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Human respiratory syncytial virus (RSV) is one of the leading causes of 
childhood acute lower respiratory tract infection in Malaysia. It is responsible for 
significant morbidity and mortality among children, the elderly and individuals 
with chronic respiratory illnesses worldwide. Despite years of effort, currently 
there are neither licensed vaccines nor specific antiviral drugs against RSV. 
The severity of RSV-acquired diseases is predominantly caused by an 
overexuberant inflammatory response to the virus. Thus, a complete 
understanding of all the mechanisms that regulate cytokine production during 
RSV infection is crucial to further refine the therapeutic strategies to alleviate 
the excessive RSV-induced inflammatory response. Autophagy has recently 
been linked to the regulation of host cytokine responses to several viruses, 
including the vesicular stomatitis virus and the human immunodeficiency virus. 
In vivo studies using mouse model have shown that inhibiting autophagy 
attenuates the production of RSV-induced cytokines. However, the involvement 
of autophagy in the innate cytokine response of RSV-infected human cells has 
not been reported. Lung epithelial cells are known to be the main site of RSV 
infection and replication. Therefore, the main aim of this study was to 
determine the potential role of autophagy in regulating the production of RSV-
induced innate cytokine C-X-C motif ligand 8 (CXCL8) and C-C motif ligand 5 
(CCL5) production in lung epithelial BEAS-2B cells using both pharmacological 
inhibitors and short-interfering RNA knockdown approaches. It was found that 
RSV infection induced autophagy in BEAS-2B cells, as measured by CytoID® 
Autophagy Kit-based fluorescence microscopy and flow cytometry analyses. 
Inhibition of autophagy was performed using both pharmacological inhibitors 
and short-interfering RNA knockdown approaches. To confirm that autophagy 
inhibition does not affect cell viability, lactate dehydrogenase (LDH) assay was 
conducted. It was observed that inhibition of autophagy by the pharmacological 
inhibitors SAR405 and chloroquine (CQ); and siRNA-mediated knockdown of 
the autophagy protein Beclin-1 (Bec-1) did not kill the BEAS-2B cells. 
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Importantly, in contrast to the previous studies using mouse models, this study 
demonstrated that pharmacological inhibition of autophagy with SAR405 or CQ 
had no effect on RSV-induced CXCL8 and CCL5 production, as quantified by 
ELISA analysis. This was corroborated by a similar result obtained in Bec-1-
defecient BEAS-2B cells. Further investigation on the involvement of 
autophagy in mediating the replication of RSV in BEAS-2B cells was also 
performed in the present study. Surprisingly, while autophagy has been found 
to have no effect on cytokine responses, this study showed that inhibiting 
autophagy with CQ or knocking down the Bec-1 protein resulted in lower 
expression of RSV fusion (F) protein gene in BEAS-2B cells, implying that 
autophagy may be involved in the regulation of RSV replication in BEAS-2B 
cells. In short, although autophagy inhibition may not be an effective approach 
in reducing RSV-induced airway inflammation, the findings from this study 
suggest that it may be a critical mechanism for controlling RSV replication in 
human lung epithelial cells. 
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Virus pernafasan sinsitium manusia (RSV) merupakan salah satu faktor utama 
