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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

IDENTIFICATION AND CHARACTERIZATION OF DROUGHT-INDUCED 

GENES IN MALAYSIA RICE CULTIVARS, MR220 AND MR211 USING RNA-

SEQUENCING PLATFORM  

By 

TAJUL ARIFFIEN BIN OTHMAN 

June 2019 

Chair : Assoc. Prof. Noor Azmi Shaharuddin, PhD 

Faculty : Biotechnology and Biomolecular Sciences 

Drought is one of the abiotic stresses on plants, causing significant detrimental impacts, 

especially to lowland rice (Oryza sativa L.) ecosystems. In order to obtain new insights 

on osmotic stress in rice, a comparative study using a Next-Generation Sequencing 

platform was conducted to elucidate osmotic-responsive genes from two local 

Malaysian rice cultivars, namely the commercially available drought-tolerant MR220 

and the drought-sensitive MR211. In the study, 21-day-old seedlings of MR220 and 

MR211 were exposed to 6% PEG 6000 for 24 hours, which produced osmotic stress 

that mimicked the drought condition. The samples were collected and total RNA were 

extracted. Two transcriptomic libraries were constructed from both rice cultivars using 

the Illumina HiSeq 2000 platform. A total of 77,964,138 and 92,699,454 raw sequence 

reads were generated from these libraries. From the expressed genes from both 

libraries, around 44, 902 genes have been found overlapping each other. Then, 8,095 

and 2,081 gen have been found uniquely in MR220 and MR211, respectively. Based on 

the gene annotation of O. sativa, a total of 106 genes were identified as differentially 

and significantly expressed in drought-tolerant and drought-susceptible cultivars, and a 

total of 29 genes were categorized as unknown genes. From the 106 differentially 

expressed genes (DEGs), 14 genes were up-regulated, while another 92 were down-

regulated in MR220. Gene Ontology (GO) and KEGG analysis were conducted to 

obtain the functional and biological role of the differentially expressed genes. Six 

drought related genes were selected for validating the RNA-Seq analysis using semi-

quantitative PCR. The validation result showed four out of six DEGs followed the 

RNA-Seq analysis. Then, two genes were selected form six semi-quantitative analysis, 

HP and Thia genes were validated using real-time qRT-PCR. The result showed same 

expression with semi-quantitative PCR. Overall, this study gives further insight on rice 

defense mechanisms during osmotic stress at early stage.  
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Kemarau merupakan salah satu juzuk abiotic terhadap tumbuh-tumbuhan, yang 

memberi kesan yang sangat buruk terutamanya ekosistem padi (Oryza sativa L.) tanah 

rendah. Untuk mendapat gambaran sebenar kesan kemarau terhadap padi, kajian 

perbandingan mengunakan platform Penjujukan Generasi Seterusnya telah dijalankan 

dalam mencari gen yang terlibat kepada kemarau, daripada dua jenis padi tempatan, 

padi komersal tahan kemarau, MR220 dan padi sensitif terhadap kemarau, MR211. 

Dalam kajian ini, anak padi MR220 dan MR211 yang berusia 21 hari dikenakan 6% 

daripada PEG 6000 selama 24 jam, menghasilkan tekanan osmotik yang meniru 

keadaan kemarau. Sampel padi dikumpul dan total RNA akan diekstrak dari sampel 

pokok. Dua perpustakaan transkriptomik telah dibina dari kedua-dua kultivar padi 

dengan mengunakan HiSeq Platform 2000. Sebanyak 77, 964,138 dan 92,699,454 

‘sequence read’ telah dijana dari data tersebut. Daripada gen yang terzahir daripada 

kedua-dua perpustakaan, sebanyak 44,902 gen telah dijumpai terzahir. Sementara itu, 

sebanyak 8,095 dan 2,081 gen yang unik dijumpai dalam MR220 dan MR211. 

