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Basal Stem Rot (BSR) is a serious disease caused by Ganoderma species. Ganoderma 
boninense produces lignin degrading enzymes (LDEs) that are able to degrade the lignin 
component of plant cell wall causing oil palms to rot and eventually collapse. The 
transcripts and expressions of LDEs including manganese peroxidase (MnP) and laccase 
(Lac) in G. boninense PER71 during oil palm-Ganoderma interaction have not been 
reported. Likewise, the effect of nitrogen sources in fertilizers, phytohormones and 
hydrogen peroxide on the growth and gene expression of G. boninense are unknown. 
Therefore, the objectives of this study were to clone the transcripts encoding these LDEs; 
to measure their gene expression in G. boninense PER71 treated with different nitrogen 
sources (ammonium sulphate, ammonium nitrate, sodium nitrate and potassium nitrate), 
phytohormones (jasmonic acid, JA and salicylic scid, SA) and hydrogen peroxide; and 
to evaluate the effect of different nitrogen sources on the in vitro growth of G. boninense 
and oil palm seedlings inoculated with G. boninense. The full-length cDNA of four MnPs 
and three Lacs were cloned from G. boninense by Rapid Amplification of cDNA Ends 
(RACE)-PCR and confirmed by sequence analysis. Real-time reverse transcription-PCR 
(qRT-PCR) analysis showed that only Unigene 6011 (MnP) from G. boninense was up-
regulated by all nitrogen sources and hydrogen peroxide but down-regulated in JA 
treatment. Unigene 87 (MnP) showed up-regulation in G. boninense treated with JA. 
Unigene 35959 (MnP) of G. boninense was up-regulated by ammonium sulphate 
treatment, down-regulated by hydrogen peroxide and suppressed by sodium nitrate and 
SA. Meanwhile, Unigene 30636 (Lac) was up-regulated by SA; down-regulated by 
hydrogen peroxide and suppressed by ammonium sulphate, potassium nitrate and JA. 
Unigene 36023 (Lac) was up-regulated by JA and hydrogen peroxide while Unigene 
90667 (Lac) was up-regulated by ammonium nitrate, JA, SA and hydrogen peroxide. 
The growth of G. boninense cultured on ammonium nitrate-containing Czapek-Dox agar 
was the fastest while the growth on sodium nitrate was the slowest based on the 
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measurement of radial mycelial diameter. The optical mycelial density of G. boninense 
cultured on ammonium nitrate was also denser than that of G. boninense cultured on 
sodium nitrate. However, the highest optical mycelial density was observed for G. 
boninense cultured on ammonium sulphate. On the other hand, G. boninense-infected oil 
palm seedlings treated with ammonium nitrate were the least infected; white mycelia 
were not observed at the basal region and root surface as compared to oil palm seedlings 
in other nitrogen treatments. Inoculated oil palm seedlings without additional nitrogen; 
treated with ammonium sulphate, sodium nitrate and potassium nitrate showed increased 
disease symptoms. The most serious disease symptoms were observed in oil palm 
seedlings without nitrogen supplement, followed by sodium nitrate and potassium nitrate, 
ammonium sulphate then ammonium nitrate. The results showed that ammonium nitrate 
is a preferable source of nitrogen for growth of G. boninense and could slow down BSR 
development. In conclusion, the study contributes to the basic understanding of the 
effects of different nitrogen sources, phytohormones and hydrogen peroxide on G. 
boninense and the expression of MnP and Lac, as well as the disease development of 
BSR in oil palm seedlings.  
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BERBEZA, FITOHORMON DAN HIDROGEN PEROKSIDA 
 
 

Oleh 
 
 

HO PEI YIN 
 
 

Disember 2019 
 
 

