

UNIVERSITI PUTRA MALAYSIA

DESIGN AND DEVELOPMENT OF A TRAILED TYPE TRANSPLANTER FOR OIL PALM SEEDLING

DARIUS EL PEBRIAN

FK 2002 3

DESIGN AND DEVELOPMENT OF A TRAILED TYPE TRANSPLANTER FOR OIL PALM SEEDLING

By

DARIUS EL PEBRIAN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Engineering Universiti Putra Malaysia

January 2002

Dedicated to

Bis late father Almarhum Yulius Amadin Bis mother Rosma Bis elder brother and sister in law, and all their children

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for Degree of Master of Science

DESIGN AND DEVELOPMENT OF A TRAILED TYPE TRANSPLANTER FOR OIL PALM SEEDLING

By

DARIUS EL PEBRIAN

January 2002

Chairman: Associate Professor Azmi Yahya, Ph.D.

Faculty : Engineering

A trailed type transplanter that runs by a 4-wheel tractor with at least 63.4 kW for field transplanting of oil palm seedlings had been designed, developed and tested. AutoCAD 2000 software was used to produce the 3-D conceptual design of the proposed machine system. Computations were made to determine required total hydraulic pressure to operate all actuators within the hydraulic system of the transplanter. The machine configuration consists of the main chassis, seedling bin, seedling planting assembly, operator compartment, and associated hydraulic system. Two operators are required in the involved transplanting operation; a driver for the tractor and an operator for transplanter. The driver drives the tractor-transplanter in the field while the operator on the transplanter operates the hydraulic control system to integrate all operational activities. The involved operational activities includes the preparations of planting hole, placement of seedling in the prepared hole, covering of the seedling in the prepared hole, and compacting of the soil around the planted seedling. An area size of 200 m length and 56 m width at the university farm was chosen to be the test plot for the five days field evaluations duration. A special time

and motion study was conducted on the 6th day of the field evaluation to include additional activity concerning removal of plastic polybag from seedling before planting. The test plot soil is from Serdang series with sandy clay loam texture classification. A triangular planting pattern with density of 160 palms/ha, planting distance of 850 cm and row distance of 736 cm were employed in the test plot.

Results of the field evaluations indicates that this mechanised transplanting system has a planting capacity of 99 seedlings/man-day or 0.62 ha/man-day as compared to 0.28 ha/man-day or 45 seedlings/man-day with the manual transplanting planting system. The estimated planting cost is RM2.11 per seedling with mechanised transplanting as compared to RM2.26 per seedling with manual transplanting. Conclusively, this mechanised transplanting system could give 2.2 times improvements in the planting capacity and 6.64 percent reduction in the transplanting cost. A cost saving of RM0.15 per seedling was obtained with the mechanised system over the manual system.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi syarat ijazah Master Sains

MEREKA BENTUK DAN MEMBINA SEBUAH MESIN TANAM JENIS HERET UNTUK MENANAM ANAK BENIH KELAPA SAWIT

Oleh

DARIUS EL PEBRIAN

Januari 2002

Pengurusi : Profesor Madya Dr. Azmi Yahya

Fakulti : Kejuruteraan

Satu mesin tanam anak benih kelapa sawit di ladang jenis heret dari traktor 4-roda yang berkuasa enjin sekurang-kurangnya 63.4 kW telah direka bentuk, dibina serta AutoCAD 2000 telah diuii. Perisian digunakan untuk menghasil konsep rekabentuk 3-D mesin yang dicadangkan. Pengiraan dibuat untuk menentukan jumlah tekanan hidraul yang diperlukan untuk menggendalikan semua penggerak dalam sistem hidraul mesin tanam tersebut. Pembinaan mesin terdiri dari casis utama, bekas anak benih, pemasangan penanam anak benih, ruang pengendali mesin, serta sistem hidraul yang berkaitan. Dua orang pengendali diperlukan dalam kerja penanaman yang terbabit; seorang pemandu traktor dan seorang pengendali mesin tanam. Pemandu memandu traktor serta mesin tanam dalam ladang, sementara pengendali mengendalikan sistem kawalan hidraul untuk menggabungkan semua aktiviti pengendalian. Aktiviti-aktiviti pengendalian termasuk penyediaan lubang anak benih, pembekalan anak benih ke dalam lubang yang telah disediakan, pengambusan anak benih, dan pemadatan tanah di keliling anak benih yang telah

