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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment

of the requirement for the degree of Doctor of Philosophy

ROBUST DIAGNOSTICS AND VARIABLE SELECTION PROCEDURE
BASED ON MODIFIED REWEIGHTED FAST CONSISTENT AND HIGH

BREAKDOWN ESTIMATOR FOR HIGH DIMENSIONAL DATA

By

ISHAQ ABDULLAHI BABA

January 2022

Chairman: Prof. Habshah Binti Midi, PhD
Faculty: Science

The reweighted fast, consistent and high breakdown (RFCH) estimator is a multi-

variate procedure used to estimate the robust location and scatter matrix. It is incor-

porated in the robust Mahalanobis distance to detect the presence of high leverage

points in a dataset. The method showed excellent performance compared to its com-

petitors. However, it cannot be applied when the sample size is less than the number

of predictor variables. In addressing this problem, some robust procedures for high

dimensional dataset via the RFCH algorithm are developed. adding double space

adding double space adding double space addi

A modified reweighted fast consistent and high breakdown (MRFCH) estimator in

high dimensional data based on the diagonal elements of the scatter matrix instead

of its entire elements in the computation of robust Mahalanobis distance within the

RFCH algorithm is developed. The proposed method inherits the robustness proper-

ties of the original RFCH estimators. Simulation results and artificial data examples

showed that the proposed MRFCH is more efficient and faster than the MRCD and

OGK estimators. adding double space adding double space adding double space

adding spaces adding spaces

Outlier detection and classification are critical issues that affect prediction accuracy

if not handled correctly. Mahalanobis distance (MD) measure is one of the most

popular multivariate analysis tools used to detect multivariate outlying observations.

However, the traditional MD based on the classical mean and covariance rarely iden-

tifies all the multivariate outliers in a given dataset, which gives rise to the masking

and swamping problems. Therefore, the robust location and covariance matrix based

on the MRFCH is used instead of the classical estimators to tackle these problems.

The proposed algorithm has been applied to detect outliers in the high dimensional

i
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data. The results obtained from the simulation study and real data sets indicate that

the proposed method possesses high detection power with minimal misclassifica-

tion error compared to the MRCD and MDP methods. adding double space adding

double space adding double space addi

The classical correlation estimators that employ the sample mean of the dependent

and independent variables are known to be affected by outliers. Therefore, the robust

weighted correlation coefficient that can reduce the effect of outliers is proposed.

The weights based on the RD (MRFCH) are incorporated in establishing the pro-

posed robust correlation to solve the problems. The performance of the proposed

method is illustrated using simulation study and on glass vessel data with 1920 vari-

ables, cardiomyopathy microarray data with 6319 variables, and octane data with

226 dimensions. The results show that the robust weighted correlation based on

RD (MRFCH) is more powerful and efficient than the existing methods, irrespective

of dimension, sample size, and contamination levels. adding double space adding

double space adding double space addi

Sure screening-based correlation methods are popular tools used to select the most

significant variables in the true model in sparse and high dimensional analysis. How-

ever, in practice, high leverage points may lead to misleading results in solving vari-

able selection problems. Therefore, a robust sure independence screening procedure

based on the weighted correlation algorithm of MRFCH for high dimensional data

is developed to address this problem. The simulation study results and real data sets

indicate that the proposed MRFCHCS+LAD-SCAD estimator was found to be the

best method compared to other methods in this study.

ii
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

DIAGNOSTIK TEGUH DAN PROSEDUR PEMILIHAN PEMBOLEHUBAH
BERDASARKAN PENGANGGAR TERUBAHSUAI BERPEMBERAT YANG
PANTAS, KONSISTEN DAN TITIK MUSNAH YANG TINGGI BAGI DATA