Pengerusi: Ho Chai Ling, PhD 
Fakulti: Bioteknologi dan Sains Biomolekul 
 
 
Reput pangkal batang (BSR) merupakan sejenis penyakit yang membimbangkan 
disebabkan oleh spesies Ganoderma. Ganoderma boninense menghasilkan enzim 
pereput lignin (LDE) yang boleh mereputkan komponen lignin pada dinding sel kelapa 
sawit menyebabkan pereputan dan seterusnya keruntuhan. Transkrip dan pengekspresan 
LDE termasuk manganan peroksidase (MnP) dan lakase (Lac) daripada G. boninense 
PER71 dalam interaksi kelapa sawit-Ganoderma belum pernah dilaporkan. Begitu juga 
dengan kesan sumber nitrogen dalam baja, fitohormon dan hidrogen peroksida terhadap 
pertumbuhan dan ekspresi gen G. boninense yang tidak diketahui. Oleh itu, objektif 
kajian ini adalah untuk mengklonkan transkrip LDE; mengukur gen ekspresi mereka 
dalam G. boninense PER71 yang telah dirawat dengan sumber nitrogen yang berbeza 
(ammonium sulfat, ammonium nitrat, natrium nitrat dan kalium nitrat), fitohormone 
tumbuhan (asid jasmonik, JA dan asid salisilik, SA) dan hidrogen peroksida; serta 
menilaikan kesan sumber nitrogen yang berbeza ke atas pertumbuhan G. boninense 
secara in vitro dan anak benih kelapa sawit yang telah diinokulasi dengan G. boninense. 
cDNA lengkap empat MnP dan tiga Lac telah diklonkan daripada G. boninense dengan 
menggunakan Rapid Amplification of cDNA Ends (RACE)-PCR dan dikenalpasti dengan 
analisis jujukan. Analisasi tindakbalas berantai polimerase-masa nyata (qRT-PCR) 
menunjukkan bahawa pengekspresan Unigene 6011 (MnP) telah dipertingkatkan oleh 
semua sumber nitrogen dan hidrogen peroksida tetapi diperturunkan dalam rawatan JA. 
Unigene 87 (MnP) hanya menunjukkan peningkatan pengekspresan gen dalam G. 
boninense yang dirawat JA. Gen pengekspresan Unigene 35959 (MnP) dalam G. 
boninense dipertingkatkan oleh ammonium sulfat, diturunkan oleh hidrogen peroksida 
dan ditindas oleh natrium nitrate dan SA. Sementara itu, pengekspresan Unigene 30636 
(Lac) dipertingkatkan oleh SA; diturunkan oleh hidrogen peroksida dan ditindas oleh 
ammonium sulfat, kalium nitrat dan JA. Ekspresi Unigene 36023 (Lac) dipertingkatkan 
oleh JA dan hidrogen peroksida manakala ekspresi Unigene 90667 (Lac) dipertingkatkan 
dalam ammonium nitrate, JA, SA dan hidrogen peroksida. Berdasarkan pengukuran 
diameter jejari, pertumbuhan G. boninense adalah paling cepat di atas agar Czapek-Dox 
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yang mengandungi ammonium nitrat manakala pertumbuhan atas natrium nitrat adalah 
paling lambat. Kepadatan optikal mycelium G. boninense di atas media ditambah 
ammonium nitrat adalah lebih tinggi daripada G. boninense yang ditumbuh atas media 
ditambah natrium nitrat. Walau bagaimanapun, kepadatan optikal mycelium G. 
boninense adalah paling tinggi untuk G. boninense yang ditumbuh atas media ditambah 
ammonium sulfat. Selain itu, anak benih kelapa sawit yang dijangkiti dengan G. 
boninense dan dirawat dengan ammonium nitrat menunjukkan jangkitan yang paling 
minima; micelium tidak didapati pada kawasan pangkal dan permukaan akar berbanding 
dengan anak benih kelapa sawit yang dirawat dengan sumber nitrogen yang lain. Anak 
benih kelapa sawit yang diinokulasi tanpa penambahan sumber nitrogen; yang dirawat 
dengan ammonium sulfat, natrium nitrat dan kalium nitrat menunjukkan peningkatan 
simptom penyakit. Simptom penyakit yang paling ketara didapati pada anak benih kelapa 
sawit yang tidak dibekalkan sumber nitrogen tambahan, diikuti oleh anak benih kelapa 
sawit yang dirawat natrium nitrat, kalium nitrat, ammonium sulfat dan ammonium nitrat. 
Penemuan kajian menunjukkan ammonium nitrat merupakan sumber nitrogen yang 
sesuai untuk pertumbuhan G. boninense dan boleh melambatkan perkembangan BSR. 
Kesimpulannya, penemuan kajian ini telah menyumbang terhadap pemahaman asas 
tentang kesan sumber nitrogen yang berbeza, fitohormon dan hidrogen peroksida 
terhadap G. boninense dan pengekspresan MnP dan Lac, serta perkembangan simptom 
penyakit BSR pada anak benih kelapa sawit.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Agriculture is an important sector to the sustenance of daily life and economic system of 
a country. Being an efficient oil crop, oil palm (Elaeis guineensis Jacq.), a tropical 
perennial tree has been planted in many countries including Malaysia. Oil palm was first 
brought to Malaya by British in 1870s as an ornamental plant which then turned into a 
commercial plant in the agriculture sector. Palm oil has gained the fastest growing 
demand globally because it serves as an ingredient in many products including food, 
cosmetic and bioenergy (Ferdous Alam et al., 2015). In Malaysia, the latest oil palm land 
coverage has reached 5.84 million hectares in 2018 giving rise to 17.16 tonnes/hectare 
of fresh fruit bunch (FFB) and 3.42 tonnes/hectare of palm oil (Malaysian Palm Oil 
Board, 2019a; Malaysian Palm Oil Board, 2019b; Malaysian Palm Oil Board, 2019c). 
Palm oil production is threatened by stem rot caused by Ganoderma boninense, leading 
to major yield loss (Tisné et al., 2017). 
 