ditanam. Satu kawasan di ladang universiti yang berukuran 200 m panjang dan 56 m lebar telah dipilih sebagai kawasan penilaian mesin untuk jangka masa lima hari. Satu kajian khas masa dan pergerakan dilaksanakan pada hari ke-6 untuk melibatkan aktiviti penanggalan plastik polibeg dari anak benih sebelum penanaman. Jenis tanah kawasan ujian adalah dari siri Serdang dengan klasifikasi tekstur liat lom berpasir. Penanaman bercorak tiga segi dengan kepadatan bersamaan 160 anak benih kelapa sawit/ha dengan jarak tanaman 850 cm dan jarak barisan 736 cm telah diamalkan pada kawasan ujian.

Keputusan penilaian di ladang menunjukkan bahwa sistem penanaman berjentera mempunyai kemampuan penanaman yang bersamaan 99 anak benih/pekerja-hari atau 0.62 ha/pekerja-hari berbanding kepada 0.28 ha/pekerja-hari atau 45 anak benih/pekerja-hari dengan sistem penanaman secara manual. Anggaran kos penanaman adalah RM2.11 bagi setiap anak benih dengan sistem penanaman berjentera berbanding kepada RM2.26 bagi setiap anak benih dengan sistem penanaman secara manual. Kesimpulannya, sistem penanaman berjentera boleh memberi peningkatan sebanyak 2.2 kali ganda dalam kemampuan penanaman dan 6.64 peratus pengurangan dalam kos penanaman. Penjimatan kos bersamaan RM0.15 bagi setiap anak benih boleh diperolehi dengan sistem penanaman berjentera

ACKNOWLEDGEMENTS

Praises be to Allah Subhanahuwata'ala for providing the author the time, health and strength to work in completing this study.

High appreciation and deepest gratitude are due to Associate Professor Azmi Yahya, Ph.D, the chairman of the supervisory committee for his invaluable guidance, encouragement, generous assistance, patience and strong support throughout this study work, and also for granting him financial support for his research work and living allowance during the study period through the RM7 IRPA Project No. 01-02-04-0138 from the Ministry of Science, Technology and the Environment of Malaysia. The author is also indebted and grateful to Professor Wan Ishak Wan Ismail, Ph.D, P.Eng, and Associate Professor Muhammad Salih Haji Ja'afar, members of the supervisory committee for their constructive comment, guidance and contributions.

The author realizes that the study could not be completed successfully without the valuable assistance from the staff of the Department of Biological and Agricultural Engineering, Faculty of Engineering, UPM. Special thanks are addressed to all staff of the Department of Biological and Agricultural Engineering, UPM especially Mr. Mohd. Rosdhi Zamri, Mr. Haji Sulaiman Rahmat, Mr. Zainal Abidin Abdul Ghani, and Mr. Ghazali Kasim whose assistance have contributed in the completion of this study. Special appreciations are extended to the colleagues in the Machine Design Laboratory, Atour, Dr. Faizal Amri Amran, Gew Soon Kiat, Kamal, Mutalab, Mutasim, Waleed and Wee Beng Sui for their valuable assistance

and contributions at various stages of the study. Thanks also are extended to staff of Golden Hope Oil Palm Research Station (OPRS) Banting, Selangor and Sungai Wangi Estate, Sitiawan, Perak, and Mr. P.C. Tuang from Mac Engineering Sdn. Bhd. and Mr. William Wu from UEW Trading Sdn. Bhd. for their diverse cooperation.

Acknowledgements are due to the Rector of the University of Andalas, Padang, West Sumatera, Indonesia and the Director of Agricultural Polytechnic, University of Andalas, Payakumbuh, West Sumatera, Indonesia for granting him the study leave for pursuing his studies at UPM. Credits are also due to Prof. Dr. Ir. Muchlis Muchtar, MS, Ir. Syuhinar Bustami, M.Sc, and Dr. Ir. Hadi Suryanto, M.Eng for their moral support. Thanks also are addressed to all members of the Indonesian Student Association at UPM for their warm friendship, especially Zaitul, Nelson, Dian Fiantis, Neila Aisha, Asri, Irwandi Jaswir, Dharma Permana, Eni Kamal, Usman, Wihandoyo and Sugeng Riyanto.