BERDIMENSI TINGGI

Oleh

ISHAQ ABDULLAHI BABA

Januari 2022

Pengerusi: Prof. Habshah Binti Midi, PhD
Fakulti: Sains

Penganggar berpemberat yang pantas, konsisten dan titik musnah yang tinggi

(RFCH) adalah prosedur multivariat yang digunakan untuk menganggar lokasi teguh

dan matriks penyebaran. Ia telah digabungkan dalam jarak Mahalanobis teguh bagi

mengesan kehadiran titik tuasan tinggi dalam set data. Kaedah ini telah menun-

jukkan prestasi cemerlang apabila dibandingkan dengan pesaingnya. Namun, ia

tidak boleh diguna-pakai apabila saiz sampel adalah lebih kecil daripada pembole-

hubah peramal. Bagi menangani masalah ini, beberapa prosedur teguh untuk set data

berdimensi tinggi melalui RFCH telah dibangunkan. adding double space adding

double space adding double space adding spaces adding spaces

Penganggar terubahsuai berpemberat yang pantas, konsisten dan titik musnah yang

tinggi (MRFCH) bagi data berdimensi tinggi dengan menggunakan unsur pepenjuru

dari matriks kovarians dan bukannya unsur keseluruhannya dalam pengiraan jarak

Mahalanobis teguh, telah dibangunkan. Kaedah yang dicadan- gkan mewarisi sifat

keteguhan penganggar RFCH asal. Hasil simulasi dan contoh data buatan menun-

jukkan bahawa kaedah MRFCH yang dicadangkan ada-lah lebih cekap dan lebih

pantas daripada penganggar MRCD dan OGK. adding double space adding double

space adding double space adding spaces adding spaces

Pengesanan titik ter- pencil dan pengkelasan adalah masalah kritikal yang menje-

jaskan ketepatan ramalan jika ia tidak dikendalikan dengan betul. Ukuran jarak Ma-

halanobis (MD) adalah salah satu alat analisis multivariat yang paling popular digu-

nakan untuk mengesan cerapan terpencil multivariat. Walau bagaimanapun, MD tra-

disional berdasarkan min klasik dan kovarians jarang mengenal pasti semua titik ter-

iii
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pencil multivariat dalam set data tertentu, yang menimbulkan masalah penyamaran

dan penukaran. Oleh itu, lokasi teguh dan matriks kovarians teguh berdasarkan MR-

FCH digunakan sebagai gantian penganggar klasik untuk mengatasi masalah terse-

but. Kaedah yang dicadangkan telah digunakan untuk mengesan titik terpencil bagi

data berdi- mensi tinggi. Hasil kajian simulasi dan set data sebenar menunjukkan

kaedah yang dicadangkan mempunyai kuasa pengesanan yang tinggi dengan ralat

silapklasifikasi yang minimum berbanding dengan kaedah MRCD dan MDP. adding

double space adding double space adding double space adding spaces adding spaces

Penganggar korelasi klasik yang menggunakan min sampel pembolehubah bersan-

dar dan pembolehubah bebas adalah diketahui boleh dipengaruhi oleh titik terpen-

cil. Oleh itu, pekali korelasi berpemberat teguh yang dapat mengurangkan kesan

titik terpencil telah dicadangkan. Pemberat berdasarkan RD (MRFCH) telah diga-

bungkan untuk membangunkan korelasi teguh bagi menyelesaikan masalah terse-

but. Prestasi kaedah yang dicadangkan dipamerkan menggunakan kajian simu- lasi

dan data kapal kaca dengan 1920 pembolehubah, data mikroarray kardiomiopati den-

gan 6319 pembolehubah, dan data oktan berdimensi 226. Hasil kajian me- nun-

jukkan bahawa korelasi berpemberat teguh berdasarkan RD (MRFCH) adalah lebih

berkuasa dan efisien daripada kaedah yang sedia ada tanpa mengira dimensi dan

tahap pencemaran. adding double space adding double space adding double space

adding spaces adding spaces

Kaedah korelasi berdasarkan saringan pasti adalah alat popu- lar yang digunakan

untuk memilih pembolehubah yang paling penting untuk di- masukkan ke dalam

model sebenar dalam analisis berdimensi jarang dan tinggi. Walau bagaimanapun,

secara praktik, titik tuasan tinggi boleh menghasilkan keputusan yang mengelirukan

semasa menyelesaikan masalah pemilihan pembole- hubah. Oleh itu prosedur pen-

yaringan kebebasan yang pasti berdasarkan algoritma korelasi berpemberat MRFCH

bagi data berdimensi tinggi telah dibangunkan untuk men- gatasi masalah tersebut.

