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Support Vector Regression (SVR) has become increasingly popular in the detection of 

outliers and classification problems in high dimensional data (HDD) , because it can 

handle nonlinear, rank deficient and high dimensional problems by employing the kernel 

trick to transform nonlinear relationship in the input space into a linear form in a high 

dimensional feature space.  

 

 

The standard SVR and the μ-ε-SVR are introduced to detect outliers in HDD. 

Nonetheless, they are computationally expensive and not very successful in detecting 

outliers. As a solution to this problems, the fixed parameters support vector regression 

(FP-ε-SVR) was put forward. The FP-ε-SVR using ε-SVR is also not very successful in 

identifying outliers. A nu-SVR is developed to overcome these shortcomings. The results 

signify that the proposed nu-SVR method is very successful in identifying outliers under 

a variety of situations, and with less computational running time. 

 

 

The statistically inspired modification of the partial least squares (SIMPLS) is the widely 

used method to handle partial least squares problems in high dimensional data. However, 

the SIMPLS is no longer efficient when outliers are present in the data.  The robust 

iteratively reweighted SIMPLS (RWSIMPLS) technique, which is an enhancement of 

the SIMPLS algorithm, is put forward to remedy this problem. Nevertheless, with regard 

to parameter estimations and outlier diagnostics, the RWSIMPLS is still inefficient. It 

also suffers from long computational times. Hence, a new robust RWSIMPLS (SVR-

RWSIMPLS) algorithm that incorporates a new weight function constructed from nu-

SVR, is established. The numerical results clearly indicate the SVR-RWSIMPLS 

algorithm is more efficient, more robust and has less computational running times than 

the RWSIMPLS. The proposed SVR-RWSIMPLS diagnostic plot is also very successful 

in classifying observations into correct groups.   
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The least absolute shrinkage and selection operator (LASSO) is the shrinkage procedure 

based on penalized function which is the commonly used method in performing parameter 

estimations and variables selection, simultaneously. However, the LASSO method is easily 

affected by outliers since it is a special case of the penalized least squares regression with 

𝐿1  penalty function, where 𝐿1 is the regularization penalty parameter that limits the

regression coefficients' size, such that some coefficients can become zero and be 

eliminated. Many penalization methods have been proposed to remedy this problem that 

includes the WLAD-LASSO. However, the shortcoming of the WLAD-LASSO is that 

its efficiency tends to decrease as the number of good leverage points (outlying 

observations in X-space where they follow the pattern of the majority of the data) 

increases. Moreover, it can only handle low dimensional data because it is based on the 

robust mahalanobis distance - minimum volume ellipsoid (RMD-MVE) weight whereby 

MVE can only be computed for low dimensional data. Thus, a new weighted WLAD-

LASSO method (SVR-WLL) is developed to simultaneously estimate the parameters 

and variables selection of regression model. The results of simulation study and real data 

sets show that the SVR-WLL is superior compared to the existing methods discussed in 

this thesis. 

The Principal component analysis (PCA) is the most commonly used approach for 

analysing high dimensional data in order to achieve dimension reduction. However, 

outliers have an adverse effect on the PCA, hence reduce the accuracy of the prediction 

model. To date, no research has been done to incorporate SVR technique in the algorithm 

of PCA in order to obtain accurate prediction model with high accuracy. To close the 

gap in the literature, a new hybrid PCA with the nu-SVR technique (SVR-PCA) is 

established. The results show that the SVR-PCA is more efficient than the PCA 

technique. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

DIAGNOSTIK TEGUH DAN KAEDAH ANGGARAN PARAMETER DALAM 

REGRESI LINEAR DAN BUKAN LINEAR BERDASARKAN VEKTOR 

SOKONGAN REGRESI NU UNTUK DATA BERDIMENSI TINGGI 

Oleh 

AL-DULAIMI ABDULLAH MOHAMMED RASHID 

Jun 2022 

Pengerusi :   Profesor Habshah binti Midi, PhD 

Institut :   Penyelidikan Matematik 

Regresi Vektor Sokongan (SVR) telah menjadi semakin popular dalam pengesanan titik 

terpencilr dan masalah klasifikasi dalam data dimensi tinggi (HDD), kerana ia boleh 

menangani masalah bukan linear, kekurangan pangkat dan dimensi tinggi dengan 

menggunakan helah kernel untuk mengubah hubungan tak linear dalam input ruang ke 

dalam bentuk linear dalam ruang ciri dimensi tinggi.  

Kaedah SVR biasa dan μ-ε-SVR diperkenalkan untuk mengesan titik terpencil dalam 

HDD. Walau bagaimanapun, pengiraannya rumit dan tidak begitu berjaya dalam 

mengesan titik terpencil. Sebagai penyelesaian kepada masalah ini, parameter tetap 

penyokong regresi vektor (FP-ε-SVR) dikemukakan. Kaedah FP-ε-SVR menggunakan 

ε-SVR juga tidak begitu berjaya dalam mengenal pasti titik terpencil. Kaedah Nu-SVR 

dibangunkan untuk mengatasi kelemahan ini. Hasilnya menunjukkan bahawa kaedah nu-

SVR yang dicadangkan sangat berjaya dalam mengenal pasti titik terpencil di bawah 

pelbagai situasi, dan mengambil masa pengiraan yang pantas. 

Pengubahsuaian statistik kuasa dua terkecil separa (SIMPLS) ialah kaedah yang 

digunakan secara meluas untuk menangani masalah kuasa dua separa terkecil dalam data 

dimensi tinggi. Walau bagaimanapun, SIMPLS tidak lagi cekap apabila terdapat titik 

terpencil dalam data. Teknik SIMPLS (RWSIMPLS) pemberat semula yang teguh, yang 

merupakan peningkatan algoritma SIMPLS, dikemukakan untuk menyelesaikan 

masalah ini. Namun begitu, RWSIMPLS masih tidak cekap dari segi anggaran parameter 

dan diagnostik terpencil,. Ia juga mengalami masa pengiraan yang panjang. Oleh itu, 

algoritma RWSIMPLS (SVR-RWSIMPLS) teguh baharu yang menggabungkan fungsi 

berat baharu yang dibina daripada nu-SVR, diwujudkan. Keputusan berangka jelas 

megambil masa pengiraan yang kurang daripada RWSIMPLS. Plot diagnostik SVR-
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RWSIMPLS yang dicadangkan juga sangat berjaya dalam mengklasifikasikan 

pemerhatian kepada kumpulan yang betul.   

 

 

Pengendali pengecutan dan pemilihan mutlak terkecil (LASSO) ialah prosedur pengecutan 

berdasarkan fungsi berhukum yang merupakan kaedah yang biasa digunakan dalam 

melaksanakan anggaran parameter dan pemilihan pembolehubah, secara serentak. Walau 

bagaimanapun, kaedah LASSO mudah dipengaruhi oleh titik terpencil kerana ia adalah 

kes khas regresi kuasa dua terkecil yang dikenakan penalti dengan fungsi penalti 𝐿1, di 

mana 𝐿1 ialah parameter penalti regularisasi yang menghadkan saiz pekali regresi, supaya 

beberapa pekali boleh menjadi sifar dan dihapuskan. Banyak kaedah penalti telah 

dicadangkan untuk membetulkan masalah ini termasuk WLAD-LASSO. Walau 

bagaimanapun, kelemahan WLAD-LASSO ialah kecekapannya cenderung menurun 

apabila bilangan titik tuasan tinggi yang baik (pemerhatian terpencil dalam ruang-X yang 

mengikut corak majoriti data) meningkat. Selain itu, ia hanya boleh mengendalikan data 

dimensi rendah kerana ia berdasarkan pemberat bagi jarak mahalanobis yang teguh – 

isipadu minimum ellipsoid (RMD-MVE) di mana MVE hanya boleh dikira untuk data 

dimensi rendah. Oleh itu, kaedah WLAD-LASSO berwajaran baharu (SVR-WLL) 

dibangunkan untuk menganggarkan pemilihan parameter dan pembolehubah model 

regresi secara serentak. Hasil kajian simulasi dan set data sebenar menunjukkan bahawa 

SVR-WLL adalah lebih unggul berbanding kaedah sedia ada yang dibincangkan dalam 

tesis ini. 

 

 

Analisis komponen utama (PCA) ialah pendekatan yang paling biasa digunakan untuk 

menganalisis data dimensi tinggi untuk mencapai pengurangan dimensi. Walau 

bagaimanapun, titik terpencil mempunyai kesan buruk pada PCA, oleh itu 

mengurangkan ketepatan model ramalan. Sehingga kini, tiada kajian telah dilakukan 

untuk menggabungkan teknik SVR dalam algoritma PCA bagi mendapatkan model 

ramalan yang tepat dengan ketepatan yang tinggi. Untuk merapatkan jurang dalam 

kesusasteraan, PCA hibrid baharu dengan teknik nu-SVR (SVR-PCA) dibangunkan. 

Keputusan menunjukkan bahawa SVR-PCA adalah lebih cekap daripada teknik PCA. 

Vektor Sokongan Regresi (SVR) telah menjadi semakin popular dalam pengesanan data 

terpencil dan masalah klasifikasi dalam data berdimensi tinggi (HDD), kerana ia boleh 

menangani masalah tak linear, kekurangan pangkat dan dimensi tinggi oleh penggunaan 

helah kernel untuk mengubah hubungan tak linear di dalam ruang input kepada bentuk 

linear  dalam ruang ciri berdimensi tinggi. 

