dalam model regresi ruang

yang kami panggil Spatial Variance Shift Outlier Model (SVSOM) menggunakan

kaedah Reja Kebolehjadian Maksimum (REML). Berat berdasarkan titik terpencil

yang dikesan digunakan untuk menampung titik terpencil ruang melalui model yang

disemak dengan bantuan SVSOM. Hasil kajian simulasi dan set data sebenar menun-

jukkan bahawa kaedah yang kami cadangkan mempunyai peningkatan yang bererti

dalam anggaran parameter dan penampungan titik terpecil.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

Recent data explosion has awaken researchers to the responsibility of developing so-

lutions to the embarrassment of not being able to explore the valuable information

in massive data due to lack of appropriate handling tools. The massive data sets that

result from expansion in internet activities and computerization of human lives pose

a great challenge to traditional methods of data collection, storage, processing, anal-

ysis, presentation and interpretation. Hence, a demand for researchers to thrive for

robust techniques that can properly address this trend of obstacles. Large volume,

vast variety and high velocity are the main features of big data that pose the chal-

lenge of analysis. Large volume problem remains of great importance to researchers

because it made the computational cost of most statistical methods in practice too ex-

pensive (Zhang et al. (2018); Torrecilla and Romo (2018); Jayasankar et al. (2021)).

Building powerful computing facilities is offered by computer engineering as a solu-

tion to big data problem. Notable examples of such solutions are the supercomputers

and cloud computing. However, the exponential growth of big data in volume still

poses a challenge to the computational capacity for the so said high performance

computers.

In statistical applications with fixed computational capacity, analytical and computa-

tional methods, computational capacity constrained statistical methods adapt these

constraints to overcome the problem of big data. Divide-and-conquer, for example,

divides large data sets into smaller pieces and conduct statistical analysis on each of

the smaller manageable pieces. Final results for the full data set is determined by

combining results of the smaller pieces of the data set. One great advantage of this

method is the significant reduction in time of computation on a distributed computing

environment (Härdle et al. (2018)). A major problem with the divide-and-conquer
method is how to come up with scheme to combine the smaller pieces of results to

form the final estimate that satisfy good statistical properties. One of the common

assumptions about the distribution of observations in statistics is independent and

identically distributed (IID). The IID random samples are used to build models and

estimate model parameters. However, there are situations in which data that are close
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together, either in time or space, are correlated and as such the notion of indepen-

dence is violated. Time series models, also known as temporal models, are based

on identically distributed observations that are time dependent, usually at equal time

interval. These data have a unidirectional flow of time that allows the construction

of the temporal models (Cressie (1993); Darmofal (2006); Pole et al. (2018)).

In the same vein, Lansley et al. (2019) have pointed out that the problem of massive

data have been a long standing problem in the field of spatial/spatio-temporal and

have not been properly addressed.

In contrast to the temporal data that is unidirectional in time, spatial data have contex-

tual attribute that is multidirectional in space associated with behavioural attribute.

Behavioural attribute is the measurement of interest taken on object, while contex-

tual attribute refers to the location at which the behavioural attribute is measured.

The contextual attributes are expressed in terms of coordinates, or using granularity

of regions in space, for example, county, zip code and so on (Aggarwal (2015)). Ge-

ographic information systems (GIS) support geocoding or address matching which

allows address to be converted to coordinates (LeSage and Pace (2009)).

Spatial dependence connotes a scenario where values observed at one location de-

pend on the values of adjacent observations at nearby locations. This adjacent lo-

cations can be regions that share borders with each other. Spatial dependence is the

degree of spatial autocorrelation between independently measured values observed

in geographical spaces (Kitchin and Thrift (2009)).

Spatial autocorrelation is a systematic pattern in attribute values that are recorded in

locations on a map (Haining (2001)). Attribute values in one location that are as-

sociated with values at neighbouring locations indicate presence of autocorrelation.