Last but not least, the author is very grateful to his beloved family, especially his late father Almarhum Yulius Amadin and his mother Rosma, and his elder brother Antonius Des Satria and sister in law Cut Dwita and all their children Saddam, Cantika and Kelvin, aunties, uncles and relatives for their unending and unstinting in giving support and spirit for sustaining and inspiring him all the times throughout the study.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	6
	2.1 Oil Palm Fruit Characteristics	6
	2.2 Oil Palm Seedling	7
	2.3 Oil Palm Planting	9
	2.3.1 Lining	9
	2.3.2 Holing	10
	2.3.3 Time of Field Planting	11
	2.3.4 Age of Seedling	12
	2.3.5 Transporting to the Field	13
	2.3.6 Planting	14
	2.3.7 Planting Density	15
	2.3.8 Cultivation and Mulching	16
	2.3.9 Manuring	16
	2.3.10 Post-Planting Maintenance and Supplying	17
	2.4 Basic Functions of Planters and Grain Drill	18
	2.5 Past Research and Development on Specialised Planting	
	Machine	19
	2.6 Specialised Tree Planting Machine	29
	2.6.1 Finnish - Swedish Tree Planting Machine	31
	2.6.2 North American Tree Planting Machine	33
	2.6.3 Other Countries Tree Planting Machine	41
III	MATERIALS AND METHODS	44
	3.1 General Consideration	44
	3.2 Design parameters	46
	3.3 Study on the Physical Characteristics of Oil	
	Palm Seedlings	51
	3.4 Study on Physical Characteristic of Planting Hole and	
	Deposited Soil	52
	3.5 Observation on Manual Transplanting of Oil Palm	
	Seedling	53

3.5.1	Preparing of Pit	54
3.5.2	Preparing of Planting Hole	54
3.5.3	Delivering the Seedling to Nearby the	
	Prepared hole	55
3.5.4	Planting the Seedling	55
3.5.5	The Total Time for Planting Seedling	
	to the Field	56
3.6 Machine	Design Configuration	56
3.7 Machine	Component Details	59
3.8 Machine	Operations	70
3.9 Computa	tions on the Total Hydraulic Pressure for the	
Transplar	nter	75
3.9.1	Motor Pressure to Operate the Clamper Jaws	77
3.9.2	Cylinder Pressure for Horizontal Movements	
	of the Seedling Planting Assembly	79
3.9.3	Cylinder Pressure for Vertical Movement	
	of the Clamping-covering Mechanism	83
3.9.4	Cylinder Pressure to Erect the	
	Drilling Mechanism	86
3.9.5	Motor Pressure to Operate the Auger	88
3.9.6	Motor Pressure to Operate the	
	Conveying Units	89
3.10 Comput	tation for Fertiliser Size Compartment	97
3.11 Total M	lachines Mass and Cost	99
3.12 Preparat	tions for Test Plot and Test Machine	102
3.13 Field Ev	valuation of Test Machine	104
3.14 Planting	g Quality	111
3.15 Econom	nic Cost Analysis	116
3.15.1	Mechanised Transplanting	116
3.15.2	2 Manual Transplanting	122
RESULTS A	ND DISCUSSION	130
4.1 General l	Description of the Developed Prototype Trailed	
Transpla	nter	130
4.2 Physical	Characteristics of Oil Palm Seedling	131
4.3 Physical	Characteristics of Planting Hole and	
Deposite	d Soil	132
4.4 Manual I	Field Transplanting of Oil Palm Seedlings	133
4.4.1	Preparing of Planting Pit	133
4.4.2	Preparing of Planting Holes	136
4.4.3	Delivering seedlings to Planting Holes	138
4.4.4	Planting Seedlings	141
4.4.5	Breakdown of Time in Manual	
	Field Transplanting of Seedlings	146
4.5 Mechania	sed Field Transplanting of Oil Palm Seedlings	148
4.5.1	Loading Seedlings into the Transplanter	153
4.5.2	Moving from Seedling Supplying Point to	
	the First Planting Point	154