Hasil kajian simulasi dan set data sebenar menunjukkan ba- hawa penganggar MR-

FCHCS + LAD-SCAD yang dicadangkan didapati sebagai kaedah terbaik apabila

dibandingkan dengan kaedah lain dalam kajian ini.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Recent innovations in science and technology have made data collection and pro-

cessing an attractive topic in scientific research and industrial applications. Some

familiar data sources include social media platforms, health, educational, financial,

and economic sectors, to name but a few. The main concern of data analysts is

the number of data points relative to the number of variables under consideration

and vice versa. In practice, multivariate data appear more frequently than univariate

data because most experiments pay much attention to observations’ features in many

cases. Thus, investigating the relationship between the dependent and independent

variables is paramount in solving most real-life problems involving multivariate data.

adding double space adding double

Multivariate location and dispersion estimates have imperative uses in theoretical

and applied statistical analysis. However, in the presence of outlying data points,

classical estimates of mean and covariance matrices are not trustworthy. It is clear

now that even a single outlier can distort the classical mean and covariance estimates,

making them practically inadequate, affecting or corrupting the estimate of correla-

tions, principal component transformations, and multivariate outlier detection based

on the Mahalanobis distances. adding double space adding double space double

space

Mahalanobis distance (MD) is one of the widely multivariate statistical tools used

to measure the distances between two points with several variables. More precisely,

it is widely applied to detect multivariate outlying observations in a given dataset.

Besides detection, the MD has been used severally in different fields, namely: In

image processing, MD is used for image segmentation, in financial analysis, MD is

used to predict financial crises, and in geostatistics, MD is used to detect influential

observation in multiple spatial linear models. This approach utilizes the conventional

arithmetic mean and sample covariance matrix to compute distances. The principle

is to assign large distances to outlying and small distances to regular observations

based on the selected cutoff point criterion. The MD produces elegant estimates

when the number of observations exceeds the number of variables. In contrast, for

high dimensional data where the number of variables surpasses the sample size, com-

putation of Mahalanobis distance is infeasible because of the nonexistent inverse of

the covariance matrix estimates. adding double space adding double space double

space adding double space

In the presence of contaminated points, the Mahalanobis distance based on the clas-

sical location and scatter matrix rarely identify all the multivariate outliers in a given

dataset. The problem becomes more pronounced when the dimension is increasingly
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high. This gives rise to masking or swamping problems because classical sample

mean and covariance are not robust. Robust estimators of multivariate location and

scatter such as the Minimum covariance determinant (MCD) and the minimum vol-

ume ellipsoid (MVE) estimates (Rousseeuw, 1984, 1985) are designed to replace the

classical mean and covariance matrix estimators because the latter are susceptible in

the presence of contamination. These estimators achieved a high breakdown point,

but they are computationally intensive (time-consuming). As a result, Olive and

Hawkins (2010) introduced the reweighted fast consistent and high (RFCH) break-

down estimator to address the limitations of the MVE and MCD estimators. Conse-

quently, the main shortcoming of these methods is that they are not applicable when

the number of variables surpasses the sample size. Nevertheless, these techniques’

theoretical and computational difficulties and many new research problems provide

excellent opportunities and meaningful challenges for developing high-dimensional

data analysis. adding double space adding double space double space double space

double space double

The product-moment correlation is a classical correlation method used to measure

the relationship between the predictor and dependent variables. This method forms

the basis of multiple linear regression analysis. In regression, the objective is to

simultaneously perform estimation and variables selection since not all the effects

of independent variables are significant to the response variable in most applied re-

search. Similar to the Mahalanobis distance estimates, if the number of independent

variables exceeds the sample size, fitting the model to all the independent variables

will produce corrupt regression coefficient estimates, especially when the indepen-

dent variables are highly correlated. A common practice to deal with this problem is

to apply a sure independent screening (SIS) algorithm. SIS method is a dimension

reduction procedure used to reduce dimension from relatively high to below sam-

ple size and then perform parameter estimation and variables selection simultane-

ously via a lower dimensional regularized least square method such as least absolute

shrinkage and selection operator (LASSO) and smoothly clipped absolute deviation

(SCAD) (Fan and Lv, 2008). Despite the excellent performance of this procedure,

it performed poorly in the presence of an outlier since the SIS method uses a classi-

cal correlation in the screening step, and they are much affected by outlying points.