Positive autocorrelation indicates similar values clustered together. Negative auto-

correlation indicates low attribute value in the neighbourhood of high attribute values

and vice-versa. One of the measures employed in measuring the spatial autocorre-

lation is the Moran’s I (Anselin (1995)) which was proposed by (Moran (1950)).

Moran’s I is used to test the hypothesis whether there is no spatial autocorrelation

against its opposite.

Spatial data operate according to the first law of geography (Tobler (1970)). The
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law states that :”every thing is related to everything else but nearby objects are more
related than distance things.” Common fields of real applications (Aggarwal (2015);

Zhang et al. (2022)) include meteorological data, traffic data, Earth science data,

disease outbreak data, medical diagnostic data, demographic data, among others.

Cressie (1993) pointed out that disciplines that work with data that are collected

from different spatial locations need established models that indicate when there is

dependence between measurements at different locations.

Spatial regression models are designed in such a way that they incorporate spatial re-

lationship within the model (Haines and Thiart (2022)). This is desired to account for

spatial relationship in order to generate meaningful inferences about a process under

study, which would have otherwise been neglected by classical regression (Anselin

(1988)). Researchers believe that the independent variables, X , do not always explain

the dependent variable entirely, and perhaps the nearby observations do usually have

effect in explaining their nearby observations. Some of the effects of not taking into

cognizance the spatial effect include violation of regression assumptions such as in-

dependence of residuals (due to autocorrelation in residual). This, in effect, results

in biased estimates of coefficients which inflate variance. The outcome of such ef-

fects is incorrect inference, which results in misleading conclusions (Anselin (1988);

LeSage (1999); Haining and Haining (2003)).

The effects of outliers and influential observations have been subject of discussion

for centuries among researchers in various fields of applications, due to their influ-

ence on model building and parameter estimation. Ben-Gal (2005) noted that out-

liers are aberrant data that may otherwise adversely lead to model misspecification,

biased parameter estimation and incorrect results. Influential observation, individu-

ally or together with other observation have large impact on the calculated values of

estimates that in the case for most of the other observation (Belsley et al. (1980)).

Spatial outlier has peculiar characteristics; that is dependent on its nearby observa-

tions. They have extreme values relative to set of observations in their neighbour-

hood on the map (Haining and Haining (2003)).
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1.2 Some Important Definitions

1.2.1 Big Data

Big Data, according to Chen and Zhang (2014), is a collection of very huge data sets

with a great diversity of types so that it becomes difficult to process by using state-

of-the-art data processing approaches or traditional data processing platforms. In

details, Savitz (2012) defined Big Data as ‘high-volume, high-velocity, and/or high-

variety information assets that require new forms of processing to enable enhanced

decision making, insight discovery and process optimization’. Though it comes with

a lot of opportunities, there are challenges such as data capture, storage, searching,

sharing, analysis, and visualisation, which are all demanding tasks in big data.

1.2.2 Characteristics of Big Bata

The four Vs, (volume, velocity, variety and veracity) are widely used to describe the

characteristics of Big Data (Chen and Zhang (2014); De Mauro et al. (2015); Davalos

(2017); Härdle et al. (2018); Habeeb et al. (2019)), even though most researchers give

emphasis to the first three of the aforementioned characteristics.

The amount of the data sets that need to be evaluated and processed, which are

today frequently larger than terabytes and petabytes, is referred to as data volume.

The sheer volume of data necessitates processing solutions that are separate from

standard storage and processing capabilities. To put it in other words, the data sets

in Big Data are too enormous to be processed by a standard laptop or desktop CPU.

The rate at which data is generated is referred to as velocity. Because high-velocity

data is created at such a rapid rate, it necessitates the requirement for use of separate

(distributed) processing procedures.

Big Data is made even bigger by its diversity. Big Data can come from a variety of

places and can be classified into one of three categories: structured, semi-structured,

or unstructured data. The diversity of data kinds frequently necessitates specialised

processing capabilities and algorithms.
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The quality of the data being studied is referred to as veracity. Many records in high

veracity data are beneficial to evaluate and add meaningfully to the overall results.