Berdasarkan anotasi gen O. Sativa, sebanyak 106 gen telah dikenal pasti sebagai yang 

sangat ketara dalam kultivar tahan kemarau dan tidak tahan kemarau, dan sejumlah 29 

gen adalah gen baru yang tidak dikenal pasti. Daripada 106 gen yang dinyatakan 

sebagai (DEG), 14 gen telah menunjukkan peningkatan dan 92 gen menunjukkan 

penurunan dalam MR220. Gen Ontologi (GO) dan analisis KEGG telah dijalankan 

untuk memperolehi fungsi dan proses biologi untuk setiap gen tersebut. Enam gen telah 

dipilih untuk mengesahkan analisis RNA-Seq dengan mengunakan RT-PCR separa-

kuantitatif. Keputusan pengesahan menunjukkan daripada empat gen menyerupai 

analisis RNA-Seq tersebut. Kemudian, dua gen dipilih, HP dan Thia gen dalam 

mengesahkan keputusan RNA-Seq, dengan mengunakan qRT-PCR kuantitatif. Hasil 

kajian ini menunjukkan penzahiran yang sama dengan PCR separa kuantitatif. Secara 

keseluruhan, kajian ini memberikan satu pandangan berkenaan dengan mekanisma 

pertahanan pokok padi semasa tekanan osmosis pada peringkat awal.   
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Rice, (Oryza sativa L.) is one of the most important crops in the world as over half of 

the world's populations consume rice as their staple food (Hadiarto and Tran, 2011). In 

2017, over 167.25 million hectares were planted with rice all over the world with 

87.02% of the rice harvested from Asia. Total production yield from all over the world 

is around 769.65 million tonnes, with 89.98% of the rice production came from Asia 

(FAO, 2018). In Malaysia, rice is grown on 689,268 hectares of land which produced 

2.9 million tons of paddy grain annually (FAO, 2018). In the midst of meeting with the 

increasing world demand, rice production is still facing limitations, mostly due to 

abiotic and biotic stresses, as well as drought stress and the latter is a major issue as 

reported in numerous scientific reports (Najmuddin, et al., 2018; Todaka et al., 2015; 

Mostajeran and Rahimi-Eichi, 2009). 

Drought is one of the environmental factors that affect the rice production. It is 

severely influencing many regions in the world especially in lowland rice ecosystems 

(Zhang et al., 2018; Shukla et al., 2012; Passioura, 2007). Statistical analysis showed 

that the land affected by drought have increased more than twice in percentage from 

1970s to early 2000 (Isendahl and Schmidt, 2006). The situation becomes more serious 

due to global climate change in agricultural areas and increasing world population 

(Lesk et al., 2016; Hongbo et al., 2005).  

Rice is a crop that is susceptible to drought due to its shallow root system, rapid 

stomatal closure and leaf senescence in mild water stress (Obidiegwu et al., 2015; 

Hirasawa, 1999). The drought stress in different stage of rice growth gives different 

effects. At vegetative stage, the height of rice plant is significantly reduced and lower 

grain yield is produced (Sarvestani et al., 2008). Therefore, it is highly important to 

study the molecular mechanism of drought tolerance for future production of drought 

tolerant rice.  

Rice genome has been fully sequenced and generated and 2859 unique genes were 

discovered and need to be characterized (Sasaki, 2005). Due to the lack of information 

about their functional characterization, validation needs to be carried out. RNA-Seq is a 

high-throughput sequencing-based method, which has become an important technique 

used in transcriptome study. Much information can be obtained and studied from the 

RNA-Seq data. This includes identification of transcription sites and new splicing 

variants, monitoring of allele expression, cataloguing species transcripts, quantifying 

expression level of each transcript in different conditions and quantification of exon 

expression and splicing site (Nagalakshmi et al., 2010; Tsuchihara et al., 2009; Wang 
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et al., 2009). As the RNA-Seq is one of the most used methods in most transcriptome 

study, this technology can be used to identify drought related tolerant genes. 

MR220 has been identified as Malaysian drought tolerant commercial rice cultivar 

(Zulkarnain et al., 2013) while MR211 has been identified as susceptible cultivar to 

drought stress (Abdul Rahim et al., 2012). Moreover, MR220 gives high yield (Zain et 

al., 2014) and has been planted widely in Malaysia for the past few years. Hence, a 

study was designed to characterize and profile the expression of drought-induced genes 

in both these Malaysia cultivars, MR220 and MR211 via high-throughput sequencing 

technology. These results can reveal pathways, alternative splicing sites for genes and 

help to identify novel genes that could play major roles during plant tolerance to 

drought stress.  

1.2 Research Objectives 

Therefore, the objectives of this study were: 

1. To induce drought treatment to Malaysian rice cultivars, MR220 and MR211

using PEG 6000 and generate transcriptome libraries of drought-induced

MR220 and MR211 via RNA-Seq technology

2. To identify Differential Expressed Genes (DEGs) from the transcriptome

libraries

3. To validate the expression of the DEGs using reverse transcription-polymerase

Chain Reaction (RT-PCR) and real-time quantitative reverse-transcription

Polymerase Chain Reaction (qRT-PCR)
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