Hence, there is a need to propose a robust screening methodology that can produce

better estimates even in the presence of outliers. Therefore this thesis focuses on de-

veloping an extended multivariate location and dispersion estimators that build upon

the reweighted fast consistent and high break down (RFCH) of Olive and Hawkins

(2010) and Minimum Diagonal Product (MDP) of (Ro et al., 2015).

1.2 Motivation of the Study

It is now patent that the classical multivariate estimates of mean and covariance ma-

trix are susceptible to outliers. As a result, it is essential to use a robust multivariate

location and dispersion matrix as an alternative to the classical mean and covari-

ance. However, robust multivariate location and dispersion matrix estimators based

2
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on multivariate location and scatter matrix, such as the Fast Minimum Covariance

Determinant (FMCD) method (Rousseeuw and Driessen, 1999) are faced with the

problem of a computational burden, especially for large data points. Hubert et al.

(2012) pointed out that MCD is affine equivariant but not permutation invariant.

Thus, they proposed a deterministic Minimum Covariance Determinant algorithm

(DetMCD) faster than MCD, which does not use a random subset. adding double

space adding double space double space double space double

Furthermore, Olive and Hawkins (2010) proposed a reweighted fast consistent and

high break down (RFCH) estimator to find reliable location and scatter estimates.

Compared with FMCD and the Ortogonalized Gnanadesikan-Kettenring (OGK), the

RFCH shows better error measures of scatter estimates (Zhang et al., 2012; Alkenani

and Yu, 2013). The authors revealed that RFCH possesses good performance at a

different level of contamination. Recently,Uraibi and Midi (2019) practically showed

the performance of RFCH in terms of outlier detection using stack-loss and Hawkins

Bradu Kass datasets. They also showed that RFCH is computationally very fast.

However, all previously mentioned methods are not feasible when the number of

variables exceeds the sample size. As a result, the traditional Mahalanobis distance,

which relies on the location and scatter matrix estimates, may not be feasible. This

limitation has also been deliberated by Filzmoser et al. (2008) and Chen et al. (2010),

as cited in (Ro et al., 2015). adding double space adding double space double space

double space double space

The two latest standard methods that improve the performance of the Mahalanobis

distance for high dimensional operations are the Minimum Diagonal Product (MDP)

estimator of Ro et al. (2015) and Minimum regularized covariance determinant

(MRCD) (Boudt et al., 2020). The MDP can be applied directly when p >> n.

In this procedure, a subset of data points are computed such that the product of the

diagonal values of the sample covariance matrix is minimal. Compared with the

regularized minimum covariance determinant of Fritsch et al. (2011) and the robust

principal component analysis (RPCA) of Hubert et al. (2005), the MDP showed bet-

ter performance but produced higher type 1 error rates in detection (Martinez et al.,

2020). The MRCD is an extension of MCD developed to knock down the limita-

tion of MCD for not being able to use for high dimensional data. In this method, the

subset-based covariance in MCD is replaced by the regularized covariance defined by

the -subset of the weighted average of sample covariance and a predetermined target

positive definite matrix. It is also proof to produce robust location and scatter matrix

estimates for high dimensional cases. Nevertheless, our investigation revealed that

the method is computationally expensive and produced higher classification error in

the presence of outliers. This is because the robust distance produced by MRCD re-

lies on the MCD distance, which is no longer reliable when the dimension increases

relatively to sample size n (Boudt et al., 2020). The RFCH technique introduced

by Olive and Hawkins (2010) is a fast consistent and high breakdown estimator of

multivariate location and scatter matrix. This method produces reliable estimates