Low veracity data, on the other hand, comprises a large amount of information that

have no apparent value.

1.3 Spatial dependence

Spatial dependence, according to LeSage and Pace (2009); Basile et al. (2014), typ-

ically reflects a situation where values observed at one location or region depend

on the values of neighboring observations. Usually measured through spatial auto-

correlation, spatial dependence is a data property that occurs when there is a spatial

pattern in the attribute values, as opposed to a random pattern which implies no spa-

tial autocorrelation. Consider an illustration by LeSage and Pace (2009) on spatial

dependence: suppose two locations i and j are neighbours, then

yi = β0iy j +Xi + εi and

y j = β0 jyi +Xj + ε j.

indicate that yi depends on y j and vice-versa.

1.4 Spatial weight

Spatial weight imposes structure that ignores the interactions that are between ob-

servations that are not neighbors. This structure constraints the number neighbours

so that the spatial weight matrix is a sparse matrix. Sparse matrix is a matrix whose

most of its entries are zeros. The spatial interaction between locations are measured

using spatial interaction coefficient and the spatial interaction matrix. Smaller spatial

weight yields large coefficient and vice versa.

1.4.1 Spatial weight matrix

Let W be an n×n matrix with entries wi j such that

wi j =

{
ω i f i and j are neighbours
0 i f i and j are not neighbours (1.4.1)

where 0 ≤ ω ≤ 1, and wii = 0 (i.e. locations are not self neighbours). Spatial weights

are measured using geography based spatial weight that are classified as binary con-
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tiguity and distance based weight.

1.4.1.1 Binary contiguity

In the binary contiguity weight, the (i j)th entry in the weight matrix is 1 if i and j

share a boarder, otherwise the entry is zero.

There are basically three kinds of binary contiguity matrices:

1. The Rook contiguity matrix: this contiguity recognize neighbours as boarders

that share common edge. Figure 1.1 demonstrates the example of Rook contiguity,

where location E share border with locations B, D, F and H neighbours.

A B C

D E F

G H I

Figure 1.1: An example of the Rook contiguity to location E indicated by bold
lines

2. The Bishop contiguity: The Bishop contiguity are the boarders that share com-

mon vertices. In the example of the Bishop contiguity illustrated in Figure 1.2, loca-

tions A, C, G and I are neighbours to location E.

3. The Queen contiguity:

The queen contiguity recognize locations that share both edges and vertices as spatial

neighbours. It combines both rook’s and bishop’s contiguity together. In the example

of the Bishop contiguity illustrated in Figure 1.3, locations A, B, C, D, F, G, H and I

are recognized as neighbours to location E.
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A B C

D E F

G H I

Figure 1.2: An example of the Bishop method showing contiguity to location E

A B C

D E F

G H I

Figure 1.3: An example of the Queen method showing contiguity to location E

1.4.1.2 Distance based Weight

This based weight is between points. These points are usually between the centroid

of polygons. The distance based measure can be any distance metric such as the

Manhattan distance, Euclidean distance, Great circle, e.t.c. (Anselin (1988)). How-

ever, distance decay measures with respect to the metric distance are employed. This

include the inverse distance with negative exponential. The distance based weight is

defined as

wi j =

{
κ i f di j < d
0 0

(1.4.2)

where, κ is the similarity indexed. The problem with the distance based weights

is that there are locations that have no neighbours (called isolates or islands). In

practice, such locations are removed from the data before analysis (Anselin and Rey

(2014)).
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1.4.1.3 K-Nearest Neighbours Weights (knn)

This weight considers the k nearest neighbours for the computation of weights. How-

ever, a major drawback of this is the decay will be stiffer for dense distribution than

in a sparse distribution locations. Another problem is that of equidistance locations

(whose number is greater than k, the number of nearest neighbours). The decision

of which nearest neighbours to consider becomes problem.

