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The value of an option is largely affected by the underlying assumptions or models,
such as the modelling of the volatility process. Fractional Brownian motion has been
shown to be able to accurately model and forecast volatility processes displayed in
the financial market. The key attribute of modelling the empirical volatility using
the fractional Brownian motion is its rough movement nature which is governed by
a parameter called Hurst parameter H with the valid range of H ∈ (0,0.5) to display
the roughness effect. In response to the development, we study the option pricing
methods of rough volatility model to price derivatives such as the widely acceptable
option–S&P 500 (SPX) option.

This thesis will focus on the option pricing methods under a particular rough volatil-
ity model called rough Heston model. The main problem of this study is that the char-
acteristic function of the rough Heston model contains a fractional Riccati equation
which has no closed-form solution. Solving the fractional Riccati equation using the
standard iterative method (fractional Adams-Bashforth-Moulton method) would re-
quire O(N2) time complexity where N is the number of steps of the standard method.
If Nc is the number of steps in the numerical integration of the Fourier inversion
method, the computational cost would further increase to O(N2Nc) time complexity
when fractional Adams-Bashforth-Moulton is used as the medium to price option
under rough Heston model. The huge computational cost on the computation of op-
tion price under the rough Heston model would undoubtedly be a barrier to most
practitioners. The main objectives of this study are to improve an existing approxi-
mation method called Padé approximant to approximate fractional Riccati equation’s
solution and construct an approximation formula for option price without involving
the characteristic function of rough Heston model.
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The main contribution of our study is that we have modified and improved an existing
Padé approximant such that it can accurately approximate the solutions of fractional
Riccati equation on the Hurst parameter range of H ∈ (0,0.5) unlike the Padé approx-
imant from previous study where its accuracy will increasingly deteriorate when the
Hurst parameter H increases up to 0.5. The time complexity of modified Padé ap-
proximant is kept at O(1) time complexity. In addition, we have also constructed an
approximation option pricing formula under rough Heston model. Specifically, the
method utilises the decomposition formula of option price under certain stochastic
volatility, and depending on the structure of forward variance curve used, the ap-
proximation formula would require O(1) or O(n f ) time complexity to compute the
option value where n f is the number of integration steps. The result of the numerical
experiment has shown that the methods are capable of matching the SPX options
very accurately in a non-extreme market condition and moderately accurate in an
extreme market condition, and most importantly, the option pricing method can be
computed in a time-efficient manner.
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Nilai sebuah opsyen besar dipengaruhi oleh andaian atau model yang mendasari,
seperti pemodelan proses turun naik. Gerakan pecahan Brownian telah terbukti da-
pat memodelkan dan meramalkan proses turun naik yang dipaparkan di pasaran ke-
wangan dengan tepat. Atribut utama memodel turun naik empirikal menggunakan
pecahan gerakan Brownian adalah sifat pergerakan kasarnya yang dikawal oleh pa-
rameter yang dikenali sebagai parameter Hurst H dengan julat sah H ∈ (0,0.5)
untuk memaparkan kesan kekasaran. Berdasarkan tindak balas perkembangannya,
pengkaji mengkaji kaedah penentuan opsyen harga terhadap model turun naik kasar
kepada harga derivatif seperti opsyen yang boleh diterima secara meluas–opsyen
S&P 500 (SPX).

Tesis ini memberi tumpuan kepada kaedah penentuan harga opsyen di bawah model
turun naik kasar tertentu yang dikenali sebagai model Heston kasar. Masalah
utama kajian ini adalah mengenai fungsi ciri model Heston kasar yang mengan-
dungi persamaan pecahan Riccati yang tidak mempunyai penyelesaian bentuk ter-
tutup. Menyelesaikan persamaan pecahan Riccati menggunakan kaedah lelaran
piawai (kaedah pecahan Adams-Bashforth-Moulton) memerlukan kerumitan masa
O(N2) dengan N ialah bilangan langkah kaedah piawai. Jika Nc ialah bilangan
langkah dalam penyepaduan berangka kaedah penyongsangan Fourier, kos pengiraan
akan terus meningkat kepada kerumitan masa O(N2Nc) apabila pecahan Adams-
Bashforth-Moulton digunakan sebagai pilihan sederhana kepada harga di bawah
model kasar Heston. Kos pengiraan yang besar pada pengiraan harga opsyen di
bawah model kasar Heston sudah pasti akan menjadi penghalang kepada kebanyakan
pengamal. Objektif utama kajian ini adalah untuk menambah baik kaedah anggaran
sedia ada yang dikenali sebagai anggaran Padé untuk menyelesaikan anggaran per-
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samaan pecahan Riccati dan membina rumus penghampiran untuk harga opsyen
tanpa melibatkan fungsi ciri model Heston kasar.

Sumbangan utama kajian ini ialah pengkaji telah mengubah suai dan menambah
baik anggaran Padé sedia ada supaya ia boleh menyelesaikan anggaran persamaan
pecahan Riccati dengan tepat pada julat parameter Hurst H ∈ (0,0.5) tidak seperti
anggaran Padé daripada kajian lepas yang mana ketepatannya akan semakin merosot
apabila parameter Hurst H meningkat sehingga 0.5. Kerumitan masa anggaran Padé
yang diubah suai dikekalkan pada kerumitan masa O(1). Di samping itu, pengkaji
telah membina rumus penentuan harga pilihan anggaran di bawah model kasar He-
ston. Secara khusus, kaedah ini menggunakan rumus penguraian harga opsyen
di bawah turun naik stokastik tertentu dan bergantung pada penggunaan struktur
lengkung varians hadapan iaitu rumus penghampiran memerlukan kerumitan masa
O(1) atau O(n f ) untuk mengira nilai opsyen yang mana n f adalah bilangan langkah
integrasi. Keputusan eksperimen berangka telah menunjukkan bahawa kaedah terse-
but mampu memadankan pilihan SPX dengan sangat tepat dalam keadaan pasaran
yang tidak ekstrim dan sederhana tepat dalam keadaan pasaran melampau dan yang
paling penting, pilihan kaedah penentuan harga yang boleh dikira dengan cara masa
efisien.
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FPadé Fourth-Order Padé Approximant
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CHAPTER 1

INTRODUCTION

1.1 Basics Concept and History

A stock is a security that can be bought and sold by the general public or private
investors. It represents the ownership of a fraction of the corporation that issued the
stock/share. Stocks are issued mainly to raise capital from public or private investors
to fund their business activities. In return, the owners of the stocks are entitled to
receive the particular corporation’s assets or profits based on the proportion of the
company value/stock they own. The value of the stock strongly depends on the cur-
rent performance and future aspects of the company. Under normal circumstances,
investors can decide the time of the liquidation of the stock to make profit or loss.
With that being said, the Dutch East India Company becomes the first company to be
publicly traded in the year 1602 (Beattie, 2021). Noticeably, stock trading has been
increasingly popular with the increasing presence of internet.

