

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF POWER ELECTRONIC CIRCUITS DATABASE FOR KNOWLEDGE-BASED SYSTEM

AHMAD DIB YOUSEF ZAHRAN

FK 2000 13

DEVELOPMENT OF POWER ELECTRONIC CIRCUITS DATABASE FOR KNOWLEDGE-BASED SYSTEM

By

AHMAD DIB YOUSEF ZAHRAN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Engineering Universiti Putra Malaysia

2000

To my parents, brothers and sisters

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science.

DEVELOPMENT OF POWER ELECTRONIC CIRCUITS DATABASE FOR KNOWLEDGE-BASED SYSTEM

By

AHMAD DIB ZAHRAN

March 2000

Chairman: Norman Mariun, Ph.D.

Faculty: Engineering

The development of design automation tools for a power electronic circuit has received a great deal of attention in the last two decades. To provide an optimum solution for each power electronics application demands the selection of the most appropriate power electronic devices, power circuit and control philosophy. For a certain applications, it must be decided which power circuit topology and which power semiconductor with which control strategy is best suited for it. Their design and fabrication require extensive knowledge and sophistication, that must be continually updates as the technologies improve. Considerable engineering effort and knowledge are required to take a power circuit from a laboratory prototype to a finished product. Other than being an expert in areas as diverse as thermal design, circuit and system packaging, circuit protection, and safety and electromagnetic interference regulations.

iii

With such a highly demanding expertise required of power electronic circuits' designers and with such rapid advancements in the field of circuit topology and semiconductor devices it is difficult for designers to come up with an optimum circuit and the right device within a short time. These difficulties can be solved using a design-aided system with high accuracy and flexibility in a short time.

In this study the developed system is named PEDAS (Power electronic Design Aid System). The system is characterized as an intermediate objectoriented system that allows the user to deal with different software packages through an attractive interface. The aim of this research is to develop a database circuits library. The implementation includes generation of formatted files to be used as input streams with the design packages, writing an interface program for each kind of these software, and managing the data flow timing and dependency among them. In this thesis the circuit topology data base development based on PSPICE is presented with examples of converters and inverters circuits.

The database circuits library was designed and used successfully by some of the researchers of the electrical engineering department in the Control and Automation System Center.

Abstrak tesis yang dikemukakan Senat Universiti Putra Malysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBANGUNAN PANGKALAN DATA LITAR ELEKTRONIK KUASA UNTUK SISTEM PAKAR BERASAS PENGETAHUAN

Oleh

AHMAD DIB ZAHRAN

March 2000

Pengerusi: Norman Bin Mariun, Ph.D.

Fakulti: Kejuruteraan

Pembangunan rekabentuk peralatan automasi untuk litar elektronik kuasa diberi perhatian dalam dekad ini. Untuk memberikan penyelesaian optima untuk setiap permintaan aplikasi memerlukan pemilihan yang bersesuaian peranti elektronik kuasa, litar kuasa dan falsafah kawalan. Bagi aplikasi tertentu, adalah penting memastikan topologi litar kuasa, semikonduktor kuasa serta strategi kawalan yang bersesuaian dengan aplikasi tesebut. Rekabentuk dan fabrikasi memerlukan pengetahuan meluas dan sofistikated yang produk mesti dikemaskinikan mengikut kemajuan teknologi. Litar kuasa bermula dari prototaip dimakmal hingga akhir. Selain daripada kepakaran dalam teknologi pelbagai disiplin, jurutera elektronik kuasa mesti pakar dalam pelbagai bidang rekabentuk thermal, litar dan sistem pembungkusan, perlindung litar dan keselamatan serta peraturan gangguan elektromagnetik. Pengetahuan dan usaha yang banyak diperlukan bagi pembangunan.

Dengan permintaan kepakaran tinggi yang diperlukan untuk perekabentuk litar elektronik kuasa dan kemajuan yang pesat bidang topologi litar dan peranti-peranti semikonduktor, adalah agak mustahil untuk perekabentuk mencapai litar optima dan peranti bersesuaian dalam masa yang singkat. Masalah ini boleh diatas dengan menggunakan sistem bantuan rekabentuk yang mempunyai kejituan yang tinggi serta fleksible dan menggunakan masa yang singkat.