IV

	4.5.3	Preparing Planting Holes	154
	4.5.4	Applying CIRP Fertiliser	155
	4.5.5	Conveying the Seedlings	155
	4.5.6	Placing the Seedlings inside the Prepared Holes	156
	4.5.7	Covering the Seedlings	157
	4.5.8	Compacting the Soil around Planted Seedlings	158
	4.5.9	Lifting the Empty Covering and	
		Compacting Mechanism	158
	4.5.10	Moving between Planting Points	158
	4.5.11	Turning at Headland	159
	4.6 Planting (Quality	159
	4.6.1	Percentage of Planted Seedlings	160
	4.6.2	Leaning Planted Seedling	161
	4.6.3	Spacing Between Planted Seedlings	163
	4.6.4	Row Alignment of Planted Seedlings	165
	4.6.5	Pulling Forces of Planted Seedling	166
	4.6.6	Height Planted Seedlings Growth with	
		Mechanised Transplanting	168
	4.7 Fuel Cons	sumption of Tractor	170
	4.8 Planting (Cost Comparison	171
V	CONCLUSIO	ONS AND RECOMMENDATIONS	176
	Conclusions		176
	Recommenda	tions and Further Studies	179
BIBLIOGR	APHY		180
APPENDIC	ES		184
Α	Overall Dimer	nsions of Prototype	
	Trailed Type (Dil Palm Seedling Transplanter	185
B	Conveyor Sele	ection	186
С	Detail Estimated Machine Cost		188
D	Time Taken fo	or Planting the 20 Seedlings to the Field	
	with Mechanis	sed Transplanting	192
\mathbf{E}	Technical Spe	cifications of the Prototype Trailed	
	Type Oil Palm	n Seedling Transplanter	193
BIODATA	OF THE AUTH	IOR	194

LIST OF TABLES

Table		Page
1	Estimated total machine mass and cost	101
2	Soil cone index measurement	103
3	Soil moisture content measurement	104
4	Physical characteristics of oil palm seedlings	131
5	Physical characteristics of planting hole and deposited soil	133
6	Time taken for preparing planting pits	135
7	Time taken for preparing planting hole	138
8	Time taken for delivering seedlings to planting holes	140
9	Time taken for planting seedlings	145
10	Breakdown of average time in manual field transplanting of 20 seedlings	148
11	Breakdown of average time in mechanised field transplanting on the five day of field evaluation	150
12	Planting rate with mechanised field transplating of seedling	150
13	Breakdown of average time in mechanised field transplanting on the 6^{th} day of field evaluation	152
14	Percentage of planted seedlings	160
15	Average leaning angles of the planted seedling with mechanised transplanting	161
16	Leaning categories of planted seedlings with mechanised transplanting	163
17	Spacing between planted seedlings with mechanised transplanting	164
18	Row alignment of planted seedling with mechanised transplanting	165

19	Pulling force of planted palm seedling with mechanised transplanting	167
20	Height planted seedling growth with mechanised transplanting	169
21	Fuel consumption of the tractor with mechanised transplanting	170
22	Costs breakdown for mechanised and manual systems	172
23	Planting capacity and cost comparisons between mechanised and manual systems	175

Figure		Page
1	Sketch of a Planting Machine for Trees and Bushes	22
2	Crane-Mounted Double Carousel Planter on a Steep-Slope Planter for Containerised Nursery Stock	24
3	Kinematics Representation of the Transplanting Mechanism	27
4	An Apparatus for Digging and Transplanting Trees	27
5	Two-Row Tractor-Drawn Mounted Type Semi-Automatic Sugar Cane Planter	29
6	The "Doro" Tree Planting Machine	31
7	The "Hiko" Tree Planting Machine	33
8	The "Brat II" Tree Planting Machine	34
9	The "Hodag" Tree Planter	36
10	The "Marden" Spot Planter	38
11	The "One-Shot" Container Tree Planter	39
12	Sketch of The "Weyerhaeuser" Tree Planting Machine	41
13	Sketch of The "Quickwood" Tree Planter	42
14	The FRI Intermittent Planter	43
15	Schematic of the Oil Palm Seedling	47
16	Schematic of the Prepared Hole	47
17	Configuration Proposed Oil Palm Seedling Transplanter	58
18	The Developed Prototype Oil Palm Seedling Transplanter	59
19	Main Chassis	64
20	Seedling Bin	65
21	Seedling Planting Assembly	66