compared to MCD but cannot be applied when the dimension exceeds the sample

size. The procedures’ deficiencies, as mentioned earlier, motivate us to propose a

modified Reweighted Fast Consistent and High breakdown point (MRFCH) location
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and dispersion estimator for high dimensional data. The main philosophy of the pro-

posed method is to use the diagonal elements of the scatter matrix in place of the

whole scatter matrix in the calculation of Mahalanobis distance for the computation

of RFCH algorithm while preserving the robustness properties of the RFCH estima-

tor. According to Ro et al. (2015), the fast MCD method selects asubset with the

minimal determinant of it covariance matrix estimates, and it cannot be applied in

high dimensional data analysis. The Minimum Diagonal Product (MDP) estimator

Ro et al. (2015) objectives is to select a subset with minimal product of the covari-

ance matrix diagonals elements. adding double space adding double space double

space

The outlier problem is a critical issue that affects prediction accuracy if not correctly

identified. For instance, outlier detection techniques and prediction estimates are sus-

ceptible to outliers in a given data set. Mahalanobis distance (MD) is one of the most

popular multivariate analysis procedures to detect multivariate outlying points. It is

now apparent that classical Mahalanobis distance based on the classical mean and

covariance are susceptible to outlying observations; hence, detecting outliers based

on this classical MD may lead to the masking and or swamping problem. Besides,

due to the nonexistence of the inverse of the classical covariance matrix, the outlier

detection based on the classical Mahalanobis distance for a high dimensional dataset

may not be feasible (Hubert et al., 2005; Filzmoser et al., 2008). Recently, Boudt

et al. (2020) introduced the MRCD estimators, which can be used in place of MCD

estimators for high dimensional data analysis. They cited that Mahalanobis distances

based on the MRCD estimators can be applied for outlier detection in a high dimen-

sional dataset. However, they mentioned that the cutoff value based on the square

root of the chi-square values from the RD (MRCD) is liable to the more severe mask-

ing and/ or swapping problem. Since the asymptotic distribution of Mahalanobis

distances calculated based on MRCD method is different from F and chi-square dis-

tributions. For this reason,Ro et al. (2015) proposed the Minimum Diagonal Product

(MDP) estimators to obtain robust Mahalanobis distances in high dimensional data

and used a cutoff point based on the standard normal distribution. Our search dis-

closes that the effectiveness of the RD based on the MRCD estimator depreciates as

the number of predictor variables becomes large. This method produces high mis-

classification errors during the outlier detection and classification calculations. Thus,

these weakness has inspired us to develop outlier detection procedure based on the

MRFCH in high dimensional data by conjoining the idea of Olive and Hawkins

(2010) and (Ro et al., 2015). Note that the original RFCH cannot be applied for a

high dimensional dataset due to the usage of the classical covariance matrix within

the original RFCH algorithm, which produces a singularity problem. Our modi-

fied (MRFCH) procedure directly substituted the covariance matrix estimates in the

computation of the Mahalanobis distances by its diagonal elements to obtain the fi-

nal estimate of the location and covariance matrix and used them to compute robust

Mahalanobis distances. In our proposed method, robust Mahalanobis distances are

calculated based on the MRFCH algorithm, and outliers are detected based on the

cutoff point presented by (Midi et al., 2009; Lim and Midi, 2016). Furthermore, our

proposed MRFCH is an extension of the RFCH and faster than the existing MRCD

since the original RFCH has been noted to be faster than the OGK and MCD and
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perform excellently in detecting high leverage observations in the analysis of the lin-

ear regression model (Zhang et al., 2012; Alkenani and Yu, 2013; Uraibi and Midi,

2019). adding double space adding double space double space double space double

space

Similarly, the Pearson correlation is a statistical technique used to investigate the

relationship between the response and predictors. Although this technique is fast

and straightforward, it is susceptible to the presence of contamination because its

calculations involve the use of sample mean of response and predictors variables.

