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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

MULTISTEP BLOCK METHOD FOR SOLVING SECOND AND THIRD
ORDER BOUNDARY VALUE PROBLEMS WITH ROBIN AND MIXED

TYPE BOUNDARY CONDITIONS

By

NADIRAH BINTI MOHD NASIR

July 2020

Chairman : Zanariah Abdul Majid, PhD
Faculty : Institute for Mathematical Research

This thesis investigates on the numerical solutions for solving two-point and
multipoint boundary value problems (BVPs) subject to Robin and mixed boundary
conditions. The BVPs are solved directly using the new developed two-point
diagonally implicit multistep block method in the form of Adams type formula.

Constant and variable step size strategy are employed for solving two-point
second-order BVPs. Meanwhile, the computed solutions for two-point and
multipoint third-order BVPs are limit to constant step size. Shooting technique is
implemented in order to solve the BVPs. The initial estimate values are obtained
using the Newton’s divided difference interpolation method and Steffensen’s
method. Alternatively, the first derivative function is absence during the calculation
of guessing values compared to the shooting technique via the Newton’s method.

The analysis included order, error constants, consistency, zero-stability and
convergence are presented in describing the characteristics of the proposed methods.
All the computational procedures were undertaken using the C language in a
Code::Blocks 16.01 cross platform.

Numerical results showed significant findings where the proposed methods could
offer better accuracy results, less costly in terms of total function calls and faster in
timing compared to the existing methods.
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In conclusion, the proposed methods and developed algorithms were shown to be
a reliable BVPs solver for solving two-point and multipoint BVPs subject to Robin
and mixed boundary conditions directly.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK MULTILANGKAH UNTUK PENYELESAIAN MASALAH
NILAI SEMPADAN PERINGKAT KEDUA DAN KETIGA DENGAN

SYARAT SEMPADAN JENIS ROBIN DAN BERCAMPUR

Oleh

NADIRAH BINTI MOHD NASIR

Julai 2020

Pengerusi : Zanariah Abdul Majid, PhD
Fakulti : Institut Penyelidikan Matematik

Tesis ini mengkaji tentang penyelesaian berangka untuk menyelesaikan masalah nilai
sempadan (MNS) dua titik dan berbilang titik yang memenuhi syarat sempadan
bersifat Robin dan bercampur. MNS diselesaikan secara terus dengan menggunakan
kaedah yang baru dibentuk iaitu kaedah blok multilangkah dua-titik tersirat
pepenjuru berdasarkan formula Adam.

Strategi saiz langkah tetap dan berubah digunakan untuk menyelesaikan MNS dua
titik peringkat kedua. Sementara itu, penyelesaian MNS dua titik dan berbilang
titik peringkat ketiga dikomputasi dengan menghadkan kepada saiz langkah tetap
sahaja. Teknik tembakan dilaksanakan untuk memperoleh penyelesaian MNS.
Nilai-nilai anggaran awal diperolehi dengan menggunakan kaedah interpolasi
perbezaan terbahagi Newton dan kaedah Steffensen. Secara alternatif, fungsi terbitan
pertama tidak wujud dalam penggiraan nilai-nilai tekaan berbanding penggunaan
teknik tembakan melalui kaedah Newton.

Analisis termasuk ciri-ciri peringkat, pemalar ralat, konsistensi, kestabilan-sifar
dan penumpuan dibincangkan bagi menghuraikan ciri-ciri kesemua kaedah yang
dicadangkan. Keseluruhan prosedur pengiraan secara komputasi telah dijalankan
dengan menggunakan bahasa pengaturcaraan C dalam perisian Code::Blocks 16.01.

Keputusan berangka menunjukkan penemuan penting bahawa kaedah-kaedah yang
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dicadangkan dapat mencapai kejituan keputusan yang lebih baik, lebih jimat dari
segi jumlah fungsi panggilan dan memperoleh masa yang pantas berbanding kaedah
sedia ada.

Kesimpulannya, kaedah yang dicadangkan dan algoritma yang dibangunkan
berupaya menjadi penyelesai MNS yang boleh dipercayai untuk menyelesaikan
MNS dua titik dan berbilang titik yang memenuhi syarat sempadan bersifat Robin
dan bercampur secara kaedah terus.
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CHAPTER 1

INTRODUCTION

1.1 Background

The behaviour of many physical problems appear frequently in terms of differential
equations. Those behaviour can be either position-dependent changes or
time-dependent changes. Differential equations are extremely important in vast
field of studies including mathematics, physics, chemistry, economics as well as
engineering. The solution to the differential equations can be obtained using
analytical and numerical approaches. Analytical solution will result in exact value
and it is almost accurate. However, in dealing with mathematical model in the form
of nonlinear and complex differential equations, analytical solution sometimes is
impractical and has a limitation to give the required solution. Numerical solution
consists of approximate value together with the numerical error. This errors are
important to be taken into consideration while computing the numerical results
because it will tell us how accurate the numerical answers within a specified
tolerance. In addition, if the exact solution is provided to the differential equations
problems, then it is useful to validate the reasonable numerical results produce by
the numerical methods.