jangkitan saluran pernafasan bawah akut dalam kalangan kanak-kanak di 
Malaysia. Virus ini boleh menyebabkan morbiditi dan kematian dalam kalangan 
kanak-kanak, orang tua serta individu yang mempunyai penyakit pernafasan 
kronik di seluruh dunia. Walaupun banyak kajian telah dijalankan, vaksin 
berlesen dan ubat antivirus yang spesifik terhadap jangkitan RSV masih belum 
ditemui. Menurut kajian lepas, tahap keterukan penyakit perolehan RSV adalah 
disebabkan oleh tindak balas keradangan berlebihan terhadap RSV. Oleh itu, 
pemahaman yang menyeluruh mengenai mekanisma pengawalan penghasilan 
sitokin aruhan RSV adalah penting bagi mencari strategi terapeutik yang efektif 
bagi merencat tindak balas keradangan berlebihan terhadap RSV. 
Kebelakangan ini, autofagi dilaporkan terlibat dalam pengawalan tindak balas 
sitokin perumah terhadap pelbagai virus seperti virus stomatitis vesikel dan 
virus kurang imun manusia. Kajian in-vivo menggunakan model tikus telah 
menunjukkan keupayaan autofagi dalam merencat penghasilan sitokin aruhan 
RSV. Walau bagaimanapun, tiada sebarang kajian tentang penglibatan 
autofagi dalam tindak balas sitokin inat aruhan RSV yang pernah dilaporkan 
dengan menggunakan sel manusia. Sel epitelium paru-paru manusia 
merupakan pusat utama jangkitan dan replikasi RSV. Maka, objektif utama 
kajian ini adalah untuk mengesan fungsi autofagi dalam kawalan penghasilan 
sitokin inat C-X-C motif ligan 8 (CXCL8) dan C-C motif ligan 5 (CCL5) aruhan 
RSV di dalam sel BEAS-2B menggunakan perencat farmakologi dan siRNA. 
Jangkitan RSV telah didapati mengaruh autofagi di dalam sel BEAS-2B 
berdasarkan analisis mikroskopi pendarfluor dan sitometri aliran berasaskan kit 
         Autophagy. Perencatan autofagi dilakukan dengan menggunakan 
kaedah perencat farmakologi dan kaedah penyahfungsian gen oleh siRNA. 
Selain itu, asai laktat dehidrogenase (LDH) juga dilakukan bagi memastikan 
perencatan autofagi tidak mempengaruhi kebolehhidupan sel BEAS-2B. Hasil 
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kajian menunjukkan perencatan autofagi oleh perencat farmakologi SAR405 
dan penyingkiran protein autofagi, Beclin 1 (Bec-1) tidak menyebabkan 
kematian sel BEAS-2B yang signifikan. Walau bagaimanapun, perencatan 
autofagi oleh perencat farmakologi SAR405 dan chloroquine (CQ) tidak 
memberi sebarang kesan terhadap penghasilan CXCL8 and CCL5 aruhan 
RSV berdasarkan analisis ELISA, dimana ianya berbeza dengan kajian lepas 
yang menggunakan model tikus. Hasil kajian ini disokong oleh hasil yang 
diperolehi dengan mengunakan sel BEAS-2B yang kekurangan protein Bec-1. 
Selanjutnya, kajian tentang penglibatan autofagi dalam mengawal atur replikasi 
RSV juga dilakukan dan didapati, walaupun perencatan autofagi gagal 
mengawal tindak balas sitokin aruhan RSV, perencatan autofagi menggunakan 
CQ dan penyahaktifan protein Bec-1 telah berjaya mengurangkan 
pengekspresan protein taupan (F) RSV di dalam sel BEAS-2B. Hasil kajian ini 
menunjukkan autofagi memainkan peranan yang penting dalam mengawal atur 
replikasi RSV di dalam sel BEAS-2B. Kesimpulannya, walaupun autofagi tidak 
berupaya untuk merencat keradangan saluran udara aruhan RSV, hasil kajian 
ini memberikan pemahaman asas mengenai mekanisma autofagi yang penting 
dalam mengawal atur replikasi RSV di dalam sel epitelium paru-paru manusia. 
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HRP   Horse Radish Peroxidase 
 