Several authors have discussed the nonrobustness of this technique using practical

examples. Abdullah (1990) developed a robust correlation coefficient based on the

least median of square (LMS) estimator to remedy this problem. As an alternative,

Uraibi and Midi (2019) proposed a robust multivariate correlation matrix based on

the Reweighted Fast Consistent and High breakdown point (RFCH) estimator (Olive

& Hawkins, 2010). The former and latter methods show substantial resistance to out-

lying points even though they are impractical when the independent variables surpass

the sample size. Recently, Raymaekers and Rousseeuw (2021) proposed a data trans-

formation correlation procedure for high dimensional that uses wrapping function

via the MAD and one-step M estimate of location. Moreover, a comparison between

the Pearson correlation, rank correlation methods, and transformation method pre-

sented in Table 2 by Raymaekers and Rousseeuw (2021) has shown that quadrant

correlation has the highest breakdown point value with the lowest efficiency. On

the other hand, while the wrapping correlation achieves a breakdown point lower

than quadrant correlation, the Pearson correlation achieves zero breakdowns but 100

% efficiency. Thus, to achieve a higher breakdown point and efficiency with less

computational running time, we propose a robust correlation based on the modified

RFCH (MRFCH) that is resistant to outliers. adding double space adding double

space double space

Variable selection procedures significantly impact scientific and knowledge discov-

ery in high dimensional datasets. The main objective of the variable selection tech-

nique is to determine the number of predictor variables that can be included in build-

ing a regression model to increase model predictive power and improve interpretabil-

ity. The curse of dimensionality is the major challenge in building an efficient work-

ing statistical model in high dimensional data analysis. The traditional all possi-

ble subsets techniques, which include forward selection, backward elimination, and

stepwise regression, are often used to determine the most critical variables that in-

fluence the dependent variable. However, in most situations, they do not ensure the

consistent selection, and they are computationally intensive, having the problem of a

singular data matrix (Fan and Li, 2001; Breiman, 1996). To remedy these problems,

the penalized least squares estimators such as the least squares Bridge estimator of

Frank and Friedman (1993) and the least squares smoothly clipped absolute devi-

ation (LS-SCAD) estimator of Fan and Li (2001) are presented. Tibshirani (1996)

proposed the least square LASSO as a particular case of the Bridge regression. Fur-

thermore, the Lasso derivative methods, including the Adaptive Lasso of Zou (2006),

SEA-Lasso, and NSEA-Lasso of Qian and Yang (2013) are put forward. The excit-

ing properties of these estimators are that they perform both estimation and variable
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selection simultaneously and work well for high dimensional data. Besides, none of

those mentioned above penalized estimators perform well for ultrahigh dimensional

data due to statistical accuracy, algorithmic stability, and computational expediency

challenges. To tackle these shortcomings, Fan and Lv (2008) introduced the concept

of correlation based sure independent screening (SIS), and it improved iteratively

sure independence screening (ISIS) algorithms to filter out the predictor variables

that have a weak correlation with the response variable. The SIS and ISIS attract

the attention of researchers due to their simplicity and wide range of applications

in many real-life problems. Several extensions have been proposed in the literature.

For example, Hall and Miller (2009) suggested the generalized correlation ranking

method. Fan et al. (2011) presented an iterative nonparametric sure independence

screening for sparse additive model. adding double space adding double space dou-

ble space

It is essential to highlight that the aforementioned correlation-based screening meth-

ods do not perform well when the classical underlying assumptions are violated.

Thus, Li et al. (2012) proposed the robust rank correlation screening RRCS based

on Kendall tau rank correlation to deal with heavy tailed distribution observations.

Kong et al. (2017) proposed the sure screening based on canonical correlation pro-

cedure. Li et al. (2012) introduced a distance correlation based screening algorithm

as discussed in (Zhong and Zhu, 2015). Ma and Zhang (2016) developed a robust

model free feature screening via quantile correlation. Wang et al. (2017) and Wang

et al. (2016) proposed two step robust variable screening that combined influen-

tial diagnostics procedure and the sure screening based on the distance correlation

to conduct variable selection. Ahmed and Bajwa (2019) recently studied an ex-

tended correlation-based variable selection for a linear model with post-screening

inference. One shortcoming of these robust correlation-screening algorithms is that

they only consider the problem of heavy tailed distribution, but not outliers on X
and y direction that in reality is possible, refer to Li et al. (2012) and (Kong et al.,

