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To date, Malaysia rank in the second place as a global palm oil producer. Despite 
the rapid growth of oil palm plantation in Malaysia, a non-systematic biomass 
management contributes to biomass accumulation in huge amount. Oil palm 
empty fruit bunch (OPEFB) can be categorized as one of the toughest 
lignocellulosic biomass to be degraded naturally due to its complexity in 
structure. Conventional industrial practice used chemical and physical 
pretreatments to treat the OPEFB as it performs faster in hydrolyzing the 
biomass than biological pretreatment does. However, as the world is moving 
towards green technology concept, chemical pretreatment is no longer suitable 
to be practiced because it produces harmful by-products which requires proper 
management prior to its disposal. One of the methods currently sparking interest 
is biological pretreatment using laccase. In this study, OPEFB was pretreated 
biologically using crude laccase and subjected to enzymatic hydrolysis using 
cellulase to produce sugars. Application of laccase has become a current trend 
in biological pretreatment of lignocellulosic biomass where laccase aids in 
degrading and modifying the lignin barrier. This condition subsequently loosens 
up the biomass structure and helps to improve the cellulase accessibility towards 
cellulose.  
 
 
Naturally, wild type fungi produce ligninolytic enzymes in low concentration and 
inducers have shown promising result in enhancing ligninolytic enzymes 
production. Pycnoporus sanguineus UPM4 was utilized in this study and was 
found to be a dominant laccase producer. Therefore, enhancement using 
selected laccase inducers which are veratryl alcohol, ferulic acid, Kraft lignin, 
copper sulfate and 2,5-xylidine were carried out at different concentration, 
respectively. Veratryl alcohol, ferulic acid and Kraft lignin were found to be able 
to enhance the laccase production, meanwhile copper sulfate and 2,5-xylidine 
inhibited the laccase production. Veratryl alcohol with a concentration of 16 mM 
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has shown to be to best inducer with resulting laccase production of 6.35 U/mL 
(2 folds increment). 
 
 
Response surface methodology (RSM) was employed to optimize the biological 
pretreatment of OPEFB using enhanced crude laccase synthesized by P. 
sanguineus UPM4. Investigation and screening of significant variables was 
performed using one factor at time (OFAT) and two-level factorial design. From 
the analysis of variance (ANOVA), temperature, initial pH and laccase loading 
have resulted in major effect on the pretreatment process, whereas substrate 
concentration and incubation time were found to be insignificant. These three 
variables were further analyzed using Central Composite Design (CCD). The 
optimum pretreatment condition attained from the model were temperature at 
50°C, initial pH of 4.5 and 65 U/g of laccase loading. Hence, biological 
pretreatment performed at this optimum condition resulted in 13.08% of lignin 
removal and yielded 20.70 g/L of sugars from pretreated OPEFB.  
 
 
Additionally, characterization of pretreated OPEFB has revealed a remarkable 
change occurred on the substrate which was evident through scanning electron 
microscope micrograph, surface functional groups and surface oxide groups. 
Scanning electron microscope micrograph displayed formation of craters on 
substrate surface due to removal of silica bodies on the pretreated OPEFB. Next, 
an alteration of surface functional groups on the pretreated OPEFB was 
demonstrated by FTIR spectrum and it was further explained by surface oxide 
groups analysis showing an increment of carboxyl groups and decrement of 
lactone and phenolic groups in the pretreated OPEFB. 
 
 
A study on the feasibility of simultaneous pretreatment and saccharification of 
OPEFB was carried out. It was observed that cocktail of crude laccase at 45 U/g 
and Acremonium cellulase at 25 FPU/g has resulted in 8.81% of lignin removal 
and 8.16 g/L of sugars. As a conclusion, veratryl alcohol has increased the 
laccase production with 2 folds increment. Optimization of biological 
pretreatment of OPEFB using crude laccase has increased the lignin removal by 
1.2 folds and sugars production by 1.8 folds. Besides that, simultaneous 
pretreatment and saccharification of OPEFB using cocktail of crude laccase and 
Acremonium cellulase were a good combination as compared to Trichoderma 
reesei crude cellulase and Celluclast 1.5L, respectively. 
 