Call and put options are financial derivatives that offer holder the right, but not the
obligation to buy or sell an asset at a specified time and strike price. The name
“financial derivative” comes from its function as its value is determined based on
its underlying asset, e.g. stock and volatility of the stock. Interestingly, the use of
options contracts dates back to ancient times where the transaction contracts with
embedded option features would be used to commerce goods (Poitras, 2009). Even-
tually, the free-standing option contracts were developed to accustomed in exchange
trading from the period 16th to 18th century. In particular, options traded in Lon-
don’s Exchange Alley were an essential activity during the late 17th century. The
major change to options trading happened in the late 20th century where the stock
exchanges transitioned its physical trading activities to electronic system. This event
subsequently created the wide accessibility of options trading for both local and in-
ternational investors.

Depending on how the option is used, it can be both a risk management tool or a
speculative device to the investors. One particular feature as a risk management tool
is its insurance feature in which would limit the major uprise or downside move-
ment of the underlying assets’ value. At the same time, it is noted that the option
costs lesser than the stock price itself and it has the potential of granting the holder
its underlying asset in the future, therefore, some speculators would prefer to pur-
chase options when they anticipate the stock will move by a large magnitude of the
predetermined strike price.
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Modelling stock price accurately to price option has been an ongoing problem for
several decades, it is mainly due to the fact that the stochastic patterns of the volatility
in the financial market are difficult to model. Black-Scholes model (Black & Scholes,
1973) is the most well-known model that prices the market option, but it has several
unrealistic assumptions. In particular, the fluctuation of the value of stock or share
does not follow the log-normal distribution. The Black Monday crash in the year
1987 reflects Black-Scholes model’s unrealistic assumptions, i.e. the change of stock
price has a fat tail (large unexpected movement happened more frequently than what
previously expected). Furthermore, the model’s implied volatility that should by
right reflects the stock market’s volatility does not remain as a constant value as
contrary to the Black-Scholes model’s constant volatility assumption.

This thesis specifically focuses on a stochastic volatility model called rough Heston
model and its option pricing method. We will first go through several definitions that
are related to options. The following definitions can be found in a book written by
Hull (2003).

Definition 1.1 A European call option on an asset St paying no dividends, with
maturity date T and strike price K is defined as a contingent claim with payoff
(ST −K)+.

Definition 1.2 A European put option on an asset St paying no dividends, with matu-
rity date T and strike price K is defined as a contingent claim with payoff (K−ST )

+.

Definition 1.3 The stock price St is the price specified (at that particular time t) in
the call (put) contract at which it is related as (ST −K)+ and (K−ST )

+ for call and
put option respectively.

Definition 1.4 The exercise or strike price K is the price specified in the call (put)
contract at which the asset may be bought (sold) when exercised.

Definition 1.5 The expiration or maturity date T is the date specified in the call
(put) contract at which the contract reaches the end of the life of the contract, and
the holder of the option will obtain the right but not the obligation to exercise the
option.

Definition 1.6 The volatility σ of the stock is a measure of uncertainty about the
returns provided by the stock.

Definition 1.7 The risk-free interest rate r is the rate of an asset that is perceived as
no risk of default. Derivatives traders would normally use interest rates implied by

2
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bonds and Treasury bills, or even perhaps LIBOR or overnight indexed swap rates as
the risk-free interest rate. LIBOR is an acronym for London Interbank Offered Rate
and it is determined once a day by the British Bankers’ Association as a reference
interest rate.

Definition 1.8 Intrinsic value of an option is defined as the maximum of zero and
the value of the option if it were exercised immediately, i.e. max(St −K,0) for call
option and max(K −St ,0) for put option where St is the current asset price at time t
and K is the strike price.

Definition 1.9 In-the-money call option is when the current asset price is greater
than the strike price. Oppositely, the in-the-money put option is when the current
asset price is less than the strike price. The in-the-money call (put) option can also
be defined as the positive (negative) intrinsic value of the option.

Definition 1.10 At-the-money option is when the current asset price and strike price
are equivalent. At-the-money option can also be defined as zero intrinsic value of the
option.

Definition 1.11 Out-of-the-money call option is when the current asset price is less
than the strike price. Oppositely, the out-of-the-money put option is when the current
asset price is greater than the strike price. The out-of-the-money call (put) option
can also be defined as the negative (positive) intrinsic value of the option.

Definition 1.12 Short selling or commonly referred to as “shorting” is the action of
selling an asset that is not owned by the individual or party. The individual or party
has to eventually close the “short” position by buying back the asset to return it to
the borrowed party. A fee may be charged for lending the securities or shares to the
shorting party.

1.2 Stochastic Processes and Brownian Motion

Stochastic processes are the mathematical models that would appear and behave in a
random manner. They are commonly used in many fields, such as physics, chemistry,
computer science and biology. The “unpredictable” changes in stock and volatility
have greatly attracted the use of stochastic processes in finance. In this subsection,
we introduce the basics of stochastic processes and the most commonly used stochas-
tic process, i.e. Brownian motion. The material below will serve as the prerequisites
to build the stochastic calculus in the following section. The following definitions
and theorem can be found in a book written by Shreve (2004) unless specified other-
wise.

3
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Definition 1.13 Let Ω be a nonempty set and let F be a collection of subsets of Ω .
We refer to F as a σ -algebra (or σ -field) provided that:

1. the empty set /0 belongs to F ,

2. whenever a set A belongs to F , its complement Ac also belongs to F , and

3. whenever a sequence of sets A1,A2, ... belongs to F , their union
∞⋃

n=1
An also

belongs to F .

Definition 1.14 Let P be a probability measure such that it functions to assign a
number in [0,1] to every set A ∈ F , and it is called the probability of A and written
as P(A). We require:

1. P(Ω) = 1, and

2. (countable additivity) whenever A1,A2, ... is a sequence of disjoint sets in F ,
then

P

(
∞⋃

n=1
An

)
=

∞

∑
n=1

P(An).

Remark 1.1 The triple (Ω ,F ,P) is known as a probability space.

Definition 1.15 Let (Ω ,F ,P) be a probability space. A random variable is a real-
valued function X defined on Ω with the property that for every Borel subset B of B,
the subset of Ω given by

{X ∈ B}= {ω ∈ Ω ;X(ω) ∈ B}

is in the σ -algebra F . It is permissible for a random variable to take values +∞

and −∞.

Definition 1.16 Let Ω be a nonempty set. Let T be a fixed positive number, and
assume that for each t ∈ [0,T ] there is a σ -algebra F (t). Assume further that if
s ≤ t, then every set in F (s) is also in F (t). Then we call the collection of σ -
algebras F (t), 0 ≤ t ≤ T , a filtration. We will frequently simplify the notation to
Ft := F (t).

Definition 1.17 Let X be a random variable defined on a nonempty sample space
Ω . Let G be a σ -algebra of subsets of Ω . If every set in σ(X) is also in G , we say
that X is G -measurable.

4
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Definition 1.18 Let Ω be a nonempty sample space equipped with a filtration F (t),
0 ≤ t ≤ T . Let X(t) be a collection of random variables indexed by t ∈ [0,T ]. We
say this collection of random variables is an adapted stochastic process if, for each
t, the random variable X(t) is F (t)-measurable. We denote Xt := X(t) for simplicity
purposes.