 

 

Piawaian SVR dan μ-ε-SVR telah diperkenalkan untuk mengesan titik terpencil dalam 

HDD. Namun, ianya adalah mahal dari segi pengiraan dan tidak begitu berjaya dalam 

mengesan data terpencil. Sebagai penyelesaian kepada masalah ini, parameter tetap 

Vektor Sokongan Regresi (FP-ε-SVR) telah dikemukakan. FP-ε-SVR menggunakan ε-

SVR juga tidak begitu berjaya dalam mengenal pasti data terpencil. nu-SVR 

dibangunkan untuk mengatasi kelemahan tersebut. Keputusan menunjukkan bahawa 

cadangan kaedah nu-SVR sangat berjaya dalam mengenal pasti titik terpencil di bawah 

pelbagai situasi, dan dengan masa pengiraan yang kurang. 
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Pengubahsuai yang diilhamkan secara statistik bagi kuasa dua terkecil separa (SIMPLS) 

ialah kaedah yang digunakan secara meluas untuk menangani masalah kuasa dua terkecil 

separa dalam data berdimensi tinggi. Walaubagaimanapun, SIMPLS tidak lagi cekap 

dengan kehadiran titik terpencil dalam data. Teknik perulangan pemberat teguh SIMPLS 

(RWSIMPLS) yang merupakan peningkatan algoritma SIMPLS, dikemukakan untuk 

menyelesaikan masalah ini. Namun, berkenaan dengan anggaran parameter dan 

diagnostik outlier, RWSIMPLS masih tidak cekap. Ia juga mengalami masa pengiraan 

yang panjang. Maka, algoritma teguh baru RWSIMPLS (SVR-RWSIMPLS) yang 

menggabungkan fungsi pemberat baharu yang dibina daripada nu-SVR, diwujudkan. 

Keputusan berangka dengan jelas menunjukkan SVR-RWSIMPLS algoritma adalah 

lebih cekap, lebih teguh dan mempunyai masa pengiraan yang kurang daripada 

RWSIMPLS. Plot diagnostik SVR-RWSIMPLS yang dicadangkan juga sangat berjaya 

dalam mengklasifikasikan pemerhatian ke dalam kumpulan yang betul. 

 

 

Pengecutanc mutlak terkecil dan pemilihan pengendali (LASSO) ialah prosedur 

pengecutan berdasarkan fungsi penalti yang merupakan kaedah yang biasa digunakan 

dalam melaksanakan anggaran parameter dan pemilihan pembolehubah, secara serentak. 

Namun, kaedah LASSO mudah dipengaruhi oleh data terpencil kerana ia adalah kes khas 

penalti regresi kuasa dua terkecil dengan fungsi penalti 𝐿1. Banyak kaedah penalti telah 

dicadangkan untuk membetulkan masalah ini termasuk WLAD-LASSO. 

Walaubagaimanapun, kelemahan WLAD-LASSO ialah kecekapannya cenderung 

menurun apabila bilangan titik tuasan yang baik (pemerhatian terpencil dalam ruang-X di 

mana ia mengikut corak majoriti data) meningkat. Selain itu, ia hanya boleh 

mengendalikan data berdimensi rendah, (𝑝 < 𝑛  ) kerana ia berdasarkan berat RMD-

MVE di mana MVE hanya boleh dikira untuk data berdimensi rendah. Oleh itu, kaedah 

WLAD-LASSO berwajaran baharu (SVR-WLL) dibangunkan secara serentak 

menganggar pemilihan parameter dan pembolehubah model regresi. Hasil kajian 

simulasi dan set data sebenar menunjukkan bahawa SVR-WLL adalah lebih unggul 

berbanding kaedah sedia ada yang dibincangkan dalam tesis ini. 

 

 

Analisis komponen utama (PCA) ialah pendekatan yang paling biasa digunakan untuk 

menganalisis data berdimensi tinggi untuk mencapai pengurangan dimensi. Walau 

bagaimanapun, titik terpencil mempunyai kesan buruk terhadap PCA, oleh itu 

mengurangkan ketepatan model ramalan. Sehingga kini, tiada kajian telah dilakukan 

untuk menggabungkan teknik SVR dalam algoritma PCA bagi mendapatkan model 

ramalan yang tepat dengan ketepatan yang tinggi. Untuk merapatkan jurang dalam 

literatur, PCA hibrid baharu dengan teknik nu-SVR (SVR-PCA) dibangunkan. 

Keputusan menunjukkan bahawa SVR-PCA adalah lebih cekap daripada teknik PCA. 
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Study 

Regression analysis resembles a statistical procedure for determining the functional 

relationship between two or more variables in order to predict a dependent variable (DV) 

(output) from one or more independent variables (IV) (input) (Kutner et al., 2005). Given 

the explanatory variables, regression analysis calculates the response variable's 

conditional expectation. That means when the independent variables are fixed, it 

calculates the average value of the dependent variable. This can be accomplished by 

employing the appropriate approach for the data set under investigation. One of the most 

prevalent estimation strategies in regression analysis is the ordinary least squares method 

(OLS). The OLS is among the common estimation technique in the linear regression, 

due to its attractive properties and ease of calculation. Moreover, provided that random 

errors are independent and identically normally distributed (IID), then the OLS estimator 

is the best linear unbiased estimator (BLUE). In the sense that within all possible linear 

unbiased estimators, the OLS estimator possesses the minimum variance. However, in 

the vast majority of real-world applications, the assumptions underlying the linear 

regression model such as the error terms are independent and normally distributed, are 

not met. Additionally, the OLS estimator is not resilient in the presence of outliers, which 

are common in real-world scenarios. To put it another way, the OLS estimator has a low 

breakdown point of 1/n (Maronna et al., 2006), in which n represents the sample size. 

This implies that even if one point is abnormal, it can drastically affect the least squares 

estimate in the incorrect direction (refer to Rousseeow and Leroy, 1987; Kamruzzaman 

and Imon, 2002; Maronna et al., 2006). 

In the presence of one or more outlying observations, the normal distribution of the error 

terms are easily offended. According to Belsley et al. (1980), outliers refer to 

observations that have the greatest effect on the calculated values of various estimates, 

either alone or in combination with multiple other points. Additionally, Hawkins (1980) 

described an outlier as one which differs very significantly than the others that it raises 

concerns that it was caused by a variety of factors. "An outlier is an observation that, 

because it is unusual and/or unjustified, deviates decisively from the overall behaviour 

of experimental data in regards to the criterion studied," as explained by Muoz-Garcia et 

al. (1990). As per Barnett and Lewis (1994), outliers are points that are significantly 

different from the bulk of observations included in a data collection. In general, outliers 

in regression issues may be divided into numerous categories. Outliers, or also called as 

vertical outliers, are those outlying data in the Y-direction. On the other hand, high 

leverage points (HLPs) are observations that are outlying in the X-direction, while 

residual outliers are observations that have large residuals. According to Midi et al. 

(2021), HLPs can be classified into good and bad leverage points. The good leverage 

points are located on the regression line, and they possess minor effects on the regression 

estimators, with the potential to improve the precision of an estimate. On the contrary, 
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the bad leverage points are located distant from the regression line and possess a large 

impact on regression estimators. 

With regards to the non-linearity relationship and outliers between variables, additional 

major difficulties that impact the projected model include high-dimensional and sparse 

(p is much larger than the sample size, n). Additionally, Yatchew (2003) pointed that the 

potential approximation error is larger ten times for each additional explanatory variable 

to the regression model because of the difficulty to meet the assumptions of the 

parametric regression model. Nowadays, there are numerous techniques that deal with 

these issues independently. Even so, there are few studies in the literature that take into 

account the existence of outliers, high-dimensional and non-linearity issues (less than 

full or full rank) all at the same time. Consequently, finding options that provide the 

essential flexibility to deal with these difficulties, for instance, nonparametric 

approaches, particularly learning machines, has become a crucial requirement. Therefore 

in this thesis, the focus is mainly on developing several statistical methods based on 

support vector regression on high dimensional data. Hence, it is important to first 

introduce the concept of support vector regression, followed by some other important 

concepts. 

1.2 Support Vector Machine for Regression 

The conventional regression assumptions, for instance, the assumption of linear 

relationship among variables with the knowledge of the data’s underlying probability 

distribution, are difficult to achieve in most real-world situations (Ukil, 2007). Due to 

this problem, other alternative methods such as the nonparametric machine learning 

should be adopted. 

Support Vector Machine (SVM) is a promising and somewhat new approach for learning 

to separate functions in classification problems (SVC) or conducting function estimation 

in regression issues (SVR). Moreover, because of its high performance and capability to 

transform non-linear relationships among variables into the linear forms using the kernel 

notion (kernel function), SVM applications have been rising recently. Additionally, 

Cortes and Vapnik (1995) developed the support vector machine using statistical 

learning theory (SLT) for distribution-free data learning. They described SVM as a 

collection of related supervised learning approaches that can be used to solve regression 

and classification issues. By virtue of its exceptional performance in a diversified 

learning situation, it has sparked great attention in the machine learning field, both 

theoretically and empirically. It is good at solving problems in image analysis (Guo et 

al., 2008), bioinformatics (Ben-Hur et al., 2008), financial prediction and marketing 

database (Ukil, 2007), bankruptcy prediction (Härdle et al., 2011), artificial intelligence 

(Frohlich and Zell, 2005), and text categorization (Kuo and Yajima, 2010). Other factors 

that contribute to the SVM's widespread use include its theoretical assurances regarding 

its performance and less sensitivity to local minima. 
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The SVM was first used to solve classification problems (Cortes and Vapnik, 1995). 

However, the formulation was immediately improved to solve regression issues (Vapnik, 

1995; Vapnik et al., 1996). Moreover, the SVM is distinguished by its capacity to 

generate a comprehensive, sparse, and unique solution (Ceperic et al., 2014). Vapnik's 

ε-insensitive SVR is a popular support vector regression formulation. It generates a 

predictive model that is based on only a portion of the training data (sparse model) and 

disregards any aspects that fall under the threshold ε. The sparse regression model is a 

simplified model, in general. When compared to the complexity ratio, it can achieve 

excellent accuracy. On the other hand, the SVR model incorporates a regularisation term 

(weight) in its training formulation that helps to reduce the model's complexity. Several 

advantages of the sparse regression model have been identified by several researchers, 

which may be summarized in the next three points (Tipping, 2001; De Figueiredo, 2003; 

Roth, 2004; De Brabanter et al., 2010; Guo et al., 2010): 

Tendency to avoid the issue of over-fitting: a model with less complexity is less likely 

to over-fit the data. 