1.4.2 Measures of spatial dependence

Measures of spatial dependence are used to detect if there exist any spatial pattern in

a spatial data set. Measures of spatial autocorrelation are usually obtained from ma-

trix cross-product. This is typically referred to as the general cross-product statistic

as defined in Huber and Ronchetti (1981) and Upton and Fingleton (1985). The com-

monly used measures of spatial autocorrelation are the Geary’s C (Geary (1954)), the

G statistics (Getis (1992)), the Moran’s I (Anselin (1995)) and the GLISA (Bao and

Henry (1996)), and they all have some common features. These features as noted by

Bao (1999) are:

1. they first assume that the data are spatially randomly distributed.

2. the spatial pattern of the location, spatial structure of the locations and form of

spatial dependence are obtained from the data.

1.4.2.1 Moran’s I

The Moran’s I, originally proposed by Moran (1950) is a measure of spatial autocor-

relation that lies between -1 and +1. The Moran’s I is defined by Equation (1.4.3)

I =

n

∑
i=1

n

∑
j=1

Wi j(xi − x̄i)(x j − x̄ j)

S2
n

∑
i=1

n

∑
j=1

Wi j

, (1.4.3)

where, S2 = 1
n−1

n

∑
i=1

(xi − x̄i)
2. xi is the observed value at location i, x̄i is the aver-

age of the observed values at the neighbouhood of location i, Wi j is the measure of

spatial weight which takes the value 1 if location i and j share common border and

0 otherwise.
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The mean and variance of the Moran’s I are given by E(I) =− 1
n−1 and

Var(I) =
(

1

S2
0
(n2−1)

(n2S1 −nS2
2 +3S2

0)−E(I)2

)
, respectively. S0 =

n

∑
i=1

n

∑
j=1

Wi j,

S1 =

n

∑
i=1

n

∑
j=1

(Wi j +Wji)

2 (this simplifies to S1 = 2
n

∑
i=1

n

∑
j=1

Wi j if the weight matrix,

Wi j is symmetric). S2 =
n

∑
j=1

(W• j +Wi•) (this simplifies to S2 = 4
n

∑
j=1

Wi•). W• j and

Wj• are the ith column and the jth row of weight matrix Wi j.

1.4.2.2 Geary’s C

The Geary’s C, also known as Geary’s contiguity ratio or Geary’s ratio, is defined as

in Equation (1.4.4),

C =

(n−1)
n

∑
i=1

n

∑
j=1

Ci j(xi − x j)
2

2

(
n

∑
i=1

n

∑
j=1

Ci j

)
n

∑
i=1

(xi − x̄)2

, (1.4.4)

where Ci j is a proximity measure of values between location i and location j. Such

measure of proximity are the Euclidean distance, Manhattan distance spherical dis-

tance, e.t.c.

The Geary’s C has values between 0 and some value greater than 1. Values that are

significantly lower than 1 indicate increasing positive spatial autocorrelation, while

values that are significantly greater than 1 indicate increasing negative spatial auto-

correlation.

1.4.2.3 Variogram

The concept of autocorrelation is quantified in geostatistics using a function called

a variogram. Usually defined using semivariogram, the variogram is a fundamental

piece of geostatistics from which one can get the model form that applies to natural

mineral resources, the kriging weights, and the resulting standard errors of kriging
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estimation. Given two points Si and S j in space, the semivariogram is defined as

γ(Si,S j) =
1

2
var(Z(Si)−Z(S j))

=
1

2
E
[
(Z(Si)−Z(S j))

]
,

where Z(.) is the observed value at location (.). Thus, the variogram is given by

2γ(Si,S j).