Dalam kajian ini, sistem yang dibangunkan digelar PEDAS dicirikan sebagai sistem pengantara berorientasi objek, yang menyambungkan pengguna dengan pakej-]pakej perisian yang tertentu. Sasaran penyelidikan ini adalah untuk membangunankan librari litar pangkalan data. Perlakasanaan sistem ini termasuk, membina fail terformat yang digunakan sebagai 'stream' masukan, menulis antaramuka program untuk setiap perisian dan mengurus aliran data pemasaan. Dalam tesis ini, pembangunan pangkalan data topologi litar berasaskan kepada PSPICE yang diwakilkan dengan contoh-contoh penukar dan penyongsang.

Librari litar pangkalan data ditekabentuk serta digunakan dengan jayanya oleh sebanagian penyeliaik- penyeliaik di jabatan kejuruteraan Elektrik, Kawalan dan pusat sistem automasi.

AKNOWLEDGMENTS

Thanks to God (ALAH), for helping me to complete this work.

I wish to express my profound gratitude to my supervisor, Dr. Ir Norman Mariun, Lecturer in the Electrical and Electronic Engineering, Universiti Putra Malaysia, for his supervision, guidance, encouragement, support and helpful discussions during all of this work.

I would also like to express my grateful thanks to all of my committee supervisors, Dr. Ishak Aris, Dr. Nasrullah Khan, and to all the Engineering Faculty staff. Thanks are also extended at all the CASC laboratory members, and to all of my friends especially, Mohammed Salih, Abdul Aziz Al-Naqeeb and for all my friends in Malaysia for their help. Finally I would like to forward my appreciation to my family in Jordan for their support and belief in me.

TABLE OF CONTENT

DED	ICATION	ii
	[RACT	iii
	FRAK	v
	NOWLEDGMENTS	vii
	ROVAL SHEETS	viii
	LARATION FORM	X
	OF TABLES	a Xiii
	OF FIGURES	xiv
	OF ABBREVIATIONS	
1121	OF ADDREVIATIONS	xvi
CHA	PTER	
Ι	INTRODUCTION	1
	The Knowledge Base Expert System	2
	Power Electronic Design Aid System (PEDAS)	3
	Research Objectives	6
	Tools Selection	6
	Scope of the Work	7
II	LITERATURE REVIEW	9
	Knowledge-Based (Expert) System	9
	Software selections	11
	State of the Field	12
	Application Trends	13
	Expert System Shell (A General Architecture)	14
	Evaluation Computer-Aided Design and Engineering	17
	Knowledge-Base CAD	18
	Knowledge-Base Technology	20
	Development of Power Electronic Circuits Data-Base	24
	Use of Computers in Designing Power Electronics Systems	30
	An Overview of PSPICE Simulation	32
	Simulation of Power Electronics Using PSPICE	34
	Object-Oriented Technology	37
	Knowledge Base and Object Oriented Systems	45
	The Knowledge-Based Expert System-PECT1	47
III	METHODOLOGY AND DESIGN	53
	Converter Classification	54
	Design Considerations	58
	The Knowledge-Base System PEDAS	59

	Tool Selection	60
	Circuit Data-Base Module	62
	Knowledge Base Design	66
	The Design Steps	75
	The Input Files	76
IV	RESULTS AND DISCUSSION	78
v	CONCLUSION AND FUTURE STUDIES	95
REFI	ERENCES	97
APPI	ENDIX	
	A: C++ Programs	102
	B: Input Files	120
BIOD	DATA OF AUTHOR	138

LIST OF TABLES

Table		Page
1	PC Specifications	95
2	Processing Time for Different Circuits	96

LIST OF FIGURES

Figure	PAGE
1	PEDAS System General Architecture4
2	Shell Architecture15
3	Block Diagram of PSPICE
4	Simplified PECT Hierarchical Control designs process50
5	PECT General Architecture
б	(a) MOSFET (N-Channel) with Body Diode.(b) MOSFET Characteristics
7	PEDAS Main Frame and Circuit List Menu63
8	Flowchart for Processing the Flow of Information Between PEDAS and PSPICE
9	CDB Module Interface Windows Component
10	CDB Module/PSPICE Interface Information Flow
11	The Dialogue Box for the Input Values76
12	CDB Module the Front Menu79
13	CDB Module Circuits List80
14	(a) DC-DC Converters80
14	(b) DC-AC Inverters
14	(c) AC-DC Converters
14	(d) AC-AC Converters81
15	The Dialogue Box for the Input Values82
16	Graphical Circuit Editor