Lower computational expenses during active use: the SV machine model's estimate time 

is significantly related to the support vectors (the support vectors number), and as this 

number reduces, the execution speed increases. 

Capability to generalize: generalization, as well as over-fitting are two notions that are 

closely associated in that if the likelihood of over-fitting is reduced, the model's ability 

to generalize is strengthened. 

Nevertheless, the SVR's ability to generate a sparse model by itself is insufficient to 

guarantee that the model will generalize effectively. As an example, when the parameter 

ε value is too small, then, the generated model will be dependent on the majority of the 

training points, which leads to the non-sparse resulting solution (Guo et al., 2010). 

1.2.1 The Basic Idea 

Let consider the training data {(𝑥1, 𝑦1), … , (𝑥𝑛𝑦𝑛)} ⊂𝑋×R, in which 𝑋 denotes the input

variables space (e.g., 𝑋=𝑅𝑑 ). The purpose of the ε-tube SVR is to search f(x) such that

it has at most, ɛ deviation from the acquired outputs 𝑦𝑖 . Moreover, at the same time it

should be as flat as possible (Smola and Schölkopf, 2004). It is worth mentioning that 

the training errors are not much taken into consideration as long as they are smaller than 

the threshold value ɛ, but any deviation more than this will not be tolerated.  Let us first 

consider the situation of a linear function f, as follows: 

𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏,  (1.1) 
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in which 〈. , . 〉 describes the dot product in 𝑋,  𝑏 ∈ 𝑅 and 𝑤 ∈ 𝑋 denotes the offset and 

slope of the regression function. Flatness in the function (1.1) means that one attempts a 

small value by minimizing the Euclidean norm ‖𝑤‖2. 

This problem may be expressed as a convex optimization problem (Smola and 

Schölkopf, 2004). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     
1

2
‖𝑤‖2                           

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    {
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤  𝜀
〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤  𝜀 .

 

 

 

(1.2) 

 

In (1.2), the implied assumption was that the convex optimization problem is feasible. 

The slack variables are introduced to deal with the issue of the optimization problem’s 

infeasible constraints (1.2). According to Vapnik (1995), this process leads to the 

formulation:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   
1

2
‖𝑤‖2 + ∁ ∑(𝜉𝑖

 + 𝜉𝑖
∗)

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  {

𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤  𝜀 + 𝜉𝑖
  

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤  𝜀 + 𝜉𝑖
∗ 

𝜉𝑖
 , 𝜉𝑖

∗  ≥ 0, 𝑖 = 1,2… . , 𝑛  ,

 

 

 

 

(1.3) 

 

in which 𝜉𝑖
∗ and 𝜉𝑖

  resemble the slack variables that provide the lower and the upper 

errors, and C is realized as the tradeoff between model complexity and the number of 

deviations higher than 𝜀 which can be tolerated. 

This is equivalence of minimizing the ε-insensitive loss function as given in (1.4), in 

which it describes the best robustness characteristics among different common loss 

functions, for instance, Huber’s, Gaussian, and Laplacian (Schölkopf and Smola, 2002; 

Rojo-Álvarez et al., 2003; Colliez et al., 2006).  

 

𝐿𝜀  (𝑦𝑖) =  {
0                          if |𝑦𝑖 − 𝑓(𝑥)|≤ 𝜀 

|𝑦𝑖 − 𝑓(𝑥)|−𝜀         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.      
 (1.4) 

 

The hypothetical aspect is visually depicted in Figure 2.1. It can be observed from this 

figure, that only the points that are falled beyond the ε-tube (the shaded region) are 

considered as support vectors, and their deviations are penalized in a linear way. As per 

Lee and Mangasarian (2001), the optimization problem (1.3) can easily be solved in its 

dual formulation, provided that the dimension of the parameter w is much bigger 

compared to the number of samples. Furthermore, the dual formulation is the key to 

extend the SVR method to nonlinear functions. 
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Figure 1.1 : A linear SVM soft margin loss setting (Schölkopf and Smola 2002) 

 

 

1.2.2 Dual Problem and Quadratic Programs 

The main idea is to construct the Lagrange function (L) from the objective function and 

its accompanying constraints that possesses a saddle point at the solution in terms of the 

dual and primal variables (for more details refer Vanderbei, 1999). This can be 

accomplished by introducing dual set of variables that can be shown as follows: 

 

𝐿 =
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖

𝑛

𝑖=1

− 𝜉𝑖
∗) − 𝐶∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖

∗𝜉𝑖
∗)

𝑛

𝑖=1

 

−∑𝛼𝑖(ɛ + 𝜉𝑖 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏)

𝑛

𝑖=1

 

−∑𝛼𝑖
∗(ɛ + 𝜉𝑖

∗ + 𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏,

𝑛

𝑖=1

 

 

 

 

 

 

(1.5) 

 

where 𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗  resemble the Lagrange multipliers that have to meet positivity 

constraints, such that 

 

𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖, 𝜂𝑖

∗ ≥ 0.  

 

To achieve the optimality, the partial derivatives of L to the primal variables (𝑤, 𝑏, 𝜉𝑖
 , 𝜉𝑖

∗) 

are selected and be equated to zero (Smola and Schölkopf, 2004). 

 

𝜕𝐿

𝜕𝑏
=∑(𝛼𝑖

∗ − 𝛼𝑖) = 0             

𝑛

𝑖=1

 (1.6) 
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𝜕𝐿

𝜕𝑤
= 𝑤 −∑(𝛼𝑖 − 𝛼𝑖

∗)𝑥𝑖 = 0

𝑛

𝑖=1

 (1.7) 

𝜕𝐿

𝜕𝜉𝑖
 = 𝐶 − 𝛼𝑖 − 𝜂𝑖 = 0                (1.8) 

𝜕𝐿

𝜕𝜉𝑖
∗ = 𝐶 − 𝛼𝑖

∗ − 𝜂𝑖
∗ = 0.             (1.9) 

 

The following dual optimization problem is obtained by substituting (1.6), (1.7), (1.8), 

and (1.9) into (1.5) (Smola and Schölkopf, 2004): 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   

{
 
 

 
 −

1

2
 ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝑥𝑖 , 𝑥𝑗〉

𝑛

𝑖,𝑗=1

    

−𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗) +∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)  

𝑛

𝑖=1

𝑛

𝑖,𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑(𝛼𝑖 − 𝛼𝑖
∗) = 0  𝑎𝑛𝑑 

𝑛

𝑖=1

 𝛼𝑖 , 𝛼𝑖
∗𝜖 [0, 𝐶].

 (1.10) 

 

 

Conditions (1.8) and (1.9) are used to remove the dual variables 𝜂𝑖 and 𝜂𝑖
∗ in deriving 

(1.10). The weight vector w can be obtained by rewriting equation (1.7) as 

 

𝑤 =∑(𝛼𝑖 − 𝛼𝑖
∗)𝑥𝑖

𝑛

𝑖=1

. (1.11) 

 

Hence, the regression function is represented as 

 

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)〈𝑥𝑖 , 𝑥〉

𝑛

𝑖=1

+ 𝑏. (1.12) 

 

It important to highlight that the parameter b can be calculated by exploiting the Karush–

Kuhn–Tucker criteria (KKT) (Keerthi et al., 2001; Ceperic et al., 2014). Moreover, the 

conditions of KKT to nonlinear programming generalize the Lagrange multiplier 

approach to permit inequality constraints as well as equality requirements (Boyd and 

Vandenberghe, 2004). 

1.2.3 Generalized SVR Algorithm for Nonlinear Case 

Only the linear regression situation has been explored in the preceding subsections. The 

following stage is to build the SVM algorithm nonlinear. This could be achieved by 
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simply applying the function Φ ∶ 𝑋 ⇾ 𝐹 on the training patterns 𝑥𝑖 . The function Φ  is 

employed to transform the input space X into some feature space F by applying the 

conventional SV regression procedure (Smola and Schölkopf, 2004; Ceperic et al., 

2014). Regrettably, for both high-dimensionality and polynomial (high order) features, 

this strategy can quickly become computationally expensive (Vapnik, 1995). Clearly, 

this strategy is not appropriate in all circumstances, and one may look for other methods 

that are computationally less expensive. 

As previously stated, the SVM method is only relies on the dot products among patterns 

𝑥𝑖 . Thus, Boser et al. (1992) have deduced that knowing 𝑘(𝑥𝑖 , 𝑥) = 〈Φ(𝑥𝑖), Φ(𝑥)〉 
instead of Φ explicitly is sufficient, allowing us to recast the optimization problem of 

SVM (1.10) as the following: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒    

{
 
 

 
 −

1

2
 ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑘(𝑥𝑖 , 𝑥𝑗)

𝑛

𝑖,𝑗=1

       

−𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗) +∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)  

𝑛

𝑖=1

𝑛

𝑖,𝑗=1

           

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑(𝛼𝑖 − 𝛼𝑖
∗) = 0  𝑎𝑛𝑑 

𝑛

𝑖=1

 𝛼𝑖 , 𝛼𝑖
∗𝜖 [0, 𝐶].        

  

 

 

Similarly, the equations (1.11) and (1.12) can rewritten as  

 

𝑤 =∑(𝛼𝑖 − 𝛼𝑖
∗)Φ(𝑥𝑖),

𝑛

𝑖=1

  

 

and 

 

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

+ 𝑏.  

 

The distinction between the two scenarios is that in the nonlinear case, unlike the linear 

example, w is not explicitly provided. It is worth noting that, in the nonlinear situation, 

the optimization issue corresponds to the discovering the flattest function in feature 

space instead of input space. 

1.2.4 The Steps of SVR Algorithm  

The different phases of the regression process are visually illustrated in this section. 