IFN   interferon 
 
IL   interleukin 
 
kb              kilobase 
 
kDA   kilodaltons 
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NTC   no template control 
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PAMP   pathogen-associated molecular pattern 
 
PBS   phosphate-buffered saline 
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PRR   pattern recognition receptor 
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RSV   respiratory syncytial virus 
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scr   non-targeting scrambled control siRNA 
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V   volt 
 
VPS34   vacuolar protein sorting 34 
 
v/v   volume per volume 
 
W   Watts 
 
w/v   weight per volume 
 
 
 



© C
OPYRIG

HT U
PM

1 
 

CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background 
 

Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA 
virus which belongs to Pneumoviridae family (Rima et al., 2017; Tripp, 2004). It 
is one of the most prevalent respiratory viruses that causes childhood acute 
lower respiratory infection (ALRI) in Malaysia, and is also causes significant 
morbidity and mortality among children all over the world (Rahman et al., 2014; 
Weinberg, 2017). RSV can cause a wide range of respiratory symptoms such 
as cough, difficulty in breathing, bronchiolitis and pneumonia (Eiland, 2009). In 
2015, it was estimated that RSV-associated ALRI caused a total of 76,612 
deaths amongst children younger than 5 years in 195 countries including 
Malaysia (Troeger et al., 2017). Furthermore, childhood RSV hospitalisation 
has been linked to a higher risk of developing asthma and chronic wheezing 
later in life. (Henderson et al., 2005; Sigurs et al., 2005).  The severity of RSV-
associated illnesses is known to be higher among infants and young kids than 
adults due to their immature immune system and lack of protective antibodies 
(Paes et al., 2011).  
 

Despite years of effort, to this date, there are neither licensed active 
prophylactic vaccines nor specific antiviral therapies against RSV (Noor & 
Krilov, 2018; Rezaee et al., 2017). This is thought to be due to the intricate 
nature of the host and viral factors involved in disease pathogenesis, as well as 
the fact that natural infection offers only minimal protection against reinfection 
and illness (Carvajal et al., 2019; Graham, 2011). Currently, besides supportive 
care, Ribavirin and Palivizumab are the only licensed antiviral and prophylactic 
treatments to control RSV infection (Russell et al., 2017). However, the use of 
these medications are only prescribe to high-risk infants owing to inconvenient 
way of drug administration, high cost, toxicity and limited effectivity (Heylen et 
al., 2017). Therefore, the development of effective vaccines and antiviral 
therapeutics against RSV are urgently required.  
 

RSV infection begins with the entry of RSV into the host through eye, nose and 
mouth, followed by the spread of the virus to the lower respiratory tract (Eiland, 
2009). Lung epithelial cells have been shown to be the main site of RSV 
replication (Nuriev & Johansson, 2019). The innate immune response of lung 
epithelial cells is initiated by RSV infection through identification of viral 
pathogen-associated molecular patterns (PAMPs) by pattern recognition 
receptors (PRRs) such as toll-like receptor (TLR) 3 and TLR7. This recognition 
will ultimately contribute to the development of innate proinflammatory 
cytokines and type I interferons (IFNs) such as chemokine ligand 5 
(CCL5/RANTES) as well as chemokine (C-X-C motif) ligand 8 (CXCL8) by the 
infected cells (Kim & Lee, 2014; Russell et al., 2017). CXCL8 is a known to be 
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a good neutrophil chemoattractant, whereas CCL5 is well-known for its 
eosinophil chemoattractant activity (C. Liu et al., 2018). However, excessive 
level of CXCL8 has been shown to contribute to the severity of RSV infection 
by mediating the infiltration of neutrophils that can lead to acute inflammation of 
the infected airway (Russell et al., 2017). Thus, in order to improve the 
therapeutic strategies for reducing excessive RSV-induced airway 
inflammation, a thorough understanding of all of the mechanisms that are 
involved in the control of innate cytokine production is crucial. 
  

Recently, there is increasing evidence that the transmission of cytosolic viral 
replication intermediates to endosomal TLRs is aided by a self-digesting 
mechanism, namely autophagy. Autophagy is a cellular mechanism that uses a 
lysosomal degradation pathway to dispose of defective organelles, denatured 
proteins, and invading microorganisms. (Qian et al., 2017). Aside from 
preserving and sustaining cell homeostasis, autophagy has recently been 
attributed to the transmission of cytosolic PAMPs from several viruses to 
endosomal TLRs, resulting in the development of proinflammatory and antiviral 
cytokines. (Richetta & Faure, 2013; Yordy et al., 2013). Interestingly, 
autophagy has also been discovered to regulate replication of several viruses, 
including the poliovirus, hepatitis C virus (HCV), and human immunodeficiency 
virus 1 (HIV-1) (Choi et al., 2018). 
 