 
Ganoderma boninense is a deadly white-rot basidiomycete which inflicts death to oil 
palm trees. White-rot basidiomycetes fully digest lignin while leaving behind white 
cellulose (Paterson, 2007). The major disease caused by G. boninense is Basal Stem Rot 
(BSR), a common recurrent disease in oil palm plantations (Ariffin et al., 2000) when 
oil palm trees are replanted. The disease progresses slowly without obvious symptoms 
during initial stage. Fruiting body appeared at a later stage of infection whereby the 
transportation of water and nutrient supply are greatly destructed (Ahmadi et al., 2017). 
Successful penetration of pathogenic fungi through cuticle and cell wall into host cells is 
the key to pathogenicity (An et al., 2018). Cell wall degrading enzymes (CWDEs) are 
needed by plant pathogenic fungi to penetrate plant cell wall (Kubicek et al., 2014). 
 
 
Lignin degrading enzymes (LDEs) are a subset of CWDEs specialize in 
depolymerisation of lignin. LDEs include LiP, MnP and Lac. Ho et al. (2016) found that 
LDE genes for MnPs and Lacs were up-regulated when oil palm was infected. There are 
many factors that can affect LDE secretion such as ratio of carbon to nitrogen, pH, 
temperature and mediators (Asgher et al., 2016b). The production of LDEs from white-
rot basidiomycetes was found to be suppressed upon application of nitrogen fertilizer 
(Magill and Aber, 1998).  
 
 
Soil fertility is important in ensuring plant biomass production. The macronutrients of 
soil are nitrogen, phosphorus and potassium (Emamgholizadeh et al., 2017). Over time, 
soil fertility declines with continuous cropping. This often resulted in increased usage of 
fertilizers to restore soil fertility and supply nutrients for plant growth. Insufficient 
nitrogen in plants increases susceptibility of plants to pathogens (Snoeijers et al., 2000). 
In addition, the forms of nitrogen (ammonium or nitrate) also affect pathogenesis (Huber 
and Watson, 1974). In the case of tobacco, nitrate induces resistance and ammonium 
compromises resistance host plant against hemibiotrophic pathogen (Gupta et al., 2013). 
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Other than nutrient availability, phytohormones also affect pathogenicity (Ma and Ma, 
2016). Salicylic acid (SA) is a phenolic compound produced by plants, and its 
biosynthesis and signaling pathway have been well characterized, demonstrating its 
important role as a signal involved in the plant defense against biotrophic pathogens (De 
Coninck et al., 2015). Jasmonic acid (JA) is a signalling molecule in plant defense against 
necrotrophic pathogens (De Coninck et al., 2015). Ganoderma boninense is a 
hemibiotroph, having both biotrophic and necrotrophic lifestyles. Thus, SA and JA may 
affect the pathogenicity of G. boninense. It was found that SA affects the secretion and 
enzyme activities of LDEs of G. boninense (Surendran et al., 2018). Surendran et al. 
(2018) also stated that phenolic compounds can be inhibitors for LDEs. However, 
literatures on the effect of SA and JA on gene expression for LDEs in G. boninense are 
not available. 
 
 
To date, there is no efficient ways for BSR management despite many approaches have 
been taken (Ahmadi et al., 2017). Studies on the effect of different nitrogen sources and 
phytohormones on the gene expression of LDEs might provide insights into the 
relationship between oil palm and G. boninense during infection. It is hoped that this 
information can help to lessen the severity of the oil palm disease in the future. This 
could be achieved by applying suitable nitrogen sources for growth of oil palm while 
limiting the oil palm disease. 
 
 
The specific objectives of this study were: 
 
1. To clone transcripts encoding fungal lignin degrading enzymes (LDEs) from G. 

boninense PER71; 
2. To measure fungal growth and expression of genes for LDEs of G. boninense treated 

with different nitrogen sources, phytohormones and hydrogen peroxide; 
3. To measure plant growth and disease symptoms of oil palm seedlings infected with 

G. boninense under treatment of different nitrogen sources.  
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