2017). Also, an example of this scenario is given in (Arslan, 2012; Smucler and

Yohai, 2017; Uraibi and Midi, 2019). They all demonstrated the effect of outlying

observations on variable selection via penalized methods. Moreover, no research

work has considered correlation-based screening algorithms with such problem of X
and y outliers. This motivates us to propose a robust and efficient correlation-based

sure independent screening procedure for sparse high dimensional regression model

in the presence of outlying point via the modified Reweighted Fast Consistent and

High breakdown point (RFCH) estimator.

1.3 Objective of the Study

The primary aim of this thesis work is to study and examine the behavior of the var-

ious existing robust methods in high dimensional data analysis and propose a novel

procedure for computing robust location and scatter matrix, robust outlier detection,

robust correlation coefficients, and robust Penalized LAD-SCAD estimator for high

dimensional data via the modified reweighted consistent and high breakdown (MR-
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FCH) estimator. To achieve our aims, we consider the following specific objectives:

1. To improvise the reweighted fast consistent and high breakdown (RFCH) es-

timator to estimate the multivariate location and dispersion matrix in high di-

mensional data.

2. To develop an efficient algorithm for the identification of high leverage points

based on the modified RFCH for high dimensional data.

3. To formulate a new robust correlation via the modified RFCH for high dimen-

sional data.

4. To construct Penalized LAD-SCAD and LAD-Lasso for estimation and vari-

able selection based on robust screening method via the modified RFCH for

high dimensional models.

1.4 Significant of the Study

The main goal of regression analysis is to perform estimation and variables selection

simultaneously since in many real life applications, not all the effects of independent

variables are significant to the response. For example, in genome wide association

studies (GWAS), it is believed that a particular kind of cancer disease is only asso-

ciated with a few genes functioning together.Wang et al. (2007) used the china stock

dataset obtained from the China Centre for Economic Research to determine the in-

fluence of some factors on the return on equity (ROE), considered as the response

variable. Based on the least absolute deviation Lasso method, their finding pointed

only three variables as significant out of nine. These examples, with many others,

necessitate the development of various existing sure screening based methods, es-

pecially when the dimension of variables is much larger than the sample size. The

curse of dimensionality is the major challenge in building an efficient working sta-

tistical model in high dimensional data analysis. Classical estimates of correlation

and dispersion matrices produce corrupt estimates when outliers are present. In most

situations, even a single outlier can disfigure the classical estimates of mean, covari-

ance, correlation, Mahalanobis distances, and variable selection. In this study, we

extend the reweighted consistent and fast breakdown (RFCH) estimation (Olive and

Hawkins, 2010) to higher dimensions by replacing the sample covariance matrix of

the Mahalanobis distance with it diagonal elements before computing the distances.

The resulting extended RFCH enjoys the robustness properties of the RFCH by Olive

and Hawkins (2010), even when the dimension of variables exceeds the sample size.

The performance of the extended RFCH is confirmed by simulation study for both

high and low dimensions cases. Secondly, we show the use of the extended RFCH

for outlier detection and classification based on simulation and real data from the

gene expression data, chemometrics, and octane data set. We believe that extended

RFCH is a valuable alternative to the existing high dimensional robust multivari-

ate analysis. adding double space adding double space double space double space

double space
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Thirdly, the study suggests a robust correlation for high dimensions based on the

extended RFCH estimator as an alternative to the existing correlation coefficient.

Compared with the Pearson correlation, Kendall, and robust correlation Raymaekers

and Rousseeuw (2021), the robust correlation based on extended RFCH shows better

bias and MSE values. Thus the robust correlation via extended RFCH is a good

option, especially in the presence of X and y outliers. adding double space adding

double space double space double space double space

Finally, a robust and efficient variable selection and estimation procedure via the

robust correlation based on modified RFCH shows excellent performance based on

simulation and real data examples. In addition, the method is developed to solve

dimension reduction problems in the presence of outliers in the variable selection

algorithm.