The role of autophagy in mediating the innate cytokine response has been 
reported by previous studies using mouse models. These in-vivo and in-vitro 
studies using mice cells demonstrated that inhibition of autophagy suppresses 
RSV-induced proinflammatory and antiviral cytokines (Morris et al., 2011; 
Owczarczyk et al., 2015; Pokharel et al., 2016; Michelle Reed et al., 2013). 
However, the involvement of autophagy in the innate immune response of 
RSV-infected human cells has not been reported. Since lung epithelial cells are 
widely acknowledged primary target of RSV infection and replication, the 
primary purpose of this experiment was to explore the role of autophagy in 
controlling innate cytokine CXCL8 and CCL5 production in human lung 
epithelial cells during RSV infection. 
 
 
1.2 Problem statement and hypothesis 
 

Although autophagy has been shown to be responsible for the overly exuberant 
immune response in RSV-infected murine cells, its role in regulating the innate 
cytokine response in human cells remains unknown. It was hypothesised in this 
study that inhibiting autophagy reduces innate cytokine production in RSV-
infected human lung epithelial cells. 
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1.3 Objectives 
 

The main objective of this research was to determine whether autophagy had a 
potential role in modulating the production of RSV-induced CXCL8 and CCL5 
in human lung epithelial cells. 
 

The specific objectives were: 
 

1. To determine the capability of RSV to stimulate autophagy pathway in 
human lung epithelial cells. 

2. To examine the effect of autophagy inhibition on innate cytokines 
CXCL8 and CCL5 production in RSV-infected lung epithelial cells using 
both pharmacological inhibitors and short-interfering RNA knockdown 
approaches. 

3. To elucidate the involvement of autophagy in RSV replication. 



© C
OPYRIG

HT U
PM

70 
 

REFERENCES 
 

Abernathy, E., Mateo, R., Majzoub, K., van Buuren, N., Bird, S. W., Carette, J. 
E., & Kirkegaard, K. (2019). Differential and convergent utilization of 
autophagy components by positive-strand RNA viruses. PLoS Biology, 
17(1), 1–28.  

 
Adams, O., Weis, J., Jasinska, K., Vogel, M., & Tenebaum, T. (2015). 

Comparison of human metapneumovirus, respiratory syncytial virus and 
rhinovirus respiratory tract infections in young children admitted to 
hospital. Journal of Medical Virology, 87, 275–280. 

 
Ahmad, L., Mostowy, S., & Sancho-Shimizu, V. (2018). Autophagy-virus 

interplay: From cell biology to human disease. Frontiers in Cell and 
Developmental Biology, 6(NOV), 1–8.  

 
Alibert, C., Goud, B., & Manneville, J.-B. (2017). Are cancer cells really softer 

than normal cells? Biol. Cell, 109, 167–189.  
 
Amoêdo, N. D., Valencia, J. P., Rodrigues, M. F., Galina, A., & Rumjanek, F. D. 

(2013). How does the metabolism of tumour cells differ from that of 
normal cells. Bioscience Reports, 33(6), 865–873.  

 
Badadani, M. (2012). Autophagy mechanism, regulation, functions, and 

disorders. International Scholarly Research Network ISRN Cell Biology, 
2012, 1–11.  

 
Baggiolini, M., & Clark-Lewis, I. (1992). Interleukin-8, a chemotactic and 

inflammatory cytokine. FEBS Letters, 307(1), 97–101.  
 
Battles, M. B., & McLellan, J. S. (2019). Respiratory syncytial virus entry and 

how to block it. Nature Reviews Microbiology, 17, 233–245.  
 