Definition 1.19 Let X be a random variable on a probability space (Ω ,F ,P). The
expectation of X is defined as

E[X ] =
∫

Ω

X(ω)dP(ω)

only if X is integrable, i.e.

E[|X |] =
∫

Ω

|X(ω)|dP(ω)< ∞.

Definition 1.20 Let X be a random variable whose expected value is defined. The
variance of X denoted as Var(X) is as follows

Var(X) = E[(X −E[X ])2].

Note that, the standard deviation of X is
√

Var(X).

Definition 1.21 Let X and Y be random variables whose expectations are defined.
The covariance of X and Y is

Cov(X ,Y ) = E[(X −E[X ])(Y −E[Y ])].

Furthermore, the correlation coefficient of X and Y , ρ(X ,Y ) has the relationship of

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X)Var(Y )
,

where Var(X) and Var(Y ) are the variances of X and Y .

Definition 1.22 Let (Ω ,F ,P) be a probability space, let T be a fixed positive num-
ber, and let Ft , 0 ≤ t ≤ T , be a filtration of a sub-σ -algebras of F . Consider an
adapted stochastic process Mt , 0 ≤ t ≤ T .

1. If
E[Mt |Fs] = Ms for all 0 ≤ s ≤ t ≤ T,

then we say that this process is a martingale, i.e. it has no tendency to rise or
fall.

5
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2. If
E[Mt |Fs]≥ Ms for all 0 ≤ s ≤ t ≤ T,

then we say that this process is a submartingale, i.e. it has no tendency to fall,
but it may have a tendency to rise.

3. If
E[Mt |Fs]≤ Ms for all 0 ≤ s ≤ t ≤ T,

then we say that this process is a supermartingale, i.e. it has no tendency to
rise, but it may have a tendency to fall.

Definition 1.23 Let (Ω ,F ,P) be a probability space, T be a fixed positive number,
and F t , 0 ≤ t ≤ T , be a filtration of sub-σ -algebras of F . Consider an adapted
stochastic process Xt , 0 ≤ t ≤ T . Assume that for all 0 ≤ s ≤ t ≤ T and every non-
negative, Borel-measurable function f , there is another Borel-measurable function
g such that

E[ f (Xt)|F s] = g(Xs),

then we say that the X process is a Markov process.

The most well-known stochastic process is called Brownian motion and it is named
after its discoverer - Robert Brown. In 1827, the motion is discovered through the
observation of microscopic pollen plant that is submerged in water. Many years
after the discovery, the famous theoretical physicist Albert Einstein published a ma-
jor paper regarding the movement/motion of pollen particles are actually caused by
collision of individual water molecules (Einstein, 1905). Subsequently, Einstein’s
explanation has led Jean Perrin to experiment and verify the existence of atoms
and molecules; that has won him a Nobel prize in Physics 1926 (Karlsson, 2001).
We now give the definition of Brownian motion, its properties and the definition of
quadratic variations.

Definition 1.24 Let (Ω ,F ,P) be a probability space. For each ω ∈ Ω , suppose
there is a continuous function W (t) of t ≥ 0 that satisfies W (0) = 0 and that depends
on ω . Then W (t), t ≥ 0 is a Brownian motion if for all 0 = t0 < t1 < ... < tm the
increments

W (t1) =W (t1)−W (t0),W (t2)−W (t1), ...,W (tm)−W (tm−1)

are independent and each of these increments is normally distributed with

E[W (ti+1)−W (ti)] = 0

and
Var[W (ti+1)−W (ti)] = ti+1 − ti.

Definition 1.25 Let (Ω ,F ,P) be a probability space on which is defined on a Wt ,
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t ≥ 0. A filtration for the Brownian motion is a collection of σ -algebras Ft , t ≥ 0,
satisfying:

1. (Information accumulation) For 0≤ s< t, every set in Fs is also in Ft . That
is to say that there is at least as much information available at the later time
Ft as compared to earlier time Fs.

2. (Adaptivity) For each t ≥ 0, the Brownian motion Wt at time t is Ft -
measurable. That is to say that the information available at time t is sufficient
to evaluate the Brownian motion Wt at that time.

3. (Independence of future increments) For 0 ≤ t < u, the increment Wu −Wt
is independent of Ft . That is to say any increment of Brownian motion after
time t is independent of the information available at time t.

Definition 1.26 Let f (t) be a function defined for 0≤ t ≤ T . The quadratic variance
of f up to time T is

⟨ f , f ⟩(T ) = lim
||Π ||→0

n−1

∑
j=0

[ f (t j+1)− f (t j)]
2,

where Π = {t0, t1, ..., tn}, 0= t0 < t1 < ... < tn = T , and ||Π ||= max
j=0,...,n−1

(t j+1−t j).

Theorem 1.1 Let W be a Brownian motion. Then ⟨W,W ⟩(T ) = T for all T ≥ 0
almost surely.

Definition 1.27 (Nourdin, 2012) Let W1 and W2 be two independent classical Brow-
nian motion, then the two-sided classical Brownian motion is defined as

Wt =

{
W 1

t , if t ≥ 0,
W 2
−t , if t < 0.

1.3 Stochastic Calculus

Stochastic calculus is mainly an extension of the ordinary calculus that deals with
presence of non-zero quadratic variation in Brownian motion. Specifically, the fa-
mous Itô calculus (Itô, 1944) will be introduced in this subsection, we use the book
by Shreve (2004) as the reference for all the definitions, lemmas, and theorems. The
following work will be repeatedly used in this thesis.

Definition 1.28 Let X(t) be a stochastic process adapted to F (t) for t ≥ 0 such that

7



© C
OPYRIG

HT U
PM

the square-integrability condition is satisfied as

E

[∫ t

0
X2(u)du

]
< ∞

and W be a classical Brownian motion, then the Itô integral is defined as

I(t) =
∫ t

0
X(u)dWu.

Theorem 1.2 Let T be a positive constant and let X(t) for 0 ≤ t ≤ T be an adapted
stochastic process (same as Definition 1.28), then it satisfies the following properties:

1. (Continuity) The paths of I(t) are continuous.

2. (Adaptivity) For each t, I(t) is F (t)-measurable.

3. (Linearity) Let X(u) and Y (u) be adapted stochastic process. If I(t) =∫ t

0
X(u)dWu and J(t) =

∫ t

0
Y (u)dWu, then I(t)±J(t) =

∫ t

0
(X(u)±Y (u))dWu.

In addition, for a constant c, the relationship cI(t) =
∫ t

0
cX(u)dWu is satisfied.

4. (Martingale) I(t) is a martingale.

5. (Itô isometry) E[I2(t)] = E

[∫ t

0
X2(u)du

]
.

6. (Quadratic variation) ⟨I, I⟩(t) =
∫ t

0
X2(u)du.

Lemma 1.1 Let f (t,x) be a function such that the partial derivatives ft(t,x), fx(t,x),
and fxx(t,x) are defined and continuous. Let Wt be a Brownian motion, then for every
T ≥ 0,

f (T,WT ) = f (0,W0)+
∫ T

0
ft(t,Wt)dt +

∫ T

0
fx(t,Wt)dWt +

1
2

∫ T

0
fxx(t,Wt)dt.