 
Overall, in comparison to previous research, this study demonstrated two novel 
approaches of biological pretreatment of OPEFB. Optimum operating conditions 
in separate pretreatment and saccharification of OPEFB has resulted in 56.63% 
of hydrolysis yield. Meanwhile, the simultaneous pretreatment and 
saccharification of OPEFB at laboratory scale proved that lignocellulolytic 
enzymes cocktail was feasible and able to attain hydrolysis yield at 32.62%, in 
conjunction with reduction of time consumption, number of vessels as well as 
elimination of substrate washing step. 
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Malaysia kini berada di kedudukan kedua sebagai pengeluar minyak kelapa 
sawit terbesar di peringkat global. Dengan perkembangan pesat penanaman 
pokok kelapa sawit di Malaysia, pengurusan biomas yang tidak sistematik telah 
menyumbang kepada pengumpulan biomas dalam jumlah yang banyak. Tandan 
kosong kelapa sawit (TKKS) boleh dikategorikan sebagai salah satu biomas 
lignoselulosa yang paling sukar untuk diurai secara semulajadi kerana 
strukturnya yang rumit. Amalan industri konvensional menggunakan pra-
rawatan kimia dan fizikal untuk merawat TKKS kerana ia menghidrolisis biomas 
lebih pantas daripada pra-rawatan biologi. Walau bagaimanapun, apabila dunia 
beralih ke arah amalan konsep teknologi hijau, pra-rawatan kimia tidak lagi 
sesuai untuk dipraktikkan kerana ia menghasilkan produk sampingan berbahaya 
yang memerlukan pengurusan yang baik sebelum pelupusannya. Salah satu 
kaedah yang menjadi tarikan pada masa kini ialah pra-rawatan biologi 
menggunakan lakase. Dalam kajian ini, TKKS dirawat secara biologi 
menggunakan lakase mentah dan hidrolisis berenzim menggunakan selulase 
untuk menghasilkan gula. Penggunaan lakase telah menjadi tren semasa dalam 
pra-rawatan biologi biomas lignoselulosa di mana lakase membantu mengurai 
dan mengubah lignin. Keadaan ini akan merenggangkan struktur biomas dan 
membantu untuk meningkatkan akses selulase terhadap selulosa. 
 
 
Secara semulajadi, kulat liar menghasilkan enzim ligninolitik dalam kepekatan 
yang rendah dan penggalak telah menunjukkan hasil yang signifikan dalam 
meningkatkan penghasilan enzim ligninolitik. Pycnoporus sanguineus UPM4 
telah digunakan dalam kajian ini dan ia didapati sebagai penghasil lakase yang 
dominan. Oleh itu, peningkatan penghasilan lakase menggunakan penggalak 
lakase yang terpilih iaitu veratril alkohol, asid ferulik, lignin Kraft, kuprum sulfat 
dan 2,5-xilidin telah dijalankan pada kepekatan yang berbeza. Veratril alcohol, 
asid ferulik dan lignin Kraft didapati dapat meningkatkan penghasilan lakase, 
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manakala kuprum sulfat dan 2,5-xilidin menghalang penghasilan lakase. Veratril 
alkohol dengan kepekatan 16 mM telah menunjukkan sebagai penggalak terbaik 
dengan menghasilkan lakase sebanyak 6.35 U/mL (peningkatan 2 kali ganda). 
 