Figure 2.2 shows how the map function Φ is utilized to map the input pattern 𝑥𝑖 into the 

feature space (Schölkopf and Smola, 2002). Then, within the training patterns that were 
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previously mapped by the map function, compute the dot products. This is equivalent to 

analysing the kernel functions 𝑘(𝑥𝑖 , 𝑥) = 〈Φ(𝑥𝑖), Φ(𝑥)〉. Afterwards the weights 𝑣𝑖 =
𝛼𝑖 − 𝛼𝑖

∗ are used to insert the dot products. Lastly, the regression's final prediction output 

is obtained by adding the parameter 𝑏. It is also worth noting that the procedure which 

has been previously explained is quite comparable to Neural Network Regression 

(NNR), with the difference that in the case of SV, the weights in the input layer are the 

training patterns’ subset.  

 

 

Figure 1.2 : A regression machine's architecture generated by the SV algorithm 

(Schölkopf and Smola 2002) 

 
 
1.2.5 The standard SVM Regression for Outlier Detection  

With regard to Karush-Kuhn-Tucker (KKT) circumstances, the conventional SVR 

approach for outlier detection (Jordaan and Smits, 2004) takes advantage of the Lagrange 

multipliers produced by solving optimization problem. This explains why the output 

between the dual variables and constraints must dematerialize at the moment of solution. 

 
𝛼𝑖(𝜀 + 𝜉𝑖

 − 𝑦𝑖 + Φ(𝑥𝑖) +  𝑏) = 0

𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − Φ(𝑥𝑖) −  𝑏) = 0
  

𝜉𝑖
 (𝐶 − 𝛼𝑖) = 0 

𝜉𝑖
∗(𝐶 − 𝛼𝑖

∗) = 0 .
  

 

 

If the slack variable is zero for any point, while the upper-bound Lagrange multiplier 𝛼𝑖 
or 𝛼𝑖

∗ is not present, then, the data point is not suspected as an outlier. On the other hand, 

the data points that possess upper bounds Lagrange multipliers 𝛼𝑖 and 𝛼𝑖
∗ may be termed 

as elected outliers. Because different data points possess different upper bounds for 

Lagrange multipliers, it is usually required to locate the real outlier. The candidate 
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having the greatest frequency of suspected outliers having varying values of ε, is deemed 

as an outlier after numerous computations of SVR values f(x). This technique is done 

repeatedly until no further outliers are identified or until the mean square error (training 

error) falls below the set threshold. 

When this approach is applied to real-world occurrences, the following concerns arise. 

Firstly, in order to manage data with several outliers, the technique necessitates 

significant computation costs, as detecting an outlier requires repeated rounds of the 

optimization calculation. Secondly, non-expert users will find it difficult to use since it 

demands exact detection. Thirdly, SV method has a unique benefit based on SVM 

theory, in which it creates its formation (Chuang et al., 2002), signifying the chance of 

decreasing swamping and masking problems when utilizing various ε parameter values. 

1.2.6 𝛍‐ 𝛆‐SVR Based Outlier Detection 

Instead of using the parameter  𝐶 , the  𝜇‐ 𝜀‐SVR method for outlier detection uses 

parameter 𝜇 (new regularization parameter) introduced by Nakayama and Yun (2006) as 

a solution to solve the difficulties of the standard approach problems (Jordaan and Smits, 

2004). Moreover, the 𝜇‐ 𝜀‐SVR algorithm (Nishiguchi et al., 2010), was established in 

the following way: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒           
1

2
‖𝑤‖2 +  𝜇 (𝜉𝑖

 + 𝜉𝑖
∗)        

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    {

𝑦𝑖 − 𝑤.Φ(𝑥𝑖) − 𝑏 ≤  𝜀 + 𝜉𝑖
 

𝑤.Φ(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤  𝜀 + 𝜉𝑖
∗

𝜉𝑖
 , 𝜉𝑖

∗  ≥ 0, 𝑖 = 1,2… . , 𝑛.

 (1.13) 

 

Only the highest training errors (𝜉𝑖
  𝑜𝑟 𝜉𝑖

∗) are considered in the primary formation of 

the 𝜇‐ 𝜀‐SVR method (1.13), not the average slack variables used in the standard SVR 

(Jordaan and Smits, 2004). From (1.13), the Lagrange function is constructed as follows: 

 

𝐿 =
1

2
‖𝑤‖2 +  𝜇 ∑(𝜉𝑖

 + 𝜉𝑖
∗)

𝑛

𝑖=1

−∑(𝜂𝑖𝜉𝑖
 + 𝜂𝑖

∗𝜉𝑖
∗)

𝑛

𝑖=1

 

        −∑𝛼𝑖(𝜀 + 𝜉𝑖
 −    𝑦𝑖 + 𝑤.Φ(𝑥𝑖) + 𝑏) 

𝑛

𝑖=1

        −∑𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ +    𝑦𝑖 − 𝑤.Φ(𝑥𝑖) − 𝑏)

𝑛

𝑖=1

.

  

 

Based on the saddle point condition, we can see that the partial derivatives of function L 

with respect to the primary variables (𝑤 ,  𝑏 ,  𝜉𝑖
 ,  𝜉𝑖

∗ ) provide the following dual 

optimization problem. 
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒             

{
 
 

 
 −

1

2
 ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑘(𝑥𝑖  , 𝑥𝑗) 

𝑛

𝑖,𝑗=1

−𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗) +∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)

𝑛

𝑖=1

𝑛

𝑖,𝑗=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 ∑(𝛼𝑖 − 𝛼𝑖
∗) = 0  𝑎𝑛𝑑 

𝑛

𝑖=1

 𝛼𝑖 , 𝛼𝑖
∗  ≥ 0

                                               ∑𝛼𝑖 ≤ 𝜇

𝑛

𝑖=1

,∑𝛼𝑖
∗ ≤ 𝜇

𝑛

𝑖=1

 (1.14) 

 

With regard to KKT conditions, the Lagrange multipliers sum is employed rather than 

their values by computing (1.14). 

 

                

𝜉𝑖
 (𝜇 −∑𝛼𝑖

𝑛

𝑖=1

) = 0,

𝜉𝑖
∗ (𝜇 −∑𝛼𝑖

∗

𝑛

𝑖=1

) = 0.

 (1.15) 

 

Each data points having non-zero (positive) Lagrange multipliers owns the same 

maximum error when the Lagrange multipliers sum (1.15) reaches the upper bound 𝜇. 

Thus, these data points are most likely the actual outliers. Hence, provided that an outlier 

exists, the point having the greatest Lagrange multiplier is considered as the most 

probable outlier among points, according to the optimization concept. All Lagrange 

multipliers are not confined by the upper bound, as shown by the dual problem (1.14). 

The upper bounded Lagrange multiplier for several data points is always different. It is 

important to highlight that, any training errors less than the ε zone, or outliers, will not 

occur if the sum of the Lagrange multipliers is less than the upper bound μ. Hence, the 

outlier detection technique can employ the sum of the Lagrange multipliers. Outlier 

detection with the μ-ε-SVR algorithm is given below: 

 

Step 1: Compute μ-ε –SVR. 

Step 2: Determine the greatest 𝛼𝑖, 𝛼𝑖
∗. 

Step 3: From the data set, remove 𝑥𝑖 and 𝑦𝑖  with the highest 𝛼𝑖, 𝛼𝑖
∗.  

Step 4: Repeat the process until no more outliers are found. 

 

 

When this approach is used in real-world applications, the following limitations occur. 

Firstly, because it can only discover and eliminate one outlier every iteration, this method 

is best for data with few outliers. When outliers are increased, computational costs 

approach those resulting from the standard SVR technique. Secondly, despite the fact 
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that it has a fixed tolerance ε, which tend to reduce swamping and masking issues, there 

is no clear criteria for determining the ε parameter value. 

1.3 Basic Concepts  

The robust regression approach was introduced with the goal of providing resistant 

estimates in the outliers’ presence in the data set. Theoretically, the most basic qualities 

used to quantify the performance of resilient approaches are breakdown point and 

bounded influence. These robust estimator principles are briefly stated as the following. 

1.3.1 Breakdown Point 

A high breakdown point is another desired characteristic of a robust approach. The 

breakdown point (BP) is the minimum contamination percentage that can entirely ruin 

or implode an estimator or estimating process (Hampel, 1974, Coakley and 

Hettmansperger, 1993). Conversely, the smallest number of bad data (outliers) can 

drastically alter an estimator. In most cases, a high breakdown point indicates that the 

estimator can endure a significant number of outliers without the analysis imploding.  

Since the estimate remains bounded when fewer than 0.50 of the data are replaced with 

outlying observations, the largest attainable BP is 0.50 (Rousseeuw and Croux, 1993). 

Moreover, to propose a breakdown’s formal finite sample definition, we may utilize a 

sample of n data point given as follows: 

 

𝐺 = {(𝑥11, … , 𝑥1𝑝, 𝑦1), … , (𝑥𝑛1, … , 𝑥𝑛𝑝 , 𝑦𝑛)} .  

 

If we assume 𝑇 to be a regression estimator, we get the following vector of regression 

coefficients when we apply 𝑇 to such a sample 𝐺: 

 

𝑇(𝐺) = 𝛽̂.  

 

To obtain all possible corrupted samples 𝐺𝑇, any m of the original data points is replaced 

with arbitrary values, or also known as outliers. Therefore, the estimator 𝑇′𝑠 breakdown 

point at sample 𝐺 is defined as 

 

𝐵𝑃(𝑇, 𝐺) = min {
𝑚

𝑛
; SUP
𝐺𝑇
‖𝑇(𝐺𝑇) − 𝑇(𝐺)‖ is infinite}  

 

in which the supremum is over all possible data matrix 𝐺 , which contains 𝑛 − 𝑚 

observation and 𝑚 contaminated points (Rousseeuw and Leroy, 1987; Maronna et al. 