Bem, R. A., Bont, L. J., & M van Woensel, J. B. (2020). Life-threatening 

bronchiolitis in children: eight decades of critical care. The Lancet 
Respiratory, 8, 142–144. 

 
Bishara, N. (2012). The use of biomarkers for detection of early- and late-onset 

neonatal sepsis. In Hematology, Immunology and Infectious Disease: 
Neonatology Questions and Controversies 303–315.  

 
Blagosklonny, M. V. (2019). Rapamycin for longevity: Opinion article. Aging, 

11(19), 8048–8067.  
 
Bohmwald, K., Gálvez, N. M. S., Canedo-Marroquín, G., Pizarro-Ortega, M. S., 

Andrade-Parra, C., Gómez-Santander, F., & Kalergis, A. M. (2019). 
Contribution of cytokines to tissue damage during human respiratory 
syncytial virus infection. Frontiers in Immunology, 10(MAR), 1–16.  

Borchers, A. T., Chang, C., Gershwin, M. E., & Gershwin, L. J. (2013). 
Respiratory syncytial virus — A comprehensive review. Clinical Review 



© C
OPYRIG

HT U
PM

 

71 
 

Allergy Immunology, 45, 331–379.  
 
Carvajal, J. J., Avellaneda, A. M., Salazar-Ardiles, C., Maya, J. E., Kalergis, A. 

M., & Lay, M. K. (2019). Host components contributing to respiratory 
syncytial virus pathogenesis. Frontiers in Immunology, 10(2152), 1–19.  

 
Chan, L. C. Masters Thesis. Transcriptomic Analysis of EJ28 Bladder Cancer 

Cells Persistently Infected with Newcastle Disease Virus. Universiti Putra 
Malaysia, 2018. 

 
Chatterjee, S., Munshi, C., & Bhattacharya, S. (2016). The role of mTOR, 

autophagy, apoptosis, and oxidative stress during toxic metal injury. In 
Molecules to Medicine with mTOR: Translating Critical Pathways into 
Novel Therapeutic Strategies 69–81.  

 
Chia, S. L. PhD Thesis. Evaluation of Newcastle Disease Virus as An Oncolytic 

Agent in Colorectal Cancer Cell Lines. Universiti Putra Malaysia, 2012. 
Chiramel, A. I., & Best, S. M. (2018). Role of autophagy in Zika virus infection 

and pathogenesis. Virus Research, 254, 34–40.  
 
Choi, Y., Bowman, J. W., & Jung, J. U. (2018). Autophagy during viral infection 

- A double-edged sword. Nature Reviews Microbiology, 16, 341–354.  
 
Chow, J., Franz, K. M., & Kagan, J. C. (2015). PRRs are watching you: 

Localization of innate sensing and signaling regulators. Virology, 479–
480, 104–109.  

 
Collins, Peter L., Fearns, R & Graham, B. S. (2013). Respiratory syncytial 

virus: Virology, reverse genetics, and pathogenesis of disease. Current 
Topics in Microbiology and Immunology, 372, 3–38.  

 
Collins, P. L., & Graham, B. S. (2008). Viral and host factors in human 

respiratory syncytial virus pathogenesis. Journal of Virology, 82(5), 2040–
2055.  

 
Cui, B., Lin, H., Yu, J., Yu, J., & Hu, Z. (2019). Autophagy and the immune 

response. In Advances in Experimental Medicine and Biology 1206, 595–
634. 

 
Culley, F. J., Pennycook, A. M. J., Tregoning, J. S., Dodd, J. S., Walzl, G., 

Wells, T. N., … Openshaw, P. J. M. (2006). R le  f   L5 (RANTES) in 
viral lung disease. Journal of Virology, 80(16), 8151–8157. 

  
Das, S., St.  r ix,  ., G  d, M.,  hen, J., Zha , J., Hu, S., … Ra , P. (2020). 

Interleukin-22 inhibits respiratory syncytial virus production by blocking 
virus-mediated subversion of cellular autophagy. IScience, 23(7), 1–23.  