 
Kaedah permukaan tindakbalas (KPT) telah digunakan untuk pengoptimuman 
pra-rawatan biologi TKKS menggunakan lakase mentah yang disintesis oleh P. 
sanguineus UPM4. Penyaringan pemboleh ubah dilakukan menggunakan 
kaedah satu faktor satu masa (SFSM) dan rekaan dua aras faktorial. Dari 
analisis varians (ANOVA), suhu, pH awal dan jumlah lakase telah memberi 
kesan yang besar terhadap proses pra-rawatan, manakala kepekatan substrat 
dan masa pengeraman didapati tidak signifikan. Ketiga-tiga pemboleh ubah ini 
seterusnya dianalisis menggunakan rekaan komposit pusat (RKP). Keadaan 
pra-rawatan optimum yang diperolehi daripada model adalah pada suhu 50°C, 
pH awal 4.5 dan 65 U/g jumlah lakase. Oleh itu, pra-rawatan biologi yang 
dilakukan pada keadaan optimum ini telah menghasilkan 13.08% penyingkiran 
lignin dan menghasilkan 20.70 g/L gula daripada TKKS yang telah diprarawat.  
 
 
Di samping itu, pencirian TTKS yang telah dirawat telah mendedahkan 
perubahan yang ketara berlaku pada substrat dan dibuktikan oleh mikrograf 
mikroskop elektron imbasan, kelompok berfungsi permukaan dan kelompok 
oksida permukaan. Mikrograf mikroskop elektron imbasan menunjukkan 
pembentukan kawah pada permukaan substrat kerana penyingkiran badan silika 
pada TKKS yang telah dirawat. Seterusnya, perubahan pada kelompok 
berfungsi permukaan pada TKKS yang telah dirawat ditunjukkan oleh spektrum 
FTIR dan ia dijelaskan secara lanjut oleh analisis kelompok oksida permukaan 
yang menunjukkan peningkatan kumpulan karboksil dan penurunan kumpulan 
lakton dan fenolik dalam TKKS yang telah dirawat. 
 
 
Kajian mengenai kebolehan pra-rawatan dan pensakaridaan serentak TKKS 
telah dijalankan. Hasilnya, koktail lakase mentah pada 45 U/g dan Acremonium 
selulase pada 25 FPU/g telah menghasilkan 8.81% penyingkiran lignin dan 8.16 
g/L gula. Kesimpulannya, veratril alkohol telah meningkatkan pengeluaran 
lakase dengan peningkatan 2 kali ganda. Pengoptimuman pra-rawatan biologi 
TKKS menggunakan lakase mentah telah meningkatkan penyingkiran lignin 
sebanyak 1.2 kali ganda dan penghasilan gula sebanyak 1.8 kali ganda. Selain 
itu, pra-rawatan dan pensakaridaan serentak TKKS menggunakan lakase 
mentah dan Acremonium selulase. adalah gabungan yang baik berbanding 
Trichoderma reesei selulase dan Celluclast 1.5L, masing-masing. 
 
 
Keseluruhannya, berbanding dengan kajian terdahulu, kajian ini menunjukkan 
dua kaedah baru untuk pra-rawatan biologi TKKS. Keadaan operasi yang 
optimum dalam pra-rawatan dan pensakaridaan berasingan TKKS telah 
menghasilkan 56.63% hasil hidrolisis. Sementara itu, pra-rawatan dan 
pensakaridaan serentak TKKS pada skala makmal membuktikan bahawa koktail 
enzim lignoselulolitik dapat mencapai hasil hidrolisis pada 32.62%, di samping 
dengan pengurangan penggunaan masa, jumlah bekas serta penyingkiran 
langkah mencuci substrat. 
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CHAPTER 1  

INTRODUCTION 
 
 
1.1         Background study  
 
 
Palm oil industry is listed as one of the 12 National Key Economic Areas (NKEAs) 
as announced in the Tenth Malaysia Plan (PEMANDU, 2012). NKEA is the new 
strategy introduced by government as an important driver of economic activities 
that directly contributes towards the Malaysian Economic Growth measurable by 
the National Gross Income (GNI) indicator. Oil palm cultivation in Malaysia has 
started since 1960s in relation with the government’s effort to broaden the crops 
variety under agricultural diversification program. The expansion of oil palm 
cultivation results in the increase of biomass being generated from the palm oil 
industry.  
 