Definition 1.29 Let Wt , t ≥ 0 be a Brownian motion, and let F (t), t ≥ 0, be an
associated filtration. An Itô process is a stochastic process of the form

X(t) = X(0)+
∫ t

0
h(u)du+

∫ t

0
g(u)dWu,

where X(0) is nonrandom and h(u) and g(u) are adapted stochastic processes such

that
∫ t

0
|h(u)|du < ∞ and E

[∫ t

0
g2(u)du

]
< ∞.
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Lemma 1.2 The quadratic variation of the Itô process (Definition 1.29) is

⟨X ,X⟩(t) =
∫ t

0
g2(u)du.

Definition 1.30 Let X(t), t ≥ 0, be an adapted Itô process described in Definition
1.29. Furthermore, let Y (t) be an adapted process, then the integral with respect to
an Itô process can be defined as∫ t

0
Y (u)dX(u) =

∫ t

0
Y (u)h(u)du+

∫ t

0
Y (u)g(u)dWu.

Lemma 1.3 Let X(t), t ≥ 0 be an adapted stochastic process (Definition 1.29), and
let f (t,x) be a function such that the partial derivatives ft(t,x), fx(t,x), and fxx(t,x)
are defined and continuous. Let Wt be a Brownian motion, then for every T ≥ 0,

f (T,X(T )) = f (0,X(0))+
∫ T

0
ft(t,X(t))dt +

∫ T

0
fx(t,X(t))dX(t)

+
1
2

∫ T

0
fxx(t,X(t))d⟨X ,X⟩(t)

= f (0,X(0))+
∫ T

0
ft(t,X(t))dt +

∫ T

0
fx(t,X(t))h(t)dt

+
∫ T

0
fx(t,X(t))g(t)dWt +

1
2

∫ T

0
fxx(t,X(t))g2(t)dt.

Theorem 1.3 Let Ws, s ≥ 0, be a Brownian motion, and let X(s) be a nonrandom

function of time. Then, for each t ≥ 0, the Itô integral I(t) =
∫ t

0
X(s)dWs is normally

distributed with an expected value of zero and variance of
∫ t

0
X2(s)ds.

Lemma 1.4 Let f (t,x,y) be a function whose partial derivatives ft , fx, fy, fxx, fxy,
fyx, and fyy are defined and are continuous. Furthermore, let X(t) and Y (t) be
adapted stochastic processes defined in Definition 1.29, then the two-dimensional
Itô’s Lemma in differential form is

d f (t,X(t),Y (t))

= ft(t,X(t),Y (t))dt + fx(t,X(t),Y (t))dX(t)+ fy(t,X(t),Y (t))dY (t)

+
1
2

fxx(t,X(t),Y (t))dX(t)dX(t)+ fxy(t,X(t),Y (t))dX(t)dY (t)

+
1
2

fyy(t,X(t),Y (t))dY (t)dY (t).
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Lemma 1.5 Itô’s product rule Let X(t) and Y (t) be adapted stochastic processes
defined in Definition 1.29, then the Itô’s product rule in differential form is

d(X(t)Y (t)) = X(t)dY (t)+Y (t)dX(t)+dX(t)dY (t).

1.4 Fractional Calculus and Some Useful Functions

In the late 17th century, the classical infinitesimal calculus developed independently
by Isaac Newton and Gottfried Wilhelm Leibniz has been widely adopted and have
advanced many science-related fields. In the light of questions by L’Hopital to Leib-
niz such as “what is the derivative of order

√
2 or 1/3 of a function”, fractional cal-

culus was defined and studied extensively. We will first describe several definitions
regarding the indicator, Gamma, Beta, and Mittag-Leffler functions. The definitions
will be used to define the rough Heston model and derive several methods in Chap-
ter 3 and 4. Then, we will focus on the most famous type of fractional integral and
derivative among the many definitions which is the Riemann-Liouville type. They
will be used in the rough Heston model’s characteristic function.

Definition 1.31 (Hirsa & Neftci, 2013) Let A be any event, the indicator function is
defined as

1A =

{
1, if event A occurs,
0, otherwise.

The Definitions 1.32 to 1.37 were taken from book by Baleanu et al. (2012).

Definition 1.32 Let x ∈ C, the Euler Gamma function (or more frequently known as
just the Gamma function) is defined by the Euler integral of the second kind as

Γ (x) =
∫

∞

0
tx−1e−tdt for ℜ(x)> 0,

where ℜ(·) denotes the real part of the solution. Furthermore, the relationship of
reduction formula can be established as

Γ (x+1) = xΓ (x).

Definition 1.33 Let x,y /∈Z−
0 = {0,−1,−2, ...}, the Beta function is defined through

Euler integral of the first kind as

B(x,y) =
Γ (x)Γ (y)
Γ (x+ y)

,

where Γ (·) is the Gamma function described in Definition 1.32.
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Definition 1.34 Let x ∈ C and ℜ(α)> 0, the one-parameter Mittag-Leffler function
is defined as

Eα(x) =
∞

∑
k=0

xk

Γ (αk+1)
,

where Γ (·) is the Gamma function described in Definition 1.32.

Definition 1.35 Let x,β ∈ C and ℜ(α) > 0, the two-parameter (generalised)
Mittag-Leffler function is defined as

Eα,β (x) =
∞

∑
k=0

xk

Γ (αk+β )
,

where Γ (·) is the Gamma function described in Definition 1.32.

Definition 1.36 Let a ∈ R and α ∈ C such that ℜ(α) > 0, the Riemann-Liouville
fractional integral is defined as

Iα
a f (x) =

1
Γ (α)

∫ x

a

f (t)
(x− t)1−α

dt,

where Γ (·) is the Gamma function described in Definition 1.32. Furthermore, if the
value a is not specified in the Riemann-Liouville integral, then let a = 0 and omit the
value a in the fractional integral, i.e.

Iα f (x) =
1

Γ (α)

∫ x

0

f (t)
(x− t)1−α

dt.

Definition 1.37 Let a ∈ R and α ∈ C such that ℜ(α) ≥ 0, the Riemann-Liouville
fractional derivative is defined as

Dα
a f (x) =

dn

dxn In−α
a f (x),

where n = ⌈ℜ(α)⌉ such that ⌈·⌉ denotes the ceiling of the argument and dn
dxn is the

n-th order derivative. Furthermore, if the value a is not specified in the Riemann-
Liouville derivative, then let a = 0 and omit the value a in the fractional derivative
and fractional integral, i.e.

Dα f (x) =
dn

dxn In−α f (x).

Specifically, if α = n ∈ N0, then

D0 f (x) = f (x)
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and

Dα f (x) = Dn f (x) =
dn

dxn f (x).

Next, we introduce a proposition and a lemma that will be used in Chapter 3.

Proposition 1.1 (Khan et al., 2013; Agarwal, 1953) The m-th derivative of the gen-
eralised Mittag-Leffler function (Definition 1.35) is

E(m)
α,β

(z) =
∞

∑
n=0

(n+m)!zn

n!Γ (α(n+m)+β )
.