1.5 Statement of Problems

In modeling spatial big data, researchers employ a variety of techniques, includ-

ing spectral density to establish inversion for the large matrix’s covariance, tapering

of the covariance matrix to reduce computational burden, dimension reduction to

reduce computational burden, sparsity of the precision matrix with markov fields,

and approximation of the covariance function with reduced covariance (Besag and

Kooperberg (1995); Furrer et al. (2006); Kaufman et al. (2008); Banerjee et al.

(2008); Finley et al. (2009); Lindgren et al. (2011); Sang and Huang (2012); Ei-

dsvik et al. (2014); Gramacy and Apley (2015); Datta et al. (2016)). Adaptive spatial

dispersion clustering (ASDC) (Marchetti et al. (2018)) is another data compression

technique that provides a compressed representation of the data using features that

capture the basic information (spatial dependence) of the spatial field under consid-

eration, and has demonstrated remarkable performance in spatial data compression

applications where other methods failed (Fouedjio (2020); Asokan et al. (2020)). In

the ASDC, data points outside the region of interest are compressed in such a way

that geographic locations associated with them are allocated to spatial clusters using

spectral clustering; where mean spatial observations for each cluster represents the

whole data points in the cluster. However, the fact that the spatial dispersion function

depends on the spatial variability of the observed spatial value, Z, implies that global

outliers in observed values influence the outcome of the spatial dispersion function.

The effect of such outliers, which has not been addressed by the ASDC, would have

an impact on the accuracy of the outcome of the compression. The shortcomings

of the ASDC has motivated us to construct Outlier Resistant Adaptive Spatial Dis-

persion Clustering (ORASDC). We expect the ORASDC to counter the effect of

outliers in the development of the weights that would subsequently be used for the

data compression.

Researchers have pointed out that most of the methods propose to detect spatial out-

liers are mostly prone to the problem of masking and swamping due to the aggregate

of neighbourhood function (Shekhar et al. (2002); Lu et al. (2003); Liu et al. (2010);

Singh and Lalitha (2018); Hadi and Imon (2018)). Masking occurs when an outlying

observations are incorrectly declared as inliers. Swamping on the other hand, occurs
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when clean observations are incorrectly classified as outliers (Hadi and Simonoff

(1993)). Other methods are only effective for small data size with no reliability mea-

sures (Lu et al. (2003)). Some adopt measures that do not capture multi-neighbour

contiguity (Hadi and Imon (2018); Imon and Hadi (2020)). Non-robustness of most

measures pose suspicion to the performance of some methods. Residual spatial au-

tocorrelation reflects the amount of spatial autocorrelation in the variance that is not

explained by explanatory variables, according to Gaspard et al. (2019), which failure

to incorporate properly might result in issues including underestimating standard er-

ror, biased parameter estimations, and model mispecification. Another flaw is slow

performance in the face of large amount of data (Dai et al. (2016)). These flaws

prompted us to develop a new method of identification of spatial outlier that appro-

priately capture spatial contiguity in spatial big data, which we call the Adjacency

Weighted Spatial Outlier.

Representation of internally spatial studentized residuals requires a spatial statistic

that contains the spatial neighbourhood information in both the dependent variable

and the residuals. Most works in the literature on spatial field focused mainly on the

statistic that contains residual spatial autocorrelation (Martin (1992); Christensen

et al. (1992); Haining (1994); Shi and Chen (2009)). Not only does including spatial

neighbouhood information on the both the error term and the dependent variable is

expected to help in detecting spatial outliers, but also to improve the performance

of model fitting in the spatial statistics. This inspired us to construct an internally

studentized spatial residual which can be used to construct externally studentized

spatial residual, detect observations with large spatial residuals and subsequently be

used for robust spatial model fitting.