2006).  
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1.3.2 Bounded Influence Function  

A robust for high leverage points or X space is shown by the bounded influence function 

(BIF) (Simpson, 1995). Specifically, BIF is an ability to protect the model estimators 

from the outlying points’ effect in the X space. Moreover, the influence function (IF) 

assesses an estimator’s robustness with regards to low contamination levels, and is 

frequently employed to determine either the estimator possesses BIF. The following is 

the IF of an estimator 𝑇 at a distribution 𝐹 in those points 𝑥0 of the sample space when 

the limit exists: 

 

IF(𝑥0; 𝑇, 𝐹) = lim
δ→∞

𝑇((1 − 𝛿)𝐹 + 𝛿𝜑𝑥0) − 𝑇(𝐹)

𝛿
 ,  

 

 

where 𝜑𝑥0 denotes the probability distribution that puts all its mass in the point 𝑥0 and 𝛿 

represents the contamination amount. Moreover, it is vital to note that the influence 

function reflects the bias introduced by a few outliers at the point  𝑥0 (Rousseeuw and 

Leroy, 1987; Simpson, 1995; Wilcox, 2005; Maronna, 2006). 

1.4 Standardized 

To limit the impacts of unit variation, the standardized form is often employed in 

numerous multiple regression applications. Therefore, the Standardized form is 

formulated this way for all 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑝  (Kutner et al., 2005; 

Montgomery et al., 2015).  

 

𝑥𝑖𝑗
∗ =

𝑥𝑖𝑗 − 𝑥̅𝑗

𝑆𝑗
,  

𝑦𝑖
∗ =

𝑦𝑖 − 𝑦̅

𝑆𝑦
 ,  

 

in which 𝑆𝑦 and 𝑦̅ represent the standard deviation and mean of the dependent variable 

𝑦, respectively.  

 

𝑥̅𝑗 =
∑ 𝑥𝑖𝑗
𝑛
𝑖=1

𝑛
 , 𝑆𝑗 =

√∑ (𝑥𝑖𝑗 − 𝑥̅𝑗)
2𝑛

𝑖=1

𝑛 − 1
 .  

𝑦̅ =
∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
,            𝑆𝑦 = √

∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1

𝑛 − 1
 .  
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1.5 Problem Statement 

Several researchers have observed that true data sets include a high percentage of outliers 

spanning from 1% to 10% (Hampel et al., 1986; Wilcox, 2005). The existence of one or 

numerous outliers in a data set affects both parametric and nonparametric regression 

methods (the nonparametric methods are less swayed than the parametric methods). 

High leverage points (HLPs), as well as outliers, possess a significant impact on the 

various estimation values, resulting in inaccurate results and actions. Hence, it is very 

crucial to identify them before constructing a predictive model (Cook, 1977) or orienting 

resilient approaches (Huber, 1973). Moreover, these parametric approaches are unable 

to handle data that is less than complete. To overcome this issue, several academics turn 

to non-parametric methods to detect outliers in both full rank and less than full rank 

scenarios. For outlier detection in high dimensional data (HDD) that refer to a situation 

when 𝑝 > >  𝑛, Jordaan and Smits (2004) proposed utilizing standard support vector 

regression (SSVR). This strategy works by repeatedly performing the SV regression 

model and detecting points that are thought to be outliers. When it comes to real-world 

applications, Nishiguchi et al. (2010) pointed out certain issues. Multiple outliers in the 

data demand significant computing costs because outlier detection necessitates a lot of 

rounds of the calculation; trial and error are employed for conclusive identifications 

because ways to find the outlier threshold value is unclear. To address the issue, 

Nishiguchi et al. (2010) established the modified support vector regression (MSVR) 

approach for outlier detection by adopting a new trade-off parameter (μ), where they are 

effective in detecting HLPs and outliers. However, because only one cycle is necessary 

to discover one outlier, the MSVR technique is acceptable for data with few outliers. As 

a result, in the presence of several outliers, computational costs are similar to those 

resulting from the traditional SVM regression approach. Furthermore, no strict precedent 

for determining the threshold parameter value, despite the fact that it has a fixed value.  

To overcome those problems, Dhhan et al. (2015) introduced the fixed parameter support 

vector regression (FP-SVR). The FP-SVR approach shows good performance for 

detecting outliers from a single time iteration by using a fixed set of parameters. 

However, the FP-SVR performs well for 𝑝 < 𝑛, but when applied to high dimensional 

data, it suffers from masking and swamping issues.  As a results, the FP-SVR is not very 

successful in the detection of outliers under a variety of scenarios. Hence, their work has 

motivated us to develop a new method of identification of outliers in HDD which is 

expected to be very successful in the detection of outliers with the least percentage of 

masking and swamping effects.  We call this method nu-support vector regression, 

denoted as nu-SVR. 

Moreover, this thesis also focuses on robust approaches to heading the problem of the 

presence of HLPs in high dimensional data (HDD) in multiple linear regression models. 

As previously stated, the existence of outliers has a significant impact on the OLS 

estimator as well as it cannot be applied in HDD. There are several robust regression 

methods in the literature, that are alternatives to OLS, such as the least median of squares 

(LMS), least absolute values (LAV), the least trimmed squares (LTS), the maximal 

likelihood estimator (M-estimator), the method of moment estimator (MM estimator), 

the generalized M-estimator (GM1-estimator), and a new class of GM-estimator (GM6) 
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introduced by Coakley and Hettmansperger (1993). However, all these methods 

previously mentioned are not efficient enough in the presence of multiple outliers in the 

linear regression model, where these methods suffer from masking and swamping 

effects. To solve this problem, Dhhan et al. (2017) proposed a new version of the GM6 

estimator based on SVR, which is called the GM-SVR. The GM-SVR technique 

performs well when predictors (p) are less than the sample size (n), but it cannot be 

applied when p >> n. To handle the dimensionality problems, Partial Least Squares 

Regression (PLSR) was developed to produce a regression model with multicollinear 

data in HDD. The aim is to use algorithms to extract uncorrelated latent variables 

(components) (Wold et al. (1983)). The statistically inspired modification of the PLS 

(SIMPLS) is one of the most popular algorithms for extracting such components 

iteratively (De Jong, 1993). Due to the use of the OLS estimation technique and a non-

robust covariance matrix in collecting the components, it is now clear that the SIMPLS 

algorithm is very sensitive to outliers. Alin and Agostinelli (2017) introduced the Robust 

Iteratively Reweighted SIMPLS (RWSIMPLS) by using a weight function devised by 

Markatou et al. (1998), which is based on the response variable, the model distribution 

chosen, and the sample empirical distribution. However, using this weight function has 

shortcomings as there is no specific rule to indicate which observations are the outliers. 

This limitation has inspired us to develop another version of RWSIMPLS based on nu-

SVR, denoted as SVR-RWSIMPLS.  

This thesis is also concerned on constructing diagnostic plots to classify observations 

into four categories—regular observations, vertical outliers (outlying observations in Y-

space), good leverage points (outlying observations in X space where they follow the 

pattern of the rest of the data) and bad leverage points (outlying observations in both X-

space and Y-space) for HDD. Alin and Agostinelli (2017) and Alin et al. (2019) proposed 

a diagnostic plot for HDD by plotting the robust standardized residuals of the 

RWSIMPLS versus the leverage values. This turned out to be not a good approach since 

it is now evident that leverage values are not very successful in identifying HLPs 

(Habshah et al., 2009). This weaknesses has motivated us to develop a better approach 

of classifying observations into the four categories mentioned above. 

This thesis also addresses the issue of variable selection in HDD. Some shrinkage 

procedures based on penalized function, such as the least absolute shrinkage and 

selection operator (LASSO) (Tibshirani, 1996), adaptive LASSO (Zou, 2006), and 

Elastic-Net (Zou and Hasti, 2005) were proposed to simultaneously perform coefficient 

estimation and variable selection for HDD. Unfortunately, all of these methods are not 

resistant to outliers and unable to select the importance variables. The LAD-LASSO (Xu, 

2005; Wang and Leng, 2007) was put forward to address this issue. Nonetheless, the 

LAD-LASSO is still not very successful in selecting the important variables because it 

is only resistant to vertical outliers but not resistant to high leverage points. To remedy 

this problem, Arslan (2012) developed Weighted LAD-LASSO (WLAD-LASSO) by 

combining the Weighted LAD (WLAD) criterion with the 𝐿1 penalty function.  He 

utilized weight function which is obtained from robust mahalanobis distance (RMD) 

based on minimum volume ellipsoid (MVE).  However, it is now evident that RMD-

MVE suffers from swamping and masking effects (Dhhan et al. ,2015; Rashid et al. 

,2021). Moreover, the WLAD-LASSO can only be applied to low dimensional data but 
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not for HDD. The shortcomings of WLAD-LASSO have inspired us to develop a new 

variable selection approach by incorporating a new weight function obtained from nu-

SVR. We call this method the robust weighted LAD LASSO based on nu-SVR, denoted 

as WLL-SVR which is anticipated to be more accurate in selecting only the significant 

predictors in the model. 

In this thesis, the issue of dimension reduction is also addressed. Principal component 

analysis (PCA) is a popular method for analyzing dimensional space in order to achieve 

dimension reduction, which can be accomplished by selecting the most components that 

can explain the variability in the data (Barnett and Lewis, 1994). Unfortunately, outliers 

have a bad effect on the PCA method, and this may lead to misleading conclusions. 

Hence, this drawback, has motivated us to develop a new approach that can achieve 

robustness and dimension reduction, known as the PCA-SVR method. 

1.6 Research Objectives 

This thesis’s major purpose is to look at the challenges of high dimensionality in 

nonlinear and linear regression models when there are outliers (outlying in coordinates 

X and Y). The Ordinary least squares (OLS) estimates are used in most conventional 

diagnostic and estimation procedures for outliers’ situations. Regrettably, the OLS 

estimate is not resistant to outliers. Furthermore, it is inappropriate for nonlinear 

regression models, and meeting all of its assumptions for high-dimensional models is 

challenging (full or less than full rank). 

It is important to leave the classic models and the search for alternative that is flexible 

to be more resistant against outliers and appropriate for linear and nonlinear problems, 

whether it has a complete or incomplete rank. Our research's primary goals can be 

summarized in the following manner: 

 

1. To develop a new detection method based on nu-SVR for the identification of   

high leverage points and vertical outliers in high dimensional data. 