17	The Graphical Circuit Editor in the Active Mode	84
18	PICE Simulation Results	85
19	The Graphical Waveform Analyser PROBE	.87
20	Square-Wave Inverter	.88
21	Probe Output for Square-Wave Inverter	89
22	The Amplitude of the Fundamental Frequency for a Square-Wave Output	.91
23	Probe Output for Amplitude and Harmonic Control	.92
24	Three-Phase Rectifier	.93

LIST OF ABBREVIATIONS

Δ_{IL}	The Net Change in the Inductor Current
AC	Alternative Current
AEC	Architecture Engineering and Construction
AHP	Analytic Hierarchy Process
AI	Artificial Intelligence
BJT	Bipolar Junction Transistor
C	Collector
C++	Advance Programming Language
CAD	Computer Aided Design
CAE	Computer Aided Engineering
CDB	Circuit Data Base
D	Duty Ratio
D DC	Duty Ratio Direct Current
_	
DC	Direct Current
DC E	Direct Current Emitter
DC E ERC	Direct Current Emitter Electrical Rules Check
DC E ERC f	Direct Current Emitter Electrical Rules Check Switching Frequency (Hz)
DC E ERC f GTO	Direct Current Emitter Electrical Rules Check Switching Frequency (Hz) Gate Turn-OFF Thyristor
DC E ERC f GTO I	Direct Current Emitter Electrical Rules Check Switching Frequency (Hz) Gate Turn-OFF Thyristor Current Flow in Ampere
DC E ERC f GTO I I I _C	Direct Current Emitter Electrical Rules Check Switching Frequency (Hz) Gate Turn-OFF Thyristor Current Flow in Ampere The Average Capacitor Current

_

KBS	Knowledge Base System
L_{min}	Minimum Inductance Required for Continuous Current
MCDM	Multiple Criteria Decision-Making
MHD	Magneto-Hydrodynamic
MOOD	Methodology of Object-Oriented Design
MOSFETs	Metal-Oxide Silicon Field Effect Transistor
NC	Numerical Control
OOP	Object Oriented Programming
OPS	Official Production System
PC	Personal Computer
PECT	Power Electronic Control Tools
PEDAS	Power Electronic Design Aid System
Po	Power Delivered to the Load
PROBE	Graphical Waveform Analyser
Ps	Power Supplied by the Source
PSPICE	Simulation Package
PWM	Pulse Width Modulation
Q	Charge (coulomb)
R	General Symbol for the Electrical Resistance (ohm)
R _L	Load Resistance
rms	Root Mean Square
Т	Switching Period
V	General Symbol for the Voltage Measured in (Volts)
V _L	The Average Inductor Voltage

V₀ Output Voltage

·

V_S The Input Voltage to The Filter

CHAPTER I

INTRODUCTION

Power electronics is an application oriented and interdisciplinary course. It uses power semiconductor devices to perform switching action in order to achieve a desired conversion strategy. The switching slices the voltage and current waveforms into various intervals, whose beginning and end depend on the boundary conditions, which are fixed by the circuit parameters and/or control characteristics. The understanding of the operation of a power electronics circuit requires a clear knowledge of the transient behaviour of current and voltage waveforms for each and every circuit element at every instant of time. However, the power electronics are playing a key role in industrial power control applications.

The development of design automation tools for a power electronic circuit has received a great deal of attention in the last two decades. In recent years, expert system technique has used in the power electronic field for various applications such as modeling, design optimization, device selection, testing, diagnosis and control. There is a requirement for an active, comprehensive, and versatile computer-based intellectual process that incorporate design tools, design knowledge, and device database for power electronics.

2

This must ideally afford both the development engineer and a non-expert user the opportunity to have total guidance (or assistance) in:

- 1. Design a power electronics system based on specification of the problem.
- 2. Exploring the many option and design variations, system interactions, parameter optimizations, and failure-mode mechanisms leading to improved product quality.
- 3. Selection of the correct device for a given application.

To achieve this goal, it is necessary to enhance the problem-solving capability of existing conventional power electronics Computer Aided Design (CAD) systems.