Ordinary differential equations (ODEs) and partial differential equations (PDEs) are
two major types of differential equations. Both equations represent the relationship
between the unknown function with its derivative. This thesis will tackle the
differential equations problems in the form of ODEs rather than PDEs.

Generally, a Dth order ordinary differential equation is given by

dDy
dxD = f

(
x,y,y′,y′′,y(3), . . . ,y(D−1)), x ∈ [x0,xN ]. (1.1.1)

To obtain the desired solution of (1.1.1) to the function, y(x), D conditions are
required. These conditions can be specified as either initial conditions or boundary
conditions. Numerically, by solving higher order of (1.1.1) directly without
converting to the first order system will minimizing the computational cost of process
and save in time-consuming.

In numerical method, solving (1.1.1) involves computation of consecutive
approximations, yn+i, and the function, fn+i for i = 0,1, . . . ,k. This procedure
constitutes one-step method and multistep method, corresponds to k = 1 and k > 1,
respectively. One-step method permit calculation of the approximation using only
one previous value, while multistep method requires more than one previous values.
This thesis focusing on multistep method with one-step method will be employed
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to give the appropriate number of starting values in order to initiate the multistep
procedure since the implementation is not a self-starting method.

1.2 Boundary Value Problems

In a nutshell, a boundary value problem is a differential equation, typically in one
dimension is an ODE which has values assigned on the physical boundary of the
domain and deals with higher order differential equations. Consider a general form
of second-order BVPs for D = 2 in (1.1.1) as

y′′(x) = f (x,y,y′), x ∈ [a,b] (1.2.1)

subject to two-point boundary conditions (BCs)

c1y(a)+ c2y′(a) = α and c3y(b)+ c4y′(b) = β (1.2.2)

where a,b,α,β and ci for i = 1,2,3,4 are all constants.

There are three types of boundary conditions appear oftenly related to BVPs. If only
functional value of the solution specified in (1.2.2), then this condition represents
Dirichlet BCs and can be written as

c1y(a) = α and c3y(b) = β (1.2.3)

corresponds to the case of c2 = c4 = 0. Besides, Neumann BCs correspond to the
case of c1 = c3 = 0 as

c2y′(a) = α and c4y′(b) = β (1.2.4)

where only derivative of the solution is given in (1.2.2). Finally, if both information
exist and specified in the form of linear combination between functional value and
derivative of the solution, hence (1.2.2) is known as Robin BCs

c1y(a)+ c2y′(a) = α and c3y(b)+ c4y′(b) = β . (1.2.5)

This thesis concentrates on solving (1.2.1) that associated with Robin type conditions
occur at the boundary point and subsumes under the following types:

• Type 1: The Robin boundary conditions as given in (1.2.5).

• Type 2: The mixed set of Robin and Dirichlet boundary conditions given as

c1y(a)+ c2y′(a) = α and c3y(b) = β . (1.2.6)

2
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• Type 3: The mixed set of Robin and Neumann boundary conditions given as

c1y(a)+ c2y′(a) = α and c4y′(b) = β . (1.2.7)

• Type 4: The mixed set of Dirichlet and Robin boundary conditions given as

c1y(a) = α and c3y(b)+ c4y′(b) = β . (1.2.8)

The detail discussion on the third-order BVPs will be highlighted in Chapter 4
and 5 since the differential equation problems will involve a multipoint boundary
conditions.

There are several references such as Usmani (1972), Chawla (1978) and Bialecki
(1991) defined conditions in (1.2.5) as mixed boundary conditions. However, our
preference is Robin BCs instead of mixed BCs. This is supported by the definition
stated in Gustafson and Abe (1998), “mixed boundary condition normally means
that on one portion of the boundary, you have one of the three usual BCs, whereas on
another part of the boundary you have a different one”. Lawley and Keener (2015)
mentioned that the Robin boundary condition specifies a relationship between the
solution and its derivative.

The real function, f in (1.2.1) is assumed to satisfy the Lipschitz condition as follows

| f (x,v1,w)− f (x,v2,w)| ≤ K|v1− v2|, (1.2.9)
| f (x,v,w1)− f (x,v,w2)| ≤ K|w1−w2|

for all points (x,vi,w),(x,v,wi), i = 1,2 in the set

D = { f (x,v,w)|a≤ x≤ b,−∞ < v,w < ∞} .

Theorem 1.1 (Atkinson et al., 2011)
For the given problem in (1.2.1) with (1.2.5), assume f (x,v,w) to be continuos on
the set, D and satisfies the Lipschitz condition in (1.2.9). In addition, on the set D, f
satisfies the followings:

1. fv(x,v,w)> 0,

2.
∣∣ fw(x,v,w)∣∣≤ K for some constant, K > 0,

3. For the boundary conditions of (1.2.5), assume

c1c2 > 0, c3c4 > 0,
|c1|+ |c2| 6= 0, |c3|+ |c4| 6= 0, |c1|+ |c3| 6= 0.