 
Oil palm empty fruit bunch (OPEFB) is the most abundant oil palm biomass 
produced in palm oil mil where one metric ton of fresh fruit bunch (FFB) 
generates 23% (230 kg) OPEFB compared to 14% (140 kg) oil palm mesocarp 
fibers and 7% (70 kg) palm kernel shells. The OPEFB is usually returned to 
plantation as mulching agent for nutrient recycling (Omar et al., 2011). However, 
the drawbacks of this practice are temporary immobilization of a huge pile of 
nutrients, interference in fruit harvesting process, snakes and rats infestation, 
increased risk of fire and provides breeding site for rhinoceros beetles (Oryctes 
rhinoceros), a problematic oil palm pest that cause serious damage to young oil 
palm trees (Stichnothe and Schuchardt, 2010; Sunitha and Varghese, 1999). 
Hence, this situation needs an urgent and systematic action to curb the problem. 
 
 
Some of the solution suggested for the problem at hand is to utilize OPEFB as 
biofertilizer (Razali et al., 2012), raw materials for pulp and paper making 
(Megashah et al., 2018) and fermentation feedstock for second generation 
biofuel production (Ibrahim et al., 2012). However, utilization of OPEFB as a 
fermentation feedstock is challenging due to recalcitrant property of lignin. Lignin 
is one of the components in plant biomass besides cellulose and hemicellulose. 
If biomass is directly used as feedstock for fermentation, lignin acts as a physical 
barrier to prevent enzyme access to the carbohydrates fraction of biomass 
(Sindhu et al., 2016). Moreover, a demand for higher enzyme loading is required 
due to the non-productive binding between cellulase and lignin (Yang et al., 
2011). 
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Therefore, pretreatment process is necessary to reduce the recalcitrance of the 
lignocellulosic biomass through lignin degradation and modification. Biological 
pretreatment using ligninolytic enzymes has been receiving much attention in 
recent years for their valuable enzyme system that show effective degradation 
on the lignocellulosic biomass (Zanirun et al., 2015). In nature, various types of 
fungi often seen to grow and colonize on dead woody material which is a part of 
natural decaying mechanism. The ligninolytic enzymes secreted by the fungi are 
responsible for the decaying process (Isroi et al., 2011). Ligninolytic enzymes 
which are commonly studied are laccase, manganese peroxidase, lignin 
peroxidase and versatile peroxidase (Yadav and Yadav, 2015). 
 
 
Presently, the lignocellulosic biomass is physically and chemically treated prior 
to obtain the sugars from saccharification process. Conventional pretreatment 
method requires large consumption of chemicals and energy. In consequence, 
these processes procure exorbitantly high cost (Alvira et al., 2010). To alleviate 
this matter, biological pretreatment using ligninolytic enzymes is proposed as a 
promising alternative pretreatment method. Limited research has been done on 
the biological pretreatment using enzyme where the potential of the ligninolytic 
enzymes is less explored. There are several limitations that need to be tackled 
and improved accordingly in order to develop a full cycle of lignocellulosic 
biomass conversion into sugars using biological pretreatment approach. It is only 
logical that further research was carried out on the feasibility of using ligninolytic 
enzymes to pretreat biomass prior to fermentation, and the effect of other 
parameters such as temperature, enzyme loading, initial pH and use of 
mediators in the pretreatment process. 
 