 
Drysdale, S. B., Green, C. A., & Sande, C. J. (2016). Best practice in the 

prevention and management of paediatric respiratory syncytial virus 
infection. Therapeutic Advances in Infectious Disease, 3(2), 63–71.  

Eiland, L. S. (2009). Respiratory syncytial virus: diagnosis, treatment and 



© C
OPYRIG

HT U
PM

 

72 
 

prevention. The Journal of Pediatric Pharmacology and Therapeutics, 14, 
75–85.  

 
Erickson, E. N., & Mendez, M. D. (2019). Pediatric bronchiolitis. In StatPearls. 

1–8  
 
Fearns, R., & Deval, J. (2016). New antiviral approaches for respiratory 

syncytial virus and other mononegaviruses: Inhibiting the RNA 
polymerase. Antiviral Research, 134, 63–76.  

 
Florin, T. A., Plint, A. C., & Zorc, J. J. (2017). Viral bronchiolitis. The Lancet, 

389, 211–224.  
 
Fraire, A. E., Woda, B. A., Welsh, R. M., & Kradin, R. L. (2014). Lung defenses. 

Viruses and the Lung, 9–11 
 
Gálvez, N. M. S., Soto, J. A., & Kalergis, A. M. (2017). New insights 

contributing to the development of effective vaccines and therapies to 
reduce the pathology caused by hRSV. International Journal of Molecular 
Sciences, 18(8) 1–19. 

 
Garofalo, R., Kimpen, J. L. L., Welliver, R. C., & Ogra, P. L. (1992). Eosinophil 

degranulation in the respiratory tract during naturally acquired respiratory 
syncytial virus infection. The Journal of Pediatrics, 120(1), 28–32.  

 
Geerdink, R. J., Pillay, J., Meyaard, L., & Bont, L. (2015). Neutrophils in 

respiratory syncytial virus infection: A target for asthma prevention. 
Journal of Allergy and Clinical Immunology, 136(4), 838–847.  

 
Glaser, L., Coulter, P. J., Shields, M., Touzelet, O., Power, U. F., & Broadbent, 

L. (2019). Airway epithelial derived cytokines and chemokines and their 
role in the immune response to respiratory syncytial virus infection. 
Pathogens, 8(106), 1–25.  

 
Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: Cellular and 

molecular mechanisms. Journal of Pathology, 221(1), 3–12.  
 
González, P. A., Prado, C. E., Leiva, E. D., Carreño, L. J., Bueno, S. M., 

Riedel, C. A., & Kalergis, A. M. (2008). Respiratory syncytial virus impairs 
T cell activation by preventing synapse assembly with dendritic cells. 
Proceedings of the National Academy of Sciences of the United States of 
America, 105(39), 14999–15004.  

 
Graham, B. S. (2011). Biological challenges and technological opportunities for 

respiratory syncytial virus vaccine development. Immunological Reviews, 
239(1), 149–166.  

 
Griffiths, C., Drews, S. J., & Marchant, D. J. (2017). Respiratory syncytial virus: 

Infection, detection, and new options for prevention and treatment. 
Clinical Microbiology Reviews, 30(1), 277–319.  

Hansbro, N. G., Horvat, J. C., Wark, P. A., & Hansbro, P. M. (2007). 



© C
OPYRIG

HT U
PM

 

73 
 

Understanding the mechanisms of viral induced asthma: New therapeutic 
directions. Pharmacology and Therapeutics, 117(3) 313–353.  

 
Hart, C. A., & Cuevas, L. E. (2007). Acute respiratory infections in children. 

Revista Brasileira de Saude Materno Infantil, 7(1), 23–29.  
 
Helgason, G. V., Karvela, M., & Holyoake, T. L. (2011). Kill one bird with two 

stones: Potential efficacy of BCR-ABL and autophagy inhibition in CML. 
Blood, 118(8), 2035–2043.  