Lemma 1.6 (Podlubny, 1997) Suppose that we have the function:

εm(t,a,α,β ) = tαm+β−1E(m)
α,β

(±atα),

where E(m)
α,β

(·) is defined in Proposition 1.1. Then, the Laplace transform of the
function εm(t,a,α,β ) is computed as

L {εm(t,a,α,β )}=
∫

∞

0
e−st

εm(t,a,α,β )dt

=
m!sα−β

(sα ∓a)m+1 , (Re(s)> |a|1/α)

and the inverse Laplace transform relationship is as follows:

L −1

[
m!sα−β

(sα ∓a)m+1

]
= tαm+β−1E(m)

α,β
(±atα).

The next three definitions will used in the numerical experiment of Chapter 2 to
evaluate performance of certain methods.

Definition 1.38 Let α = H + 0.5 where the H ∈ (0,0.5) is the Hurst parameter,
f (x) be the exact solution to a fractional differential equation Dα f (x), and f̂ (x) be
the approximated solution of the same fractional differential equation. The squared
Euclidean distance between the real part of the fractional differential equation with
the exact solution f (x) and the approximated solution f̂ (x) is defined as

ε
H
Re =

1
N

√√√√ N

∑
n=1

ℜ
(
Dα f̂ (xn)−Dα f (xn)

)2

whereas for the squared Euclidean norm distance for the imaginary part of the frac-
tional differential equation with the exact solution and fractional differential equa-
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tion with the approximated solution is defined as

ε
H
Im =

1
N

√√√√ N

∑
n=1

ℑ
(
Dα f̂ (xn)−Dα f (xn)

)2
.

Definition 1.39 Let α = H + 0.5 where the H ∈ (0,0.5) is the Hurst parameter,
f (x) be the exact solution to a fractional differential equation Dα f (x), and f̂ (x) be
the approximated solution of the same fractional differential equation. The overall
percentage error for the real part of the fractional differential equation with the
approximated solution is defined as

ε̂
H
Re =

1
N

N

∑
n=1

∣∣∣∣∣ℜ
(
Dα f̂ (xn)−Dα f (xn)

)
ℜ(Dα f (xn))

∣∣∣∣∣ ,
whereas for the percentage error for the imaginary part of the fractional differential
equation with the approximated solution is defined as

ε̂
H
Im =

1
N

N

∑
n=1

∣∣∣∣∣ℑ
(
Dα f̂ (xn)−Dα f (xn)

)
ℑ(Dα f (xn))

∣∣∣∣∣ .

Definition 1.40 The overall error computation for the exact and imaginary part of
the fractional differential equation Dα f (x) across different Hurst parameter H are
defined as

χRe =
1
50

50

∑
j=1

ε
min( j/100,0.499)
Re , χIm =

1
50

50

∑
j=1

ε
min( j/100,0.499)
Im ,

where εH
Re and εH

Im are described in Definition 1.38. The overall percentage error
computation for the real and imaginary part of fractional differential across different
Hurst parameter H are defined as

ΨRe =
1
50

50

∑
j=1

ε̂
min( j/100,0.499)
Re , ΨIm =

1
50

50

∑
j=1

ε̂
min( j/100,0.499)
Im ,

where ε̂H
Re and ε̂H

Im are described in Definition 1.39. Note that the overall error
and overall percentage error computations will be considered for Hurst parameter
H = 0.01,0.02, ...,0.499 or α = 0.51,0.52, ...,0.999.

Definitions 1.41 and 1.42 are introduced next, the definitions will be used in the
numerical experiment of Chapter 3.
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Definition 1.41 Let T = {t0, t1, ...tN} where ti = T (i/N) for i = 0,1, ...,N, f (t) be
the exact solution to a fractional differential equation Dα f (t), and f̂ (t) be the ap-
proximated solution of the same fractional differential equation. The maximum ab-
solute error between the imaginary part of the fractional differential equation with
the exact solution f (t) and the approximated solution f̂ (t) is denoted as

M (H) = max
t∈T

|ℑ(Dα f (t)−Dα f̂ (t))|,

where ℑ(·) refers to argument’s imaginary part and α = H +0.5 where H ∈ (0,0.5)
is the Hurst parameter.

Definition 1.42 Let f (t) be the exact solution to a fractional differential equation
Dα f (t) and f̂ (t) be the approximated solution of the same fractional differential
equation. We define the absolute error between the imaginary part of the fractional
differential equation with the exact solution f (t) and the approximated solution f̂ (t)
as

E (t) = |ℑ(Dα f (t)−Dα f̂ (t))|,

where ℑ(·) refers to argument’s imaginary part.

1.5 Fractional Brownian Motion

The generalisation of the Brownian motion is known as fractional Brownian motion
(fBm). A main distinction between the classical Brownian motion and fBm is that
the fBm’s increments are not required to be independent, i.e. the covariance of fBm
on its current increment can have positive, negative or zero correlation on its past
self. The process is first introduced in Mandelbrot & Van Ness (1968). As fBm is
similar to rough volatility models (see Chapter 2), we give several definitions related
to fBm as follows:

Definition 1.43 (Shreve, 2004) A Gaussian process X(t), t ≥ 0, is a stochastic pro-
cess that has the property that, for arbitrary times 0 < t1 < t2 < ... < tn, the ran-
dom variables X(t1),X(t2), ...,X(tn) are jointly normally distributed. Furthermore,
if E[X(t)] = 0 for all t ≥ 0, then it is also a centred Gaussian process.

Definition 1.44 (Biagini et al., 2008) Let H be a constant belonging to (0,1). A
fractional Brownian motion BH(t)t≥0 of Hurst parameter H is a continuous and
centred Gaussian process with covariance function

E[BH(t)BH(s)] =
1
2

(
t2H + s2H −|t − s|2H

)
.

The rest of the propositions in this subsection can be found in Nourdin (2012).
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Proposition 1.2 Let BH be a fractional Brownian motion of Hurst parameter H ∈
(0,1]. If H = 1

2 , then fractional Brownian motion is the same as a classical Brownian
motion.

Proposition 1.3 Let BH be a fractional Brownian motion of Hurst parameter H ∈
(0,1). Then:

1. (Self-similarity) For all a > 0,
(
a−HBH

at
)

t≥0
law
=
(
BH

t
)

t≥0.

2. (Stationary of increments) For all h > 0,
(
BH

t+h −BH
h
)

t≥0
law
=
(
BH

t
)

t≥0.

3. (Time inversion)
(

t2HBH
1/t

)
t>0

law
=
(
BH

t
)

t>0.

Although there exist few stochastic representations of fractional Brownian motion
process as Wiener integral (e.g., three integral representations in Nourdin, 2012), we
will give the most widely known stochastic integral representation for the fBm.

Proposition 1.4 Let H ∈ (0, 1
2 )∪ (1

2 ,1), set

cH =

√
1

2H
+
∫

∞

0

(
(1+u)H−0.5 −uH−0.5

)2 du.