 
Besides the use of enzyme to pretreat lignocellulosic biomass, research on 
simultaneously treating and producing sugars from lignocellulosic biomass is 
practically scarce. Keeping in the outlook of biotechnological applications of 
laccase, a new approach of combining laccase and cellulase in one vessel was 
presented in this thesis. Current research involves simultaneous use of 
lignocellulolytic enzymes such as laccase and xylanase mainly in improving pulp 
and paper production where recovery of cellulose is vital (Woolridge, 2014). This 
research point of view hampers the development of simultaneous pretreatment 
and saccharification processes. Due to success in simultaneous treatment using 
enzyme cocktail of laccase and xylanase, it is theorized that similar process 
using laccase and cellulase is possible. This will greatly improve the efficiency of 
the process and reduce the number of steps needed to produce sugars from 
lignocellulosic biomass. Hence, simultaneous pretreatment and saccharification 
is suggested to be one of the alternative methods in lignocellulosic biomass 
conversion into sugars. 
  



© C
OPYRIG

HT U
PM

3 

 

1.2         Problem statements 
 
 
Low laccase activity affects the performance of biological pretreatment and in 
term of laccase production, each fungus act differently towards different types of 
inducers. Therefore, a study on the enhancement of laccase production through 
the addition of inducers was carried out to improve the laccase production. Next, 
challenge in utilizing OPEFB to obtain sugars is due to the presence of lignin that 
prevents enzyme access to the carbohydrates fraction of biomass. 
 
 
Low lignin removal in biological pretreatment subsequently contributes to low 
sugars production. Besides that, there are limited studies on parameters 
influencing biological pretreatment of lignocellulosic biomass. Thus, biological 
pretreatment needs to be optimized to understand better of the process by 
investigating the parameters such as temperature, initial pH, laccase loading, 
substrate concentration and incubation time which subsequently leads to high 
sugars production.  
 
 
Furthermore, conventional separate pretreatment and saccharification requires 
series of sequential steps starting from pretreatment, followed by substrate 
washing and then saccharification of pretreated substrate. Little knowledge was 
available on the development of lignocellulolytic enzymes cocktail ratio as well 
as its compatibility. In conjunction to that, simultaneous pretreatment and 
saccharification was carried out to investigate its feasibility for potential use in 
future implementation. 
 
 
1.3         Significance of study  
 
 
Application of laccase in biological pretreatment was being explored further in 
conversion of lignocellulosic biomass into sugars. An enhancement of laccase 
production which plays crucial role in biological pretreatment has been carried 
out in order to obtain high laccase production prior to be used in biological 
pretreatment of OPEFB. A study on optimization of biological pretreatment has 
demonstrated an increment of lignin removal and sugars production, in which it 
concomitantly offered an alternative pretreatment method option instead of 
conventional pretreatment technology that used high energy and chemical. 
Moreover, this study has unveiled the potential of simultaneous pretreatment and 
saccharification process because it can be conducted within the same vessel, 
which makes the process easier, significantly reduces the treatment time and 
energy consumption as well as it eliminates step for pretreatment hydrolysate 
management and substrate washing.  Overall, exploitation of the massive 
amount of lignocellulosic biomass generated from crops and agriculture activity 
into higher value downstream uses was in coherent with the National Biomass 
Strategy 2020. Therefore, this study subsequently contributes in achieving the 
aim of the proposed policy to create wealth from lignocellulosic biomass.  
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1.4         Scope of study and objectives 
 
 
This study focuses on optimization of biological pretreatment of OPEFB using 
crude laccase produced by Pycnoporus sanguineus UPM4 in order to obtain the 
sugars from OPEFB. On top of that, a feasibility study on simultaneous 
pretreatment and saccharification of OPEFB at laboratory scale was performed 
by utilizing crude laccase and cellulase simultaneously instead of conventional 
separate pretreatment and saccharification. 
 
 
The objectives of this study are:  
 

1. To enhance the production of laccase by Pycnoporus sanguineus UPM4 
using selected inducers. 

2. To optimize the parameters for biological pretreatment of oil palm empty 
fruit bunch using one factor at time (OFAT) and Response Surface 
Methodology (RSM) for sugars production. 

3. To prove the feasibility of simultaneous biological pretreatment and 
saccharification of oil palm empty fruit bunch for sugars production. 
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