Addressing the problem of outliers in the vertical direction does not suffice in fish-

ing the effect of influential observations in model fitting. Large studies in the liter-

ature have indicated the effect of leverage in the classical regression (Hoaglin and

Welsch (1978); Belsley et al. (1980); Huber and Ronchetti (1981); Cook and Weis-

berg (1982); Chatterjee and Hadi (1988); Rousseeuw and Van Zomeren (1990); Hadi

(1992); Martin (1992); Christensen et al. (1992); Imon (2002); Habshah et al. (2009);

Midi and Mohammed (2015); Bagheri and Midi (2015)). Thus, spatial regression

model would not be an exception, and so require proper definition of leverage in

spatial regression, which would help in coping with the effect of spatial leverage.

Spatial leverage in model with spatial autocorrelation in the error term has been ex-

pressed by Martin (1992); Christensen et al. (1992); Haining (1994); Shi and Chen

(2009). Dai et al. (2016) detected the spatial outliers without given due considera-

tion to the effect of the leverage in the derived statistics. A measure that contains

spatial information in both the dependent variable and the residual term and spatial

leverage definition are imperative to appropriately classify influential observations.

This motivated us to develop a spatial outlier detection technique in spatial regres-

sion that adopts the classification of spatial observations into the categories: regular
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observations, good leverage points, bad leverage points (outlier in the x direction)

and vertical outliers.

Building robust statistical models requires detection and removal of the effects of

outliers and influential observations in most statistical applications through down

weighing techniques (Huber and Ronchetti (1981); Cook and Weisberg (1982);

Beckman and Cook (1983); Midi and Mohammed (2015); Alguraibawi et al. (2015);

Insolia et al. (2021)). These methods usually assume shift in the mean of the outlier

observations; hence, Mean Shift Outlier Model (MSOM). While the influential ob-

servations are assigned weights that results in eliminating them in the MSOM (Inso-

lia et al. (2021)), models that attach value to the influential observations for revealing

important features insist on retaining such observations in the model in a fashion that

construct special weights according to their relevance (Beckman and Cook (1983);

Insolia et al. (2021)). This adopts models that assume shift or inflation in variance of

the outliers, called Variance Inflation Outlier Model (VIOM). The detected outliers

or influential observations in spatial applications require spatial weights, that con-

tains the spatial information of the observations, which can be used to appropriately

accommodate the detected observations with inflated variance or variance shift in

the spatial regression model. Dai et al. (2016) used the ML, which is deficient of

loss in degrees of freedom, in estimation. They accommodated the spatial outliers as

a group in a fashion similar to classical regression instead of way that will capture

the spatial contiguity of the outliers as a block. These shortcomings motivated us

to develop spatial accommodation method that accommodate the spatial outliers and

improve the spatial estimation performance of the parameters in the spatial regres-

sion model.

1.6 Research Questions

1. Does the effect of the global outliers affect the ASDC data compression

method?

2. Can incorporating the spatial contiguity of the residuals improve the outlier

detection performance in the spatial Big data?

3. Does developing a test statistic that incorporate the neighbourhood informa-

tion help in detecting large spatial studentized residuals?

4. Can adopting the classification of spatial observations into the categories: reg-

ular observations, good leverage points, bad leverage points (outlier in the x
direction) and vertical outliers improve in detecting spatial influential obser-

vations?

5. Does the spatial variance shift outlier model shows improvement in perfor-

mance due to incorporating spatial neighbourhood information and subsequent
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development of spatial weight results in a better fitting, spatial outlier detec-

tion and accommodation?

1.7 Research objectives

The study aims at developing a robust spatial regression model for big data using

robust Adaptive Spatial Dispersion Clustering. The specific objectives are:

1. To construct Adaptive Spatial Dispersion Clustering (ASDC) that is resistant

to the effect of global outliers.

2. To develop a new diagnostic measure for the identification of spatial outliers

in a large spatial data set .

3. To formulate a new diagnostic measure for identification of influential obser-

vations in spatial data using a statistic that capture neighbouhood information

of observations.

4. To develop a new spatial diagnostic plot to classify observations into four cat-

egories: regular observation, good leverage points, bad leverage points and

vertical outlier.

5. To establish spatial weights that will determine inflation in variance and ac-

commodate the detected spatial outliers in the spatial regression model.