2. To establish a new robust partial least squares estimation method based on nu-

SVR to remedy the presence of leverage points and outliers in high dimensional 

data. 

3. To formulate a new classification scheme to classify observations into regular 

observations, vertical outliers, good and bad leverage points in high 

dimensional data. 

4. To develop a robust WLAD-LASSO variable selection procedure in the 

presence of HLPs and correlated variables in high dimensional data. 

5. To develop a new robust principal component analysis based on the nu-SVR 

model to overcome the curse of high dimensionality by achieving the 

dimensional reduction in the multiple linear regression model. 
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1.7 Study’s Limitation and Scope 

Many disciplines of study, e.g., bioinformatics, economics, financial forecasting, 

chemometrics, gene expressions and many more deal with high dimensional data. The 

analysis of high dimensional data become increasingly important in many fields and 

forms a major statistical challenge in terms of data classification and other statistical 

analysis. Therefore the scope of this thesis focusses on the development of several robust 

methods in high dimensional data.   

Several problems arise when dealing with high dimensional data. The main problem is 

that a matrix related to some algorithms may become singular. Moreover, most of the 

classical procedures are easily affected by outliers and consequently the entire classical 

inferential procedures which rely on certain assumptions, especially the normality 

assumption, will give inaccurate predictions. Hence, the thesis also focusses on using 

robust method and nonparametric methods which do not depend on certain assumptions 

to handle those issues.  

The nonparametric procedure refers to another statistical modelling technique that is 

used to examine high-dimensional and nonlinear relationships challenges. The SVM is 

among the most efficient algorithms in the nonparametric machine learning community 

(Frohlich and Zell, 2005). Nevertheless, when the threshold is low, the SVM model's 

capacity to evaluate high-dimensional issues is hindered since the resulting model is non-

sparse.  

The analysis of high dimensional data is computationally expensive and requires a large 

number of steps and long computer running times to complete. Since most of the analysis 

were done using lap-top computer (Intel(R) Core i5, 3ed generation, 2CUP  ( , it took 

several hours of computational running times to get certain results unless we can get 

access to working under high performance computer (HPC). Due to this problem, most 

work dealing with HDD, considered p up to 1,000 and percentage of contaminations 

only up to 20%. Hence, in certain chapters of this thesis, we are able to run the simulation 

study only up to p equals to 1,000. Moreover, the percentage of contamination is limited 

up to 20%.  

1.8 Overview of the Thesis 

This thesis’s contents are organized into eight chapters in line with the study's goals and 

scope.  

Chapter Two: The least squares estimation technique’s literature review and violation 

of its basic assumptions (the outliers’ existence and departure from normality) are 

covered in this section. The literature study of the support vector machine for regression 

is highlighted, as well as the core principle of using the kernel trick during the estimation 
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process. Leverage points and outliers are also explored, as well as their diagnostic 

approaches. Basic notions of robust linear regression are also discussed, as well as some 

major existing robust regression algorithms. The core principle of the partial least 

squares regression model, as well as its estimating methods, are explained in this section. 

The idea of variable selection is also discussed, as are certain penalization strategies. 

Lastly, the approach for principal component analysis and dimension reduction is also 

explored. 

Chapter Three: This chapter is mainly devoted to developing a new method of 

identification of multiple HLPs in high dimensional data and named it nu-SVR. In this 

chapter, the performance of nu-SVR is evaluated using real data sets and simulation 

studies. 

Chapter Four: The establishment of the RWSIMPLS estimation algorithm based on 

nu-SVR is presented in this chapter.  Monte Carlo simulation studies and two real data 

sets are employed to assess the performance of the proposed method. 

Chapter Five: In this chapter, a new variable selection method that we called WLL-

SVR is discussed. The proposed method is evaluated through simulation studies and two 

real data sets. 

Chapter Six: A hybrid principal component analysis and support vector regression 

(denoted by PCA-SVR) is developed in this chapter. A Monte Carlo simulation studies 

and real data sets are given to assess the performance of the proposed method. 

Chapter Seven: The thesis conclusions are summarized and discussed in depth in this 

chapter, followed by suggestion for future study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

106 

8 REFERENCES 

Algamal, Z. Y., & Lee, M. H. (2015). Adjusted adaptive lasso in high-dimensional 

poisson regression model. Modern Applied Science, 9(4), pp170-177. 

 

Alguraibawi, M., Midi, H., & Imon, A. H. M. (2015). A new robust diagnostic plot for 

classifying good and bad high leverage points in a multiple linear regression 

model. Mathematical Problems in Engineering, 2015. 

 

Alin, A., & Agostinelli, C. (2017). Robust iteratively reweighted SIMPLS. Journal of 

Chemometrics, 31(3), e2881. 

 

Alin, A., Agostinelli, C., Gergov, G., Katsarov, P., & Al-Degs, Y. (2019). Robust 

multivariate diagnostics for PLSR and application on high dimensional 

spectrally overlapped drug systems. Journal of Statistical Computation and 

Simulation, 89(6), 966-984. 

 

Alter, O., Brown, P. O., & Botstein, D. (2000). Singular value decomposition for 

genome-wide expression data processing and modeling. Proceedings of the 

National Academy of Sciences, 97(18), 10101-10106. 

 

Andersen, R. (2008). Modern methods for robust regression (No. 152). Sage. 

 

Anderson, C., & Schumacker, R. E. (2003). A comparison of five robust regression 

methods with ordinary least squares regression: Relative efficiency, bias, and 

test of the null hypothesis. Understanding Statistics: Statistical Issues in 

Psychology, Education, and the Social Sciences, 2(2), 79-103. 

 

Arslan, O. (2012). Weighted LAD-LASSO method for robust parameter estimation and 

variable selection in regression. Computational Statistics & Data Analysis, 

56(6), 1952-1965. 

 

Bagheri, A., & Midi, H. (2015). Diagnostic plot for the identification of high leverage 

collinearity-influential observations. SORT-Statistics and Operations Research 

Transactions, 51-70. 

 

Balfer, J., & Bajorath, J. (2015). Systematic artifacts in support vector regression-based 

compound potency prediction revealed by statistical and activity landscape 

analysis. PloS one, 10(3), e0119301. 

 

Barnett, V., & Lewis, T. (1994). Outliers in statistical data. Wiley. New York. 

 

Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying 

influential data and sources of collinearity. John & Wiley, New York. 

 

Ben-Hur, A., Ong, C. S., Sonnenburg, S., Schölkopf, B., & Rätsch, G. (2008). Support 

vector machines and kernels for computational biology. PLoS Comput Biol, 

4(10), e1000173. 

 



© C
OPYRIG

HT U
PM

 

107 

Bermingham, M., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I., Campbell, 

H., Navarro, P. (2015). Application of high-dimensional feature selection: 

Evaluation for genomic prediction in man. Scientific Reports, 5(10312), pp 1-

12. 

 

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal 

margin classifiers. Proceedings of the Fifth Annual Workshop on 

Computational Learning Theory, 144-152. 

 

Boudt, K., Rousseeuw, P. J., Vanduffel, S., & Verdonck, T. (2020). The minimum 

regularized covariance determinant estimator. Statistics and Computing, 30(1), 

113-128. 

 

Boyd, S., & Vandenberghe, L. (2004). Convex optimization, Cambridge University 

Press. Cambridge. 

 

Branden, K. V., & Hubert, M. (2004). Robustness properties of a robust partial least 

squares regression method. Analytica Chimica Acta, 515(1), 229-241. 

 

Breiman, L. (1996). Stacked regressions. Machine learning, 24(1), 49-64. 

 

Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data: methods, 

theory and applications. Springer Science & Business Media. 

 

Caner, M., & Fan, Q. (2010). The adaptive lasso method for instrumental variable 

selection. Technical Report. 

 

Ceperic, V., Gielen, G., & Baric, A. (2014). Sparse ε-tube support vector regression by 

active learning. Soft Computing, 18(6), 1113-1126. 

 

Chang, C. C., & Lin, C. J. (2002). Training v-support vector regression: theory and 

algorithms. Neural computation, 14(8), 1959-1977. 

 

Chen, Y., Ma, J., Zhang, P., Liu, F., & Mei, S. (2015). Robust state estimator based on 

maximum exponential absolute value. IEEE Transactions on Smart Grid, 8(4), 

1537-1544. 

Chen, Y., Yao, Y., & Zhang, Y. (2020). A robust state estimation method based on SOCP 

for integrated electricity-heat system. IEEE Transactions on Smart Grid, 12(1), 

810-820. 

 

Cherkassky, V., & Mulier, F. M. (2007). Learning from data: concepts, theory, and 

methods. John Wiley & Sons. 

 

Chuang, C., Su, S., Jeng, J., & Hsiao, C. (2002). Robust support vector regression 

networks for function approximation with outliers. Neural Networks, IEEE 

Transactions on, 13(6), pp 1322-1330. 

 

Coakley, C. W., & Hettmansperger, T. P. (1993). A bounded influence, high breakdown, 

efficient regression estimator. Journal of the American Statistical Association, 

88(423), 872-880. 



© C
OPYRIG

HT U
PM

 

108 

Colliez, J., Dufrenois, F., & Hamad, D. (2006). Robust regression and outlier detection 

with SVR: Application to optic flow estimation. The 17th British Machine 

Vision Association (BMVC), Edinburgh, UK, pp 1229-1238. 

 

Cook, R. D. (1977). Detection of influential observation in linear regression. 

Technometrics, 19(1), pp 15-18. 

 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 

273-297. 

 

Cummins, D. J., & Andrews, C. W. (1995). Iteratively reweighted partial least squares: 

A performance analysis by Monte Carlo simulation. Journal of Chemometrics, 

9(6), 489-507. 

 

De Brabanter, K., De Brabanter, J., Suykens, J. A., & De Moor, B. (2010). Optimized 

fixed-size kernel models for large data sets. Computational Statistics & Data 

Analysis, 54(6), 1484-1504. 

 

De Jong, S. (1993). SIMPLS: an alternative approach to partial least squares regression. 