LIST OF FIGURES

22	Drilling Mechanism and Clamping-Covering Mechanism	67
23	Operator Compartment	68
24	The Schematic Diagram Of The Employed Hydraulic System For The Transplanter	69
25	Preparing the Planting Hole	71
26	Applying CIRP Fertiliser	72
27	Placing the Seedling into Clamping-Covering Mechanism	73
28	Placing the Seedling inside Prepared Hole	73
29	Covering the Seedling	74
30	Compacting the Soil around Planted Seedling	75
31	The Plotted Topography	105
32	Measuring the Leaning Angle of Planted Seedling	112
33	The Angle of Leaning Categories of Planted Seedling	113
34	Measuring Row Alignment of the Planted Seedling	114
35	Measuring the Pulling Forces of the Planted Seedling	115
36	Measuring Height of the Planted Seedlings in the Field After Planting	115
37	Excavating for Preparing of Pit	135
38	Preparing Planting Holes	137
39	Delivering Seedlings Closed to Prepared Planting Holes	139
40	Applying CIRP Fertiliser inside a Prepared Hole	142
41	Removing Plastic Polybag from the Seedling	144
42	Placing the Seedling inside the Prepared Hole	144
43	Plot of Pulling Force Versus Leaning Angle of Planted Seedling	168

CHAPTER I

INTRODUCTION

Oil palm is one of the major plantation crops in Malaysia. This country has successfully developed the oil palm plantation industry for the past three decades and it is still the largest palm oil producers in the world. Palm oil is always associated with Malaysia as the country continuous to dominate its global production and export. Malaysia became the world's largest producer and exporter of palm oil, replacing Nigeria as the chief producer since 1971. Malaysia then produced 589,000 tones, while at the same time Nigeria produced 460.000 tones. Malaysia's production of palm oil in 1998 contributed to about 49.5 percent of world palm oil output and 8.2 percent of world output of the major oils and fats. By 2000, Malaysia's production of palm oil had increased to 10,842,000 tones. (PORLA, 1999; MPOB,2001).

Declining palm oil prices due to excess supply has made the replanting of old palms as the best approach to recover back its price. Under the replanting scheme, palms exceeding 25 years old are to be cut and replaced with higher yield seedlings for a targeted production reduction of 600,000 tones of palm oil per year for the 3 years period. Incentives are given to small holders and plantations to carry out the replanting schemes of old palms. By the end of July 2001, a total of Malaysia's stock palm oil had been curtailed to 921,000 tones from 1,400,000 tones in the early last

year and a total of 180,000 hectares had been registered to be replanted under the scheme (Anon, 2001).

Planting operation is one of most important field operations in the plantation urgently need to be mechanised in view of the earlier mentioned problem. By year 2000, the total area under oil palm cultivations in Malaysia had increased to 3,376,664 hectares as compared to 641,791 hectares in 1975. These cultivated areas were under small holders, FELDA, FELCRA, RISDA, State Scheme and private estates and were distributed throughout in Malaysia peninsular, Sabah and Sarawak. (MPOB, 2001). The planting operation could affect the total productivity of the cultivated area since it is the earliest operation to be considered in any cultivation. Consequently, good planting technique and practice would enhance the production level of the cultivated area.

Turner and Gillbanks (1974) mentioned that there are several activities that are involved in the oil palm seedling transplanting operation. These include; holing the ground for placing the seedling, transporting the seedling from the nursery to the field, transporting the seedling in a tray or sling from roadside to the prepared planting hole, placing the seedling to already prepared hole and finally compacting the filled soil around the planted seedling.