Then, the BVPs given by (1.2.1) associated with (1.2.5) has a unique solution.

3
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In this study, linear and nonlinear BVPs will be solved using systematic iterative
approach via the shooting method. Since there is a missing initial condition involved
in the given BCs, then solving BVPs using shooting technique required initial
guessing to start the procedure.

1.3 Objectives of the Thesis

This thesis will be focused on the following objectives:

1. to derive two-point diagonally implicit multistep block method formula for
solving non-stiff two-point and multipoint boundary value problems subject
to Robin and mixed type boundary conditions;

2. to analyze the properties of the method including order, stability, consistency
and convergence in details;

3. to establish the shooting strategy via Newton’s divided difference interpolation
method and Steffensen’s method for solving second-order and third-order
BVPs using C programming source code;

4. to develop the algorithms for the multistep block method with constant step
size and variable step size strategy adapted with the shooting technique.

1.4 Motivation

The development on the direct multistep block method is well established
for enabling to solve various types of differential equations. However, the
implementation and performances on numerical algorithm for use in boundary value
problems with Robin boundary conditions has not been extensively studied.

Numerous works have been carried out to investigate the BVPs subject to Dirichlet
and Neumann boundary conditions using block method adapted with the shooting
technique for solving directly the aforementioned BVPs. Moreover, majority of
the previous work used Newton’s method as the strategy to improvise the guessing
values during the shooting procedure.

Therefore, motivation of this study is to develop the two-point diagonally multistep
block method with different order between first point and second point. The main
aim of the numerical integration scheme development using the diagonally formula is
to demonstrate in practice that the diagonally multistep block method is significantly
cheaper in computational effort and favourably competitive with existing methods.
In addition to that, the diagonally formula is sensible in order to preserve the high
accuracy of the computed results. Meanwhile, this thesis will emphasis on the

4
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shooting strategy adapted with the Newton’s divided difference interpolation method
and Steffensen’s method as the iterative scheme for improvise the guessing values.
This iterative scheme is different from the Newton’s method because the former
approach used interpolation while the latter approach is a derivative free method.

1.5 Scope of the study

This thesis concentrates on the numerical solution of two-point diagonally multistep
block method for solving second-order and third-order boundary value problems
associated with Robin and mixed boundary conditions. In solving second order
BVPs, the condition imposed on the independent variable at two different values.
In contrast, solving third order BVPs deals with the boundary conditions define at
two-point boundary conditions and multipoint boundary conditions.

Two-point diagonally multistep block method of order four, five and six will be
implemented to solve all the aformentioned Robin and mixed boundary value
problems via the shooting technique. The shooting technique adapted with the
Newton’s divided difference interpolation method and Steffensen’s method are
employed for generating the guessing values. In addition, the numerical results for
second order BVPs will be generated using fixed and variable step size. Meanwhile,
the numerical results for third order BVPs will limit to constant step size only.

The analysis of the methods including order, consistency, zero-stability, convergence
and stability are also discussed in this thesis.

1.6 Outline of the Thesis

The organization of the thesis are as follows.
Chapter 1 provides a brief introduction to the boundary value problems, describing
the type of boundary conditions and explanation on the prelimenary concept and
theory that devoted to BVPs.

Chapter 2 highlights on the important definitions that necessary in describing the
properties of the developed methods. This chapter also cover on the theory of
Lagrange interpolation polynomial that will be used during the derivation of the
direct integration formula. The chronological studies that leads to a road map of this
research will be part of this chapter as a briefly reviewed from the previous works.

Chapter 3 emphasizes on the derivation of two-point diagonally multistep block
method of order four, five and six with constant step size. These block methods will
be used to solve second order two-point boundary value problems subject to Robin
and mixed boundary conditions. The shooting technique adapted with Newton’s

5
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divided difference interpolation method and Steffensen’s method are also introduced
in this chapter. All the analysis properties related to the derived methods also
included in this chapter.

Chapter 4 focuses on the direct integration formula to solve the third order boundary
value problems associated with Robin boundary conditions. Again, the derivation is
in the form of two-point diagonally multistep block method of order four, five and
six with constant step size. All the analysis properties related to the derived formula
also included as part of this chapter.

Chapter 5 concerns on the implementation to tackle the third order multipoint
boundary value problems using the direct block methods developed in Chapter 4. At
the begining, this chapter higlights on the two distinct algorithms to solve respective
BVPs since there are three classifications on the types of multipoint boundary
conditions that have been considered in this thesis.

Chapter 6 discusses on the derivation of two-point diagonally multistep block
method using a variable step size strategy. This chapter present on the strategy
to choose the step size adjustment. This adjustment correspond to three different
decision which are keeping the new step size remain constant, or double or halved,
from the previous step size.

Finally, Chapter 7 concludes the important findings from this research study. At
the same time, some potential recommendations for further research works will be
highligted in this chapter.

6
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