Then, the fractional Brownian motion process of Hurst parameter H, BH = (BH
t )t≥0

is defined as

BH
t =

1
cH

(∫ 0

−∞

(
(t −u)H−0.5 − (−u)H−0.5

)
dWu +

∫ t

0
(t −u)H−0.5dWu

)
,

where W = (Wt)t∈R is a two-sided classical Brownian motion.

Remark 1.2 Unlike classical Brownian motion, fBm is extremely hard to simulate
due to its path dependent feature, and the common method to simulate fBm is the
Cholesky decomposition method (for a review, see Dieker, 2004). Due to the re-
cent findings (Gatheral et al., 2018), rough volatility models constructed using the
features of fBm are becoming increasingly important to model stock and volatility
process accurately. Specifically, in this study, we use a rough volatility model called
rough Heston model to price option. We will discuss some problems related to rough
Heston model and its option pricing method in Subsection 1.8.
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1.6 Option Pricing models

This section will specifically deal with European option models. The questions “how
do we accurately price European options such that it reflects the prices we observe in
the market” and “what factors do we have to consider in order to reflect the market
price into the model” have been frequently asked for the past 50 years. A lot of
progression on option pricing theory has been made. Local and stochastic volatility
model are the two major type of models in option pricing theory. We will start this
subsection by stating the definitions of local and stochastic volatility models to let
readers understand the differences. The following definitions are taken from Gatheral
(2011) unless specified otherwise.

Definition 1.45 Let σ(St , t; S0) be a nonrandom function that depends on St , t, and
S0 (it is also known as local volatility function when consistent with the current Eu-
ropean option prices). Furthermore, let µ(t) be a deterministic nonrandom function
that depends on time t, the local volatility model is defined as

dSt

St
= µ(t)dt +σ(St , t;S0)dWt ,

where W is a one-sided classical Brownian motion.

Definition 1.46 Let σ be a deterministic function such that it depends only on Vt ,
µ be a deterministic function such that it depends only on t. Then, the stochastic
volatility model with stock price S and a stochastic process V is defined as

dSt = µ(t)Stdt +σ(Vt)StdWt ,

where W is a one-sided classical Brownian motion (Definition 1.24).

Between the local and stochastic volatility model, their main difference is the fit of
implied volatility smile (mentioned in Definition 1.49 and Remark 1.5) of the models
for short and long maturity-dated options. In particular, the local volatility model’s
implied volatility fits better in the shorter maturity option, whereas the stochastic
volatility model’s implied volatility is somewhat consistent in the longer maturity op-
tion (Hagan et al., 2002). See Dupire (1994) and Derman & Kani (1994) for more re-
lated discussion on local volatility models. There have been many stochastic volatil-
ity models proposed, e.g. the SABR volatility model (Hagan et al., 2002) which is a
popular interest rate model that possesses the feature of reproducing volatility smile
effect and the GARCH model (Engle, 1982) is a widely used stochastic volatility
models with many variants (Montgomery et al., 2015).

Normally, it’s preferred for the practitioners to use the local-stochastic volatility
model rather than the individual local or stochastic volatility model. We would
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like to briefly mention about jump-diffusion models before moving on to the Black-
Scholes model’s discussion, i.e. the jump-diffusion models introduced by Kou &
Wang (2004); Kou (2002); Merton (1976) are also extremely popular in option pric-
ing theory because the model possesses diffusion process (seen during non-extreme
market condition) and jump effects (when related news of the stock arrives).

We give the most basic definition of geometric Brownian motion as follows:

Definition 1.47 A stochastic process S is said to follow the geometric Brownian mo-
tion if it satisfies the following stochastic differential equation:

dSt = µStdt +σStdWt ,

where W is a one-sided classical Brownian motion, µ ∈ R is the constant for per-
centage drift, and σ > 0 is the percentage volatility constant.

As the stock process is generally accepted as the geometric Brownian motion such as
in Definition 1.47 (Black & Scholes, 1973; Shreve, 2004; Gatheral, 2011), it would
also indicate that the stock process is following a log-normal distribution. The stock
process can actually be transformed into a stochastic process that is well-known for
its distribution, i.e. the normal distribution through the use of Itô’s Lemma 1.3. As
such, a short lemma regarding the stochastic process (log-stock process) is given as
follows:

Lemma 1.7 (Hull, 2003) Suppose that St follows the geometric Brownian motion
described in Definition 1.47, then the log-stock price Xt := log(St) follows the fol-
lowing stochastic differential equation:

dXt =

(
µ − σ2

2

)
dt +σdWt .

1.6.1 Black-Scholes model

The construction of Black-Scholes-Merton partial differential equation (PDE) and
its option pricing formulas (Black & Scholes, 1973; Merton, 1973) are given in this
subsection. Their revolutionary work includes the derivation of the Black-Scholes-
Merton differential equation and its option pricing formula. We will refer the trio
“Black-Scholes-Merton” as “Black-Scholes” for simplicity purposes.

Assumption 1.1 (Hull, 2003) The following assumptions are used to derive the fa-
mous Black-Scholes differential equation:
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1. Stock price, S is driven by geometric Brownian motion process (Definition
1.47).

2. Short selling (Definition 1.12) of securities with full use of proceeding is per-
missible.

3. No transaction costs or taxes.

4. All securities are perfectly divisible, i.e. the purchase of fractional shares is
permissible.

5. Absent of dividend during the life of derivative.

6. Riskless arbitrage opportunities is not permitted.

7. Security trading is continuous.

8. Constant risk-free interest rate, r throughout all maturities.

Next, we discuss the Black-Scholes PDE’s derivation. The rest of the materials
which include lemma, definitions, and theorem are taken from Shreve (2004). We
can view c(t,St) as the call option value with stock price St at time t.

Lemma 1.8 Let Assumption 1.1 holds and c(t,St) be a function that depends only
on time t and the value St , then the differential dc(t,St) is

dc(t,St) =

[
∂

∂ t
c(t,St)+µSt

∂

∂St
c(t,St)+

1
2

σ
2S2

t
∂ 2

∂S2
t

c(t,St)

]
dt

+σSt
∂

∂St
c(t,St)dWt ,

where St is the stock price at time t.

Lemma 1.9 Let Assumption 1.1 holds and c(t,x) be a function that depends only on
time t and the value x, then for interest rate r, the differential on discounted option
price d(e−rtc(t,St)) is

d(e−rtc(t,St)) = e−rt
[
− rc(t,St)+

∂

∂ t
c(t,St)+µSt

∂

∂St
c(t,St)

+
1
2

σ
2S2

t
∂ 2

∂S2
t

c(t,St)

]
dt + e−rt

σSt
∂

∂St
c(t,St)dWt .

Remark 1.3 The goal of Lemma 1.9 is to show how the evolution process of present
value of option value is affected by the risk-free component, movement of the stock,
quadratic variation of the stock and the fluctuating component.
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Definition 1.48 Let Xt denotes the portfolio at time t. A short option hedging in-
volves the portfolio starting with an initial capital of X0, then the investor will own
∆t worth of stock St at time t, invest the rest at money market account with interest
rate r such that the discounted value of Xt will agree or match the value a discounted
option c(t,St). The value ∆t will be picked to agree with the value of option price
c(t,St) at time t, that is

e−rtXt = e−rtc(t,St),

where Xt is modelled by an Itô process as

dXt = ∆tdSt + r(Xt −∆tSt)dt.