Chemometrics and intelligent laboratory systems, 18(3), 251-263. 

 

Dhhan, W., & Alshaybawee, T. (2017). Elastic net for single index support vector 

regression model. Economic Computation & Economic Cybernetics Studies & 

Research, 51(2). 

 

Dhhan, W., Rana, S., & Midi, H. (2015). Non-sparse ϵ-insensitive support vector 

regression for outlier detection. Journal of Applied Statistics, 42(8), 1723-1739. 

 

Dhhan, W., Rana, S., & Midi, H. (2017). A high breakdown, high efficiency and bounded 

influence modified GM estimator based on support vector regression. Journal 

of Applied Statistics, 44(4), 700-714. 

 

Dhhan, W., Rana, S., Alshaybawee, T., & Midi, H. (2018). The single-index support 

vector regression model to address the problem of high dimensionality. 

Communications in Statistics-Simulation and Computation, 47(9), 2792-2799. 

 

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The 

Annals of Statistics, 32(2), 407-499. 

 

Esbensen, K., Schon̈kopf, S., & Midtgaard, T. (1995). Multivariate analysis in practice: 

Training package. Computer-Aided Modelling. 

 

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its 

oracle properties. Journal of the American statistical Association, 96(456), 

1348-1360. 

 

Fan, J., & Peng, H. (2004). Nonconcave penalized likelihood with a diverging number 

of parameters. The annals of statistics, 32(3), 928-961. 

 



© C
OPYRIG

HT U
PM

 

109 

Figueiredo, M. A. (2003). Adaptive sparseness for supervised learning. Pattern Analysis 

and Machine Intelligence, IEEE Transactions on, 25(9), 1150-1159. 

 

Friedman, J., Hastie, T., & Tibshirani, R. (2001). Vol. 1 of The elements of statistical 

learning. 

 

Frohlich, H., & Zell, A. (2005). Efficient parameter selection for support vector 

machines in classification and regression via model-based global optimization. 

Neural Networks, 2005. IJCNN'05. Proceedings. 2005 IEEE International Joint 

Conference on, 3 1431-1436. 

 

Furno, M. (1996). Small sample behavior of a robust heteroskedasticity consistent 

covariance matrix estimator. Journal of Statistical Computation and 

Simulation, 54(1-3), 115-128. 

 

Gan, L., Lv, W., Zhang, X., & Meng, X. (2012). Improved PCA+ LDA applies to gastric 

cancer image classification process. Physics Procedia, 24, 1689-1695. 

 

Groß, J. (2003). Linear regression. Springer, Heidelberg, Germany. 

 

Guo, B., Gunn, S. R., Damper, R. I., & Nelson, J. D. (2008). Customizing kernel 

functions for SVM-based hyperspectral image classification. Image 

Processing, IEEE Transactions on, 17(4), 622-629. 

 

Guo, G., Zhang, J., & Zhang, G. (2010). A method to sparsify the solution of support 

vector regression. Neural Computing and Applications, 19(1), 115-122. 

 

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The 

Journal of Machine Learning Research, 3, 1157-1182. 

 

Habshah, M., Norazan, M. R., & Rahmatullah Imon, A. H. M. (2009). The performance 

of diagnostic-robust generalized potentials for the identification of multiple 

high leverage points in linear regression. Journal of Applied Statistics, 36(5), 

507-520. 

 

Hadi, A. S. (1992). A new measure of overall potential influence in linear regression. 

Computational Statistics & Data Analysis, 14(1), 1-27. 

 

Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of 

the American Statistical Association, 69(346), 383-393. 

 

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust 

statistics: the approach based on influence functions (Vol. 196). John Wiley & 

Sons. 

 

Hampel, F., Ronchetti, E., Rousseeuw, P., & Stahel, W. (1986). Robust statistics, J. 

Wiley& Sons, New York. 

 



© C
OPYRIG

HT U
PM

 

110 

Härdle, W. K., Hoffmann, L., & Moro, R. (2011). Learning machines supporting 

bankruptcy prediction. Statistical tools for finance and insurance. Springer, 

Heidelberg, pp. 225-250. 

 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. The elements 

of statistical learning (pp. 485-585). 

 

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of 

statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). 

New York: springer. 

 

Hawkins, D. M. (1980). Identification of outliers. Chapman and Hall, London. 

 

Hoerl, A. E., & Kennard, R. W. (1970a). Ridge regression: Applications to 

nonorthogonal problems. Technometrics, 12(1), 69-82. 

 

Hoerl, A. E., & Kennard, R. W. (1970b). Ridge regression: Biased estimation for 

nonorthogonal problems. Technometrics, 12(1), 55-67. 

 

Horowitz, J. L. (2009). Semiparametric and nonparametric methods in econometrics. 

Springer, New York. 

 

Huang, X., Wu, L., & Ye, Y. (2019). A review on dimensionality reduction techniques. 

International Journal of Pattern Recognition and Artificial Intelligence, 

33(10), 1950017. 

 

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of 

Mathematical Statistics, 35(1), pp 73-101. 

 

Huber, P. J. (1973). Robust regression: Asymptotics, conjectures and monte carlo. The 

Annals of Statistics,1(5), pp 799-821. 

 

Hubert, M., & Branden, K. V. (2003). Robust methods for partial least squares 

regression. Journal of Chemometrics: A Journal of the Chemometrics Society, 

17(10), 537-549. 

 

Hubert, M., Rousseeuw, P. J., & Vanden Branden, K. (2005). ROBPCA: a new approach 

to robust principal component analysis. Technometrics, 47(1), 64-79. 

 

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal 

components. Journal of educational psychology, 24(6), 417. 

 

Imon, A. H. M. R. (2002). Identifying multiple high leverage points in linear regression. 

Journal of Statistical Studies, 3, 207-218. 

 

Imon, A.H.M.R. (2005). Identifying multiple influential observations in linear 

regression. Journal of Applied Statistics. 32: 929-946. 

 



© C
OPYRIG

HT U
PM

 

111 

Ismaeel, S. S., Midi, H., & Sani, M. (2021). Robust Multicollinearity Diagnostic 

Measure For Fixed Effect Panel Data Model. Malaysian Journal of 

Fundamental and Applied Sciences, 17(5), 636-646. 

 

Jordaan, E. M., & Smits, G. F. (2004). Robust outlier detection using SVM regression. 

Neural Networks, 2004. Proceedings. 2004 IEEE International Joint 

Conference on, 3 2017-2022. 

 

Kalivas, J. H. (1997). Two data sets of near infrared spectra. Chemometrics and 

Intelligent Laboratory Systems, 37(2), 255-259. 

 

Kamruzzaman, M., & Imon, A. (2002). High leverage point: Another source of 

multicollinearity. Pakistan Journal of Statistics-All Series-, 18(3), pp 435-448. 

 

Karatzoglou, A., Meyer, D., & Hornik, K. (2006). Support vector machines in R. Journal 

of statistical software, 15(1), 1-28. 

 

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an S4 package for 

kernel methods in R. Journal of statistical software, 11(9), 1-20. 

 

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). 

Improvements to platt's SMO algorithm for SVM classifier design. Neural 

Computation, 13(3), 637-649. 

 

Kuo, T., & Yajima, Y. (2010). Ranking and selecting terms for text categorization via 

SVM discriminate boundary. International Journal of Intelligent Systems, 

25(2), 137-154. 

 

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical 

models. McGraw-Hill Irwin, New York. 

 

Lahiri, S. K., & Ghanta, K. C. (2009). Support vector regression with parameter tuning 

assisted by differential evolution technique: Study on pressure drop of slurry 

flow in pipeline. Korean journal of chemical engineering, 26(5), 1175-1185. 

 

Lee, Y., & Mangasarian, O. L. (2001). SSVM: A smooth support vector machine for 

classification. Computational Optimization and Applications, 20(1), 5-22. 

 

Lim, H. A., & Midi, H. (2016). Diagnostic Robust Generalized Potential Based on Index 

Set Equality (DRGP (ISE)) for the identification of high leverage points in 

linear model. Computational Statistics, 31(3), 859-877. 

 

Liu, J. N., & Hu, Y. (2013). Support vector regression with kernel mahalanobis measure 

for financial forecast: In Time series analysis, modeling and applications. 

Springer, Heidelberg, pp. 215-227. 

 

Markatou, M. (1996). Robust statistical inference: Weighted likelihoods or usual M-

estimation. Communications in Statistics-Theory and Methods, 25(11), 2597-

2613. 

 



© C
OPYRIG

HT U
PM

 

112 

Markatou, M., Basu, A., & Lindsay, B. G. (1998). Weighted likelihood equations with 

bootstrap root search. Journal of the American Statistical Association, 93(442), 

740-750. 

 

Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust statistics. John Wiley 

Chichester. 

 

Maronna, R. A., Martin, R. D., Yohai, V. J., & Salibián-Barrera, M. (2019). Robust 

statistics: theory and methods (with R). John Wiley & Sons. 

 

Midi, H., Ismaeel, S. S., Arasan, J., & AMohammed, M. O. H. A. M. M. E. D. (2021). 

Simple and Fast Generalized-M (GM) Estimator and Its Application to Real 

Data Set. Sains Malaysiana, 50(3), 859-867. 

 

Midi, H., Sani, M., Ismaeel, S. S., & Arasan, J. (2021). Fast Improvised Influential 

Distance for the Identification of Influential Observations in Multiple Linear 

Regression. Sains Malaysiana, 50(7), 2085-2094. 

 

Midi, H., Sani, M., Ismaeel, S. S., & Arasan, J. (2021). Fast Improvised Influential 

Distance for the Identification of Influential Observations in Multiple Linear 

Regression. Sains Malaysiana, 50(7), 2085-2094. 

 

Midi, H., & Mohammed, M. A. (2014). The Performance of Robust Latent Root 

Regression Based on MM and modified GM estimators. WSEAS Transactions 

on Mathematics, 13. 