1.5 Limitation of the Study

This thesis will not be completed without limitations. The thesis developed four

new novel methods based on the RFCH estimator for a high dimensional dataset.

Firstly, we showed that the diagonal elements of the covariance matrix could be used

instead of the entire covariance matrix within the RFCH algorithm. Following Ro

et al. (2015), incorporating the diagonal elements idea in DRGP (MVE) estimator

could be excellent future research. Secondly, we compared the proposed modified

RFCH (MRFCH) estimator to the MRCD, OGKQn, OGKmad, and MDP. To eval-

uate the performance of our develop algorithm, the MSE and time criterion was

applied. Comparing the proposed method with some other estimators would be an-

other good topic of study. adding double space adding double space double space

double space double space

Thirdly, we compare the Pearson correlation, Kendall, and correlation based on

Raymaekers and Rousseeuw (2021) study to the proposed robust correlation coeffi-

cient. Fourthly, we compare the RCS+LAD-Lasso, RCS+LAD-SCAD, WCS+LAD-

Lasso, and WCS+LAD-SCAD with our proposed MRFCHCS+LAD-Lasso, and

MRFCHCS+LAD-SCAD. These estimators are selected because they all use mul-

tivariate correlation estimates or location or dispersion matrix, or Mahalanobis dis-

tance function within their computations. Due to inadequate higher performing com-

puter and time constrain, we only repeated our experiment for 100 and 200 iterations

(Wang et al., 2015b). In addition, the same sets of data used repeatedly by previous

researchers were adopted in this study to show consistent results with other existing

works.

1.6 Outline of the Thesis

Following the objective and scopes of study, the contents of this thesis are designed

into seven chapters. The thesis chapters are arranged so that each objective in the
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thesis is superficial in the sequence outline. adding double space adding double

space double space double space double space

Chapter Two discusses the literature reviews on penalized and unpenalized regres-

sion estimators. The location and scatter matrix estimators for low dimensional

(MCD, MVE, FMCD, DetMCD, and RFCH) and high dimensional (OGK, MDP,

MRCD) models are presented. High leverage detection procedures based on the

MDP and MRCD, including the outlier detection based distance correlation learning,

are also reviewed. The concept of correlation estimators in the presence of outlying

point was reviewed. Furthermore, the SIS, RSIS, DCSIS, variable selection based

on the canonical correlation was deliberated. Finally, influential diagnostic methods

are discussed. adding double space adding double space double space double space

double space

Chapter Three discussed the proposed modified RFCH estimators, which utilize the

original RFCH estimators. The MRFCH algorithm is presented. Simulation and real

data examples were used to demonstrate the performance of the proposed MRFCH

estimator. We also present simple examples using an artificial dataset for simplicity

and a better understanding of the existing and proposed algorithm.

adding double space adding double space double space double space double space

Chapter Four discusses the new outlier detection and classification procedure based

on the modified RFCH (MRFCH) estimator of location and scatter matrix. The de-

tection and classification power of the existing MRCD and MDP based on the robust

distance (RD) are evaluated using simulations and three real life data (octane, NCI60,

and Brain datasets). adding double space adding double space double space double

space double space

Chapter Five discusses the new robust correlation algorithm developed based on the

modified RFCH location, scatter matrix, and robust distance estimates. The existing

Pearson correlation, Kendall rank correlation, and the wrapped correlation algorithm

are compared with the new robust correlation learning algorithm based on simulation

and real data (glass vessel, cardiomyopathy microarray, and octane datasets). adding

double space adding double space double space double space double space

Chapter Six develops a penalized LAD-SCAD regression estimator based on a ro-

bust sure independence screening procedure for the sparse high dimensional regres-

sion model. The proposed MRFCHCS+LAD-SCAD and MRFCHCS+LAD-Lasso

are compared with the RCS+LAD-Lasso, RCS+LAD-SCAD, WCS+LAD-Lasso,

WCS+LAD-SCAD and using simulation and real data examples. adding double

space adding double space double space double space double space

Chapter seven includes the summary, conclusions, recommendations, and possible

future research areas.
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