Accordingly, the portfolio value movement at time t is governed by the stock move-
ment with magnitude of ∆t and the time movement with magnitude r(Xt −∆tSt) (gain-
ing interest r at the residue of the portfolio value after investing in the stock). The
component ∆t will be determined in the next theorem. Note that at time zero, the
initial portfolio value is X0 = c(0,S0).

Theorem 1.4 Suppose that Assumption 1.1 holds and short option hedge (Definition
1.48) is implemented such that the portfolio movement is always zero, then we can
obtain the Black-Scholes partial differential equation as

rc(t,St) =
∂

∂ t
c(t,St)+ rSt

∂

∂St
c(t,St)+

1
2

σ
2S2

t
∂ 2

∂S2
t

c(t,St) (1.1)

for St > 0 and t ∈ [0,T ) where T is option’s maturity time and the Equation (1.1)
satisfies the call option’s terminal condition as

c(T,ST ) = (ST −K)+.

Remark 1.4 The Black-Scholes partial differential differential equation (Theorem
1.4) does not have to hold at t = T , but the c(t,St) has to be continuous as t = T
as the hedge will work at time T due to the function continuity prior to T (Shreve,
2004). Mathematically, suppose that we have an initial capital of X(0) = c(0,S0)

and at time t, we purchase ∆(t) =
∂

∂St
c(t,St) amount of stock and invest the rest

at risk-free rate r, what will happen is that as the option reaches its maturity (t →
T ), the portfolio value X(T ) = c(T,ST ) = (ST −K)+ regardless of which possible
stock price paths it follows. In addition, we can view the Black-Scholes strategy in
two ways (only mathematically possible): (1) we can replicate the effects of option
without buying the option itself, (2) if we short a unit of call option, it is possible to
hedge the movement of options using only stocks, i.e. the short option position plus
the investment in stocks and accumulation of interest rate in money-making account
will always be zero.
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Theorem 1.5 Suppose that St > 0 is the current stock price at time t, K > 0 is the
strike price, r > 0 is the risk-free interest rate, T − t is the time to maturity where
t ∈ [0,T ), and σ > 0 is the volatility constant, then the solution to the Black-Scholes
partial differential equation with the terminal condition stated in Theorem 1.4 is

c(t,St) = StN(d+(St ,T − t))−Ke−r(T−t)N(d−(St ,T − t)), (1.2)

where

d±(St ,T − t) =
1

σ
√

T − t

[
log

St

K
+

(
r± σ2

2

)
(T − t)

]
and N(·) is the cumulative standard normal distribution.

Definition 1.49 Let c(St ,K,σ ,r,T −t) denotes the Black-Scholes call option pricing
formula in Equation (1.2), then we say that σimp is the implied volatility to the option
price Vt when

c(St ,K,σimp,r,T − t) =Vt .

Remark 1.5 From Definition 1.49, we can notice that the implied volatility cannot
be computed in closed-form manner, but it can actually be efficiently solved numeri-
cally using methods such as the bisection method since the call option price is non-
decreasing on σ . Furthermore, the implied volatility smile is a plot (typically having
a smile shape) that describes the change of implied volatility against the strike price
K .

We introduce a simple performance measure for the differences between the exact
and the approximation for implied volatility next. The performance measure will be
used in the numerical experiment in Chapter 3.

Definition 1.50 Suppose that T is maturity time, H is the Hurst parameter, k is the
log-strike k = log(K/S0), σ(H,T,ki) is the exact implied volatility, and σ̂(H,T,ki)
is the approximation for implied volatility. The implied volatility’s average absolute
error is defined as

A (H,T ) =
1

Ns

Ns

∑
i=1

|σ(H,T,ki)− σ̂(H,T,ki)|,

where ki is the log-strike price sampled in the range ki ∈ [−0.4,0.4] and Ns is the
sample size for the implied volatility.

1.6.2 Classical Heston model

Let us first mention that the stochastic volatility model - Heston model is introduced
in Heston (1993). Furthermore, it is in fact preferable when compared to the Black-
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Scholes and Hull-White model (Hull & White, 1990) for the following reasons:

1. Several known patterns of low-frequency data can be reproduced by classi-
cal Heston model, that includes the fat tails effect, possessing time-varying
volatility and leverage effect (market volatility is negatively correlated to stock
return)

2. Reasonable implied volatility surface generated by option price under classical
Heston model.

3. Computation of the Heston model’s characteristic function can be performed
instantaneously; there exists several efficient numerical methods for pricing
derivatives (Carr & Madan, 1999; Lewis, 2001, 2009).

We discuss the definition of Heston model, the PDE of call option on Heston dynam-
ics, and the solution of squared-volatility in Heston model.

Definition 1.51 (Heston, 1993; Gatheral, 2011) Let St be the stock price and
√

Vt
be the volatility of the stock price at time t. The Heston model is defined as

dSt = µStdt +
√

VtStdW 1
t

and
dVt = λ (θ −Vt)dt +ν

√
VtdW 2

t ,

where µ is the mean rate of return of stock return, λ is the speed or magnitude of
mean reversion of Vt to the mean squared-volatility θ , as well as ν is the magnitude
of volatility movement (sometimes also known as volatility of the volatility). Fur-
thermore, W 1

t and W 2
t are independent one-sided classical Brownian motion that is

correlated by ρ such that
dW 1

t dW 2
t = ρdt.

Theorem 1.6 (Heston, 1993; Gatheral, 2011) Let Ct := C(St ,K,µ,λ ,θ ,ν ,ρ) de-
notes the value of call option price and it follows the Heston model dynamics de-
scribed in Definition 1.51. From the Delta-Vega hedge argument, the partial differ-
ential equation that governs the movement of the option price is

rCt =
∂Ct

∂ t
+ rSt

∂Ct

∂St
+ρνVtSt

∂ 2Ct

∂Vt∂St
+

1
2

VtS2
t

∂ 2C
∂S2

+
1
2

ν
2Vt

∂ 2Ct

∂V 2
t

+λ (θ −Vt)
∂Ct

∂Vt

for t ∈ [0,T ] where T is the time to maturity of the option and the terminal condition
for call option is

CT = (ST −K)+.
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Remark 1.6 Unlike the Black-Scholes model, closed-form solution is not available
for the call option under the Heston model, instead, it possesses a semi-closed
form solution using the Fourier transform method/characteristic function method
(Gatheral, 2011).

Lemma 1.10 (Shreve, 2004) Let Vt be the Heston process described in Definition
1.51, the solution to the stochastic differential equation is

Vt =V0e−λ t +θ(1− e−λ t)+νe−λ t
∫ t

0
eλu√VudW 2

u .

where λ , θ , and ν are described in Definition 1.51

1.7 Characteristic function

In probability theory, the characteristic function plays an important role in studying
random variables, this is because analytical properties of the random variables’ char-
acteristic functions often correspond to its probabilities properties (Tankov, 2003).
In simpler terms, the random variable’s characteristic function corresponds to its
Fourier transformed distribution. Later in this chapter, the connection of character-
istic function and option pricing will be discussed. Readers may see Tankov (2003)
for the definitions of Lévy process and Lévy measure. The next lemma is famously
known as Lévy-Khintchine representation.