 

Mohammed Rashid, A., Midi, H., Dhhan, W., & Arasan, J. (2021). Detection of outliers 

in high-dimensional data using nu-support vector regression. Journal of 

Applied Statistics, 1-20. 

 

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2015). Introduction to linear 

regression analysis, John Wiley & Sons. 

 

Muñoz-Garcia, J., Moreno-Rebollo, J., & Pascual-Acosta, A. (1990). Outliers: A formal 

approach. International Statistical Review/Revue Internationale De Statistique, 

58(3), pp 215-226. 

 

Nakayama, H., & Yun, Y. (2006). Support vector regression based on goal programming 

and multi-objective programming. In the 2006 IEEE International Joint 

Conference on Neural Network Proceedings, Vancouver, BC, Canada. 

 

Narasimhan, S., & Shah, S. L. (2008). Model identification and error covariance matrix 

estimation from noisy data using PCA. Control Engineering Practice, 16(1), 

146-155. 

 

Nishiguchi, J., Kaseda, C., Nakayama, H., Arakawa, M., & Yun, Y. (2010). Modified 

support vector regression in outlier detection. Neural Networks (IJCNN), the 

2010 International Joint Conference on, 1-5. 

 



© C
OPYRIG

HT U
PM

 

113 

Pell, R. J. (2000). Multiple outlier detection for multivariate calibration using robust 

statistical techniques. Chemometrics and Intelligent Laboratory Systems, 52(1), 

87-104. 

 

Rahmatullah Imon, A. H. M. (2005). Identifying multiple influential observations in 

linear regression. Journal of Applied statistics, 32(9), 929-946. 

 

Rana, S., Dhhan, W., & Midi, H. (2018). Fixed parameters support vector regression for 

outlier detection. Economic Computation & Economic Cybernetics Studies & 

Research, 52(2). 

 

Rana, S., Siraj-Ud-Doulah, M., Midi, H., & Imon, A. H. M. R. (2012). Decile mean: A 

new robust measure of central tendency. Chiang Mai journal of science, 39(3), 

478-485. 

 

Rashid, A. M., Midi, H., Slwabi, W. D., & Arasan, J. (2021). An Efficient Estimation 

and Classification Methods for High Dimensional Data Using Robust 

Iteratively Reweighted SIMPLS Algorithm Based on Nu-Support Vector 

Regression. IEEE Access, 9, 45955-45967. 

 

RCore, T. E. A. M. (2016). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

 

Rojo-Álvarez, J. L., Martínez-Ramón, M., Figueiras-Vidal, A. R., García-Armada, A., 

& Artés-Rodríguez, A. (2003). A robust support vector algorithm for 

nonparametric spectral analysis. IEEE Signal Processing Letters 10(11), pp 

320-323. 

 

Roth, V. (2004). The generalized LASSO. Neural Networks, IEEE Transactions on, 

15(1), 16-28. 

 

Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. 

Mathematical Statistics and Applications, 8, 283-297. 

 

Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the median absolute deviation. 

Journal of the American Statistical Association, 88(424), 1273-1283. 

 

Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New 

York: John Wiley & Sons. 

 

Rousseeuw, P., & Van Zomeren, B. (1990). Unmasking multivariate outliers and 

leverage points (with discussion). J.Amer.Statist.Assoc, 85, 633-651. 

 

Schölkopf, B., & Smola, A. (2002). Learning with kernels, MIT Press, Boston. 

 

Schölkopf, B., Bartlett, P. L., Smola, A. J., & Williamson, R. (1999). Shrinking the tube: 

a new support vector regression algorithm. Advances in neural information 

processing systems, 330-336. 

 



© C
OPYRIG

HT U
PM

 

114 

Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New support 

vector algorithms. Neural computation, 12(5), 1207-1245. 

 

Segal, M. R., Dahlquist, K. D., & Conklin, B. R. (2003). Regression approaches for 

microarray data analysis. Journal of Computational Biology, 10(6), 961-980. 

 

Serneels, S., Croux, C., Filzmoser, P., & Van Espen, P. J. (2005). Partial robust M-

regression. Chemometrics and Intelligent Laboratory Systems, 79(1-2), 55-64. 

 

Simpson, J. R. (1995). New methods and comparative evaluations for robust and biased-

robust regression estimation, unpublished PhD thesis, Arizona State University. 

 

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics 

and Computing, 14(3), 199-222. 

 

Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in 

Neural Information Processing Systems, 9, 155-161. 

 

Stamey, T. A., Kabalin, J. N., McNeal, J. E., Johnstone, I. M., Freiha, F., Redwine, E. 

A., & Yang, N. (1989). Prostate specific antigen in the diagnosis and treatment 

of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. 

The Journal of urology, 141(5), 1076-1083. 

 

Suykens, J. A., De Brabanter, J., Lukas, L., & Vandewalle, J. (2002). Weighted least 

squares support vector machines: robustness and sparse approximation. 

Neurocomputing, 48(1-4), 85-105. 

 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the 

Royal Statistical Society: Series B (Methodological), 58(1), 267-288. 

 

Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. The 

Journal of Machine Learning Research, 1, 211-244. 

 

Ukil, A. (2007). Intelligent systems and signal processing in power engineering, 

Springer, Heidelberg. 

 

Uraibi, H., & Midi, H. (2020). Robust Variable Selection Method Based on Huberized 

Lars-Lasso Regression. Economic Computation & Economic Cybernetics 

Studies & Research, 54(3). 

 

Üstün, B., Melssen, W. J., & Buydens, L. M. (2006). Facilitating the application of 

support vector regression by using a universal Pearson VII function based 

kernel. Chemometrics and Intelligent Laboratory Systems, 81(1), 29-40. 

 

Üstün, B., Melssen, W., Oudenhuijzen, M., & Buydens, L. (2005). Determination of 

optimal support vector regression parameters by genetic algorithms and 

simplex optimization. Analytica Chimica Acta, 544(1), 292-305. 

 

Van Der Maaten, L., Postma, E., & Van den Herik, J. (2009). Dimensionality reduction: 

a comparative. J Mach Learn Res, 10(66-71), 13. 



© C
OPYRIG

HT U
PM

 

115 

Vanderbei, R. J. (1999). LOQO user's manual—version 3.10. Optimization Methods and 

Software, 11(1-4), 485-514. 

 

Vapnik, V. (1995). The nature of statistical learning theory, 1st ed. Springer, New York. 

 

Vapnik, V. (1999). The nature of statistical learning theory. Springer science & business 

media. 

 

Vapnik, V., Golowich, S. E., & Smola, A. (1996). Support vector method for function 

approximation, regression estimation, and signal processing. Advances in 

Neural Information Processing Systems, vol 9. MIT Press, p 281-287. 

 

Varmuza, K., & Filzmoser, P. (2016). Introduction to multivariate statistical analysis in 

chemometrics. CRC press. 

 

Velleman, P. F., & Welsch, R. E. (1981). Efficient computing of regression diagnostics. 

The American Statistician, 35(4), 234-242. 

 

Virmani, J., Dey, N., & Kumar, V. (2016). PCA-PNN and PCA-SVM based CAD 

systems for breast density classification. In Applications of intelligent 

optimization in biology and medicine (pp. 159-180). Springer, Cham. 

 

Wahid, A., Khan, D. M., & Hussain, I. (2017). Robust Adaptive Lasso method for 

parameter’s estimation and variable selection in high-dimensional sparse 

models. PLoS one, 12(8), e0183518. 

 

Wakelinc, I. N., & Macfie, H. J. H. (1992). A robust PLS procedure. Journal of 

Chemometrics, 6(4), 189-198. 

 

Wang, H., & Leng, C. (2007). Unified LASSO estimation by least squares 

approximation. Journal of the American Statistical Association, 102(479), 

1039-1048. 

 

Wang, L., Cheng, H., Liu, Z., & Zhu, C. (2014). A robust elastic net approach for feature 

learning. Journal of Visual Communication and Image Representation, 25(2), 

313-321. 

 

Wang, T., & Li, Z. (2017). Outlier detection in high-dimensional regression model. 

Communications in Statistics-Theory and Methods, 46(14), 6947-6958. 

 

Weisberg, S. (2005). Applied linear regression, John Wiley & Sons, Hoboken New 

Jersey. 

 

Wilcox Rand, R. (2005). Introduction to robust estimation and hypothesis testing, 

Elsevier academic Press, New York. 

 

Williams, G. (2011). Data mining with rattle and R: The art of excavating data for 

knowledge discovery, Springer, New York. 

 



© C
OPYRIG

HT U
PM

 

116 

Wilson, H. G. (1978). Least squares versus minimum absolute deviations estimation in 

linear models. Decision Sciences, 9(2), 322-335. 

 

Wold, S., Martens, H., & Wold, H. (1983). The multivariate calibration problem in 

chemistry solved by the PLS method. In Matrix pencils (pp. 286-293). Springer, 

Berlin, Heidelberg. 

 

Xiang, L., Quanyin, Z., & Liuyang, W. (2013). Research of bessel kernel function of the 

first kind for support vector regression. Information Technology Journal, 

12(14), 2673. 

 

Xu, J. (2005). Parameter estimation, model selection and inferences in L (1)-based linear 

regression. Columbia University. 

 

Yatchew, A. (2003). Semiparametric regression for the applied econometrician 

Cambridge University Press, Cambridge. 

 

Ye, W., & Peng, C. (2018, October). Recognition algorithm of emitter signals based on  

PCA+ CNN. In 2018 IEEE 3rd Advanced Information Technology, Electronic 

and Automation Control Conference (IAEAC) (pp. 2410-2414). IEEE. 

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American 

statistical association, 101(476), 1418-1429. 

 

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. 

Journal of the royal statistical society: series B (statistical methodology), 67(2), 

301-320. 

 

Zou, H., & Xue, L. (2018). A selective overview of sparse principal component analysis. 

Proceedings of the IEEE, 106(8), 1311-1320. 

 

Zou, H., & Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number of 

parameters. Annals of statistics, 37(4), 1733. 

 

 

 

 

 

 

 

 

 

 

 