The Knowledge-Based Expert System

Expert systems are now being used successfully in many disciplines and practical environments in different parts of the world. The current trends that they will be used in larger numbers and greater varieties of applications. Confronted by the ever-increasing range of academic and commercial products, potential users of expert system technology require systematic and reliable techniques for evaluating expert systems. Also, as the size and complexity of expert systems increase, the task facing the designers and developers to produce quality systems becomes more challenging. This situation is further compounded by the lack of detailed and precise requirement specifications of expert systems especially those which

involve a number of human experts specialized in different functions of the expert system. Hence compared with other types of systems, expert systems by nature stand in a special need of rigorous and systematic evaluation of their performance. For potential users, this process can be conducted on a finished product. But for their designers and developers, the evaluation process is a continuous one, which should be carried out throughout the life cycle of the expert systems, which they are building.

Power Electronic Design Aid System (PEDAS)

PEDAS system as shown in Figure 1, was developed by a PEDAS research group in the department of Electrical and Electronics Engineering at the University Putra Malaysia. It is an expert system for power electronic circuits that enable the user to get optimal and practical solutions for circuit design problems, given nominal inputs. The system is characterized as an intermediate object-oriented system connecting the user with different expert units, without the assumption of the user familiarity with the internal application of the system components. The user will deal with the system through an interactive windows user interface that implements the concept of a decision support system for data entry in initialization and intermediate phases using messaging and other techniques. PEDAS system concentrates on the design of the power electronic circuits, mainly converters and inverters.

The system consists essentially of several modules interacting with each other; and also consists of interfaces that handle the flow of information between the PEDAS components and external applications such as the simulator package (PSPICE) and the semiconductor power device data library related to the same package. The key components of the PEDAS system comprised of the user interface, semiconductor power device database, information module, and the system interface to PSPICE package. The system modules are User Interface, Inference Engine Module, Circuit Database Module, and Devices Database Module.

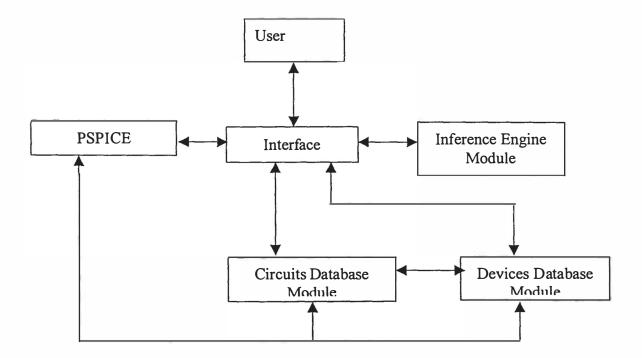


Figure 1: PEDAS System General Architecture

The database system for power semiconductor devices an essential part in building PEDAS system. The user can find a useful information about most of the devices available by accessing their data sheets. The user also can get the PSPSICE model of the selected device and use it in designing and simulating different circuits.

The user interface consists of interactive components designed to facilitate communication between the user and PEDAS system, which has explained the philosophy of good human interface design. The system interface to PSPICE package was designed to integrate the PSPICE tools for design, drawing schematic, simulation and probe facilities.

Circuits Data-Base module, is one of PEDAS system internal modules that has been developed by the author. The implementation includes developing a data base circuits library, generation of formatted files to be used as input streams for the design package, and interface the CDB module with the simulator package, PSPICE.

Inference Engine Module provides the user with the design steps of different circuits that have been designed and tested by other members of the electrical and electronic engineering department. Such as DC/DC Converter for Electric Vehicle, Smart Battery Charger for Electric Vehicle. Development of 6KW Variable Power Supply.

Research Objectives

The aim of this research work is to develop a circuit database system, which is one of the power electronic design aid system internal modules. To achieve this, the following objectives are accomplished.

- 1. Developing a data base circuits library
- 2. Generation of formatted files to be used as input streams for the design package
- 3. Writing an interface program for the system
- 4. Interface the circuit database (CDB) module with simulator package PSPICE.

Tools Selection

It is necessary to choose software developmental tools that support the paradigms useful for implementing the PEDAS functionality requirements. An algorithmic system can normally give only a single answer, which can be assumed to be correct if the input data is correct. In an expert system, it is essential that the user can question the system to determine which rules were crucial to determine an answer, how likely the given answer is to be correct, and perhaps seek a most likely alternative answer. Good user interface is difficult to construct. It often turns out that more effort has to be put into preparing a good input/output interface than