Tremendous efforts have to be made to maintain the country present status production position due to stringent competition among other palm oil producing countries. One of the efforts is to promote mechanisation in the oil palm plantation in order to combat labour problems and maintain production. Implementing

mechanisation is possible since according to Basiron (1998) almost all field operations in the plantation could be mechanised with the exception to the cutting operation of fresh fruit bunches.

Presently, oil palm seedlings are manually transplanted in the plantation field in Malaysia. The planting hole is either prepared manually with a hoe or with the use of a mechanised drill. The drill could be a portable powered post hole digger or a tractor mounted powered digger. Normally, the holes are prepared a few days prior to the planting of seedlings. Planting at times began as soon as field preparations have been completed. During planting, the field worker manually places the seedling in the prepared hole, covers the seedling and compacts the soil around the planted seedling using a hoe. The involved operations are laborious, drudgery and time consuming.

Manually planting according to Hartley (1977) requires 16.5 men-day per hectare in Malaysia. The task imposed extensive stress and fatigue to the field workers and thus become an unattractive job for others to pursuit. Furthermore, the present planting techniques that are widely practised are inefficient and unproductive since the planting holes are to be prepared a few days before actual planting commence. As mentioned by Rankine and Fairhurst (1999), the hole digging and planting capacity under optimum work rate on mineral soil is only 45 palms/manday. Meanwhile planting capacity without hole digging for the same work rate and soil is 90 seedlings/man-day. However, workers under optimum work rate on peat soil could plant only a total of 40 seedlings/man-day. With planting only and excluding digging hole, the workers are capable to plant 80 palm/man-day.

Various types of transplanting machines are now available in the market. However, no machine has been designed, developed or adopted for oil palm seedling. Most of transplanting machines reported in the literature were designed and developed for cereal crops, vegetable crops, and a few for tree crops and shrubs.

Modern and efficient methods of transplanting seedling need to be introduced in the oil palm plantation. There is a need to mechanise all activities in transplanting operation. This could be achieved by integrating all activities in the seedling transplanting with a mechanised integrated system.

1.1 Objective

The main objective of the study is to introduce a mechanised integrated machine system for transplanting of oil palm seedling in the plantations. However, the specific objectives of the study are as follows:

- i. To design and develop a fully integrated machine system for transplanting oil palm seedlings in the field
- ii. To evaluate the performance of the developed prototype machine system for the oil palm seedling transplanting operation in the field
- To evaluate the economics of the mechanised field transplanting of oil palm seedlings with the developed prototype machine system was compared to the present manual field transplanting of oil palm seedlings

The developed prototype of the machine system would be hopefully able to fulfil the following expected outcomes:

- i. Reduce of the total dependence of labour on transplanting of oil palm seedlings
- Reduce drudgery and fatigue of workers in transplanting of oil palm seedlings
- iii. Improve the productivity of workers in transplanting of oil palm seedlings
- iv. Make agriculture an attractive profession in Malaysia.

The designed and developed machine system would be limited to be used to plantations with proper machine path, adopt terrace planting, and terrains with mineral soil type. In addition, the oil palm seedlings to be planted should not be more than 16 months old and 1400 mm in height after pruning, and the seedlings should be prepared in 36 x 28 cm size polybags.

CHAPTER II

LITERATURE REVIEW

This chapter reviews on of oil palm fruit characteristic, oil palm seedling, oil palm planting, basic functions of planters and grain drill, and past research and development on specialised planting machine, and specialised tree planting machine.

2.1 Oil Palm Fruit Characteristics

Fruits characteristics are crucial to recognise before breeding them to the seedlings in the nursery. By knowing the characteristics, the grower would able to select the type of fruit used in breeding to get the expected yield and quality. The two basic types of fruit used in oil the palm breeding are Dura and Pisifera.

Dura is characterised with mesocarp percentage in the range of 35% to 50% with the exception of the Deli Dura found in the Far East having figure that reach 65%. The shell is comparatively thick with thickness in the range from 2 to 8 mm. It has no ring of fibres but large kernel. The oil content percentage of mesocarp to bunch weight usually is quite low in the range of 17 to 18%. This fruit type is used as the female parent in the breeding programmes.