Lemma 1.11 (Tankov, 2003) Let XT be a Lévy process, then the characteristic func-
tion of XT has a representation

ΦXT (u) = exp
(

iuωT − 1
2

u2
σ

2T +T
∫
R

[
eiux −1− iux1|x|<1

]
L(dx)

)
,

where σ is the volatility of the Lévy process (such as the term σ in Definition 1.47),
ω is the drift parameter, 1 is the indicator function, and L is the Lévy measure of X
satisfying the property: ∫

R

(|x|2 ∧1)L(dx)< ∞.

Remark 1.7 The ω parameter in Lev́y-Khintchine representation (Lemma 1.11) can
be obtained under some assumptions such as the absence of interest rate and divi-
dend, this leads to certain equality:

ΦXT (−i) = E[eXT ] = 1.

Lévy process and Lévy measure will not be further discussed in the subsequent chap-
ters.
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Definition 1.52 (Tankov, 2003) Let X be a random variable such that the character-
istic function of the random variable X is defined as

ΦX (u) = E[eiuX ],

where i is the imaginary unit.

Theorem 1.7 (Gatheral, 2011) Let Xt be the log-stock price Xt = log(St) where
St follows the geometric Brownian motion (Definition 1.47), then the characteris-
tic function of XT is

ΦX (u) = E
[
eiuX

]
= e−

1
2 uσ2T (u+i),

where i is the imaginary unit.

Remark 1.8 While there is a characteristic function representation of Black-Scholes
model, it is not used as often as there exists a closed-form option solution (Theorem
1.5).

The next theorem is the characteristic function of the Heston model from Heston
(1993) or similarly from Gatheral (2011), we have used another representation of the
characteristic function (it leads to the same result in El Euch & Rosenbaum (2019)
and El Euch et al. (2019)).

Theorem 1.8 Let Xt be the log-stock price Xt = log(St) where St is governed by the
Heston model (Definition 1.51), then the characteristic function of XT is

ΦXT (a) = exp
(

iaX0 +
∫ T

0

∂

∂u
h(a,T −u)ξ0(u)du

)
,

where ξ0(t) = E0[Vt ] and the solution to the Riccati equation h(a, t) is:

∂

∂ t
h(a, t) =

1
2

ν
2h2(a, t)+ iρνah(a, t)− 1

2
a(a+ i); h(a,0) = 0.

The solution h(a, t) is as follows:

h(a, t) = r−
1− e−Aνt

1− r−
r+

e−Aνt

with the components A and r± being

A =
√
−ρ2a2 +a(a+ i); r± =− 1

ν
(iρa±A) .
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It can be observed that the characteristic function of a certain model is a form of
Fourier transform, therefore we are required to use Fourier inversion method to in-
verse it back to option price, which we will introduce in next theorem. There are
many different formulas that can compute for the option price through the Fourier
inversion method, but we have chosen the Lewis’ call option pricing formula from
Lewis (2001), this is because it is more well-known than other Fourier inversion
methods for option price (Lewis, 2009; Gatheral, 2011).

Theorem 1.9 Suppose that the characteristic function of log-stock price XT is
known and denoted as ΦXT (u), then the call option price as a function of char-
acteristic function is

C(S,K,T ) = Se−qT −
√

SK
π

e−(r+q)T
2
∫

∞

0
ℜ

[
e−iuk

ΦXT

(
u− i

2

)]
du

u2 + 1
4
,

where S is the stock price, K is the strike price, r is the risk-free interest rate, q is the
dividend yield, T is the maturity time of the option, and k := log(K/S).

Remark 1.9 A recent work by Baschetti et al. (2020) has noted that an alternative
method called SINC approach (Cherubini et al., 2010) can reach a desired accuracy
in option pricing under rough Heston model substantially faster than the Lewis’
method (Theorem 1.9) and Carr-Madan’s method (Carr & Madan, 1999).

1.8 Problem Statements and Objectives of the Thesis

Currently, there are several problems in option pricing theory that have been raised:

• Difficulty in computing rough Heston model’s option price, i.e. the con-
ventional computation method requires high computational cost (El Euch &
Rosenbaum, 2019).

• Lack of accurate, efficient, and robust approximation methods to price op-
tion under rough Heston model (Gatheral & Radoičić, 2019; Abi Jaber &
El Euch, 2019), e.g. the multipoint Padé approximant introduced by Gatheral
& Radoičić (2019) performs well at low Hurst parameter (near zero), but per-
forms poorly at higher Hurst parameter (near 0.5).

As such, the main objectives of this thesis are:

• Modify and improve an existing method for a better approximation on the
fractional Riccati equation’s solution, as the particular equation is the main
contributing factor of the high computational cost when computing for the
rough Heston model’s option price.
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• Develop an efficient option approximation formula for rough Heston model
without involving the characteristic function of rough Heston model and
Fourier inversion method.

1.9 Outline of the Thesis

Motivated by some of the unsolved problems in option pricing theory stated in Sub-
section 1.8, the rest of this thesis will be divided into five chapters that contain the lit-
erature review, advancement of the option pricing theory that relates to rough volatil-
ity models, and of course the conclusion.

In Chapter 2, it contains a lengthy review for the study of the rough volatility mod-
els, the focus of the literature review will be placed on rough Heston model and its
related numerical methods. In particular, an existing approximation method called
multipoint Padé approximation is reviewed, discussed, and compared against the
conventional numerical method called fractional Adams method.

In Chapter 3, it continues from the work of Chapter 2 such that we have modified and
improved the existing Padé approximant to develop three variants of higher-order
Padé approximant with different construction and formalisation of the multipoint
Padé approximation method. Before that, as the rough Heston model’s characteristic
function contains the fractional Riccati equation and it is hard to solve, we employ
the Laplace-Adomian-Decomposition method for obtaining the equation’s solution
in terms of series expansion. Numerical experiment is provided to compare the im-
proved Padé approximants against the existing Padé approximant on the quality of
fractional Riccati equation’s solution for different Hurst parameter H and to verify
its effectiveness pricing options under rough Heston model. The S&P 500 option is
also used as the performance benchmark.

In Chapter 4, based on the rough Heston model, its option price’s approximation
formula is derived by using an existing method called the decomposition method.
The error bound is also provided. Based on the approximation formula, a second-
order implied volatility approximation is proposed and discussed. Specifically, we
have derived two short-time implied volatility approximation behaviours, e.g. the
term structure of at-the-money implied volatility skew when maturity time is short.
Similar to Chapter 3, the performance of the approximation formula is tested on S&P
500 option. In particular, two different scenarios which are the non-extreme and
extreme market conditions are considered for the calibration of the approximation
formula on the S&P 500 options.

In Chapter 5, a conclusion is given, where it reiterates the research problems and
summarises the main contributions of this thesis. Some interesting recommenda-
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tions such as efficient computation and possible option pricing methods on the rough
Heston model are also suggested as future research.
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