1.8 Scope and limitations of the study

Robust spatial regression modeling in spatial big data as a relatively new field in

statistics has not received adequate attention. In particular, research on spatial re-

gression model that has autoregession in both the dependent variable and the residual

terms on big spatial data has not been addressed in the literature to the best of our

knowledge.

The importance of robust spatial regression modeling in big data is apt due to its wide

range of applications and the ever-increasing data size as a result of the availability

of new data collection devices. As a relatively new subject, there is no literature

on techniques for robust data compression or models for robustly detecting and ac-

commodating influential geographical observations. The algorithms created contain

codes that address the issue of influential spatial observations.
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Relatively larger compression sizes are considered because as sample size increases,

the confidence in estimates is expected to increase, and uncertainty decreases thereby

producing greater precision (Biau et al. (2008)). Positive spatial autocorrelation are

used in both dependent variables and the residuals due to its importance in revealing

significant features of spatial dependence in applications. Moreover, the autocorre-

lations are considered as low and high in simulations studies.

1.9 Outline of the thesis

The contents of this thesis are divided into seven chapters in accordance with the

study objectives. The thesis chapters are organized in such a way that the goals are

clear and organized in a logical order.

Chapter Two: This chapter starts by reviewing measures of spatial dependence

which include spatial weights, measures of spatial autocorrelation, the general spatial

autocorrelation with its variations, maximum likelihood estimations and information

criteria are discussed.

Chapter Three: Using robust adaptive spatial dispersion clustering, this chapter

primarily addresses the problem of data compression. The effects of local spatial

dispersion on outlier detection are examined. Adaptive spatial dispersion clustering,

spectral clustering, and spatial dispersion function are also studied. Simulation re-

sults findings and demonstration of the ORASDC on the California housing data are

presented.

Chapter Four: The fourth chapter uses weighted adjacency residuals to detect spa-

tial outliers. The proposed adjacency weighted spatial outlier residuals are discussed

and compared to the score statistic based on the general spatial model. The weights

used, the metric distant reciprocal (MDR) and the exponential weight (EW), are

described in detail on how to obtain the tawsor. In comparison to the score statis-

tics, simulation studies on the first order spatial autoregressive model (FAR), mixed

regressive-spatial autoregressive model (SAR), spatial autoregressive error model

(SEM), and general spatial model (GSM) are presented. Examples of real data ap-

plications are also presented. Finally, illustration of the AWSOR on the compressed

California housing data using ORASDC are presented.
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Chapter Five: In chapter five, a robust spatial diagnostic plot is proposed. Some

diagnostic measures in the classic linear regression model are reviewed in relation

to the spatial regression model. We represented the leverage values of hat matrix

of linear regression to GSM model and extended the internally studentized residual

and externally studentized residual of linear regression to GSM model. We also

extended the Cook’s distance and the overall potential influence of linear regression

to GSM model and developed a method of identification of influential observations

of GSM model by proposing a procedure of classification of observations into regular

observations, vertical outliers, good and bad leverage points. Simulation studies are

used to evaluate the performances of the proposed methods and finally applied the

proposed methods on gasoline price data for retail sites in Sheffield, UK, Covid-19

data at Georgia, USA, and the Life expectancy data in USA counties. The results of

application on the ORASDC compressed California housing data are also presented.

Chapter Six: In this chapter, variance shift outlier model are presented in the clas-

sical regression and its equivalence, called spatial variance outlier model (SVSOM),

in the general spatial model is obtained using procedure based on the restricted max-

imum likelihood estimation. Spatial weight based on the inflated variance are ob-

tained to accommodate spatial outliers. Simulation studies are performed to classify

and accommodate spatial outliers; real application to Georgia counties COVID-19

data are also presented.

Chapter Seven: In this chapter, the summary, conclusion and recommendations of

the thesis are presented. Recommendations for future researches are also presented

in the chapter.
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