 
Henderson, J., Hilliard, T. N., Sherriff, A., Stalker, D., Al Shammari, N., & 

Thomas, H. M. (2005). Hospitalization for RSV bronchiolitis before 12 
months of age and subsequent asthma, atopy and wheeze: A longitudinal 
birth cohort study. Pediat Allergy Immunol., 16(5), 386-392. 

 
Heylen, E., Neyts, J., & Jochmans, D. (2017). Drug candidates and model 

systems in respiratory syncytial virus antiviral drug discovery. Biochemical 
Pharmacology, 127, 1–12.  

 
Hill er, P., Shepard, R., Uehling, M., Krenz, M., Sheikh, F., Tha er, K. R., … 

Rabin, R. L. (2018). Differential responses by human respiratory epithelial 
cell lines to respiratory syncytial virus reflect distinct patterns of infection 
control. Journal of Virology, 92(15), 1–21.  

 
Hurwitz, J. L. (2011). Respiratory syncytial virus vaccine development. Expert 

Review of Vaccines, 10(10), 1415–1433.  
 
Ishii, K. J., Koyama, S., Nakagawa, A., Coban, C., & Akira, S. (2008). Host 

innate immune receptors and beyond: Making sense of microbial 
infections. Cell Host and Microbe, 3(6), 352–363.  

 
Ismail, S. PhD Thesis. The regulation of inflammatory responses of airway 

epithelial cells and fibroblasts to rhinoviral infection. The University of 
Sheffield, 2015. 

 
Ismail, S., Stokes, C. A., Prestwich, E. C., Roberts, R. L., Juss, J. K., Sabroe, 

I., & Parker, L. C. (2014). Phosphoinositide-3 kinase inhibition modulates 
responses to rhinovirus by mechanisms that are predominantly 
independent of autophagy. PLoS ONE, 9(12), 1–28. 

 
Jha, A., Jarvis, H., Fraser, C., & Openshaw, P. J. M. (2016). Respiratory 

syncytial virus. Eur. Respir. Soc. Monogr., 72, 84–109.  
 
Justice, N. A., & Le, J. K. (2020). Bronchiolitis. StatPearls. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/28722988 
 
Kapuscinski, J. (1995). DAPI: A DMA-Specific fluorescent probe. Biotechnic 

and Histochemistry, 70(5), 220–233.  
 
Kim, K. S., Kim, A. R., Piao, Y., Lee, J. H., & Quan, F. S. (2017). A rapid, 

simple, and accurate plaque assay for human respiratory syncytial virus 



© C
OPYRIG

HT U
PM

 

74 
 

(HRSV). Journal of Immunological Methods, 446, 15–20. 
  
Kim, T. H., & Lee, H. K. (2014). Innate immune recognition of respiratory 

syncytial virus infection. BMB Reports, 47(4), 184–191.  
 
King, J. S., Veltman, D. M., & Insall, R. H. (2011). The induction of autophagy 

by mechanical stress. Autophagy, 7(12), 1490–1499.  
 
Kocaturk, N. M., Akkoc, Y., Kig, C., Bayraktar, O., Gozuacik, D., & Kutlu, O. 

(2019). Autophagy as a molecular target for cancer treatment. European 
Journal of Pharmaceutical Sciences, 134(5), 116–137.  

 
Krishnan, A., Kumar, R., Broor, S., Gopal, G., Saha, S., Amarchand, R., … 

Jain, S. (2019). Epidemiology of viral acute lower respiratory infections in 
a community-based cohort of rural north Indian children. Journal of Global 
Health, 9(1), 1–9.  

 
Kumar, H., Kawai, T., & Akira, S. (2011). Pathogen recognition by the innate 

immune system. International Reviews of Immunology, 30(1), 16–34.  
 
Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of cell viability by the 

lactate dehydrogenase assay. Cold Spring Harbor Protocols, 2018(6), 
465–468.  

 
Lampada, A., O’Pre , J., Szabadkai, G., R an, K. M., H chhauser,  ., & 

Salomoni, P. (2017). MTORC1-independent autophagy regulates receptor 
tyrosine kinase phosphorylation in colorectal cancer cells via an 
mTORC2-mediated mechanism. Cell Death and Differentiation, 24, 1045–
1062.  

 
Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N., & Iwasaki, A. (2007). 

Autophagy-dependent viral recognition by plasmacytoid dendritic cells. 
Science, 315(5817), 1398–1401.  

 
Li, J., Kim, S. G., & Blenis, J. (2014). Rapamycin: one drug, many effects. Cell 

Metab., 19(3), 373–379. https://doi.org/10.1016/j.cmet.2014.01.001 
 
Li, M., Li, J., Yang, J., Liu, J., Zhang, Z., S ng, X., … Wei, L. (2018). 

Respiratory syncytial virus replication is promoted by autophagy-mediated 
inhibition of apoptosis. Journal of Virology, 92(8), 1–21.  

 
Lin, X., Han, L., Weng, J., Wang, K., & Chen, T. (2018). Rapamycin inhibits 

proliferation and induces autophagy in human neuroblastoma cells. 
Bioscience Reports, 38, 1–8.  

 
Liu,  ., Zhang, X., Xiang, Y., Qu, X., Liu, H., Liu,  ., … Qin, X. (2018). R le  f 

epithelial chemokines in the pathogenesis of airway inflammation in 
asthma (Review). Molecular Medicine Reports, 17(5), 6935–6941.  

 
Liu, Q., Xu,  ., Kirubakaran, S., Zhang, X., Hur, W., Liu, Y., … Gra , N. S. 

(2013). Characterization of Torin2, an ATP-competitive inhibitor of mTOR, 



© C
OPYRIG

HT U
PM

 

75 
 

ATM, and ATR. Cancer Research, 73(8), 2574–2586.  
 
Liu, T., Zhang, J., Li, K.,  eng, L., Wang, H.,   rdani, M., … Manuela M re  i, 

R. (2020). Combination of an autophagy inducer and an autophagy 
inhibitor: A smarter strategy emerging in cancer therapy. Frontiers in 
Pharmacology, 11(408), 1–14. 

 
Mansbach, J. M., & Hasegawa, K. (2018). Overcoming the bronchiolitis blues: 

Embracing global collaboration and disease heterogeneity. Pediatrics, 
142(3).  

 
Manuse, M. J., Briggs, C. M., & Parks, G. D. (2010). Replication-independent 

activation of human plasmacytoid dendritic cells by the paramyxovirus 
SV5 Requires TLR7 and autophagy pathways. Virology, 405(2), 383–389.  

 
Mao, J., Lin, E., He, L., Yu, J., Tan, P., & Zhou, Y. (2019). Autophagy and viral 

infection. In Advances in Experimental Medicine and Biology 1209, 55–
78. 

  
Marr, N., Turvey, S. E., & Grandvaux, N. (2013). Pathogen recognition receptor 

crosstalk in respiratory syncytial virus sensing: A host and cell type 
perspective. Trends in Microbiology, 21(11), 568–574. 
https://doi.org/10.1016/j.tim.2013.08.006 

 
Marsh, T., & Debnath, J. (2015). Ironing out VPS34 inhibition. Nature Cell 

Biology, 17(1), 1–3.  
 
Mau he, M., Orh n,  ., R cchi,  ., Zh u, X., Luhr, M., Hijlkema, K. J., … 

Reggiori, F. (2018). Chloroquine inhibits autophagic flux by decreasing 
autophagosome-lysosome fusion. Autophagy, 14(8), 1435–1455.  

 
McKimm-Breschkin, J. L. (2004). A simplified plaque assay for respiratory 

syncytial virus - Direct visualization of plaques without immunostaining. 
Journal of Virological Methods, 120(1), 113–117.  

 
Mizui, T., Yamashina, S., Tanida,  ., Takei, Y., Uen , T., Sakam   , N., … 

Watanabe, S. (2010). Inhibition of hepatitis C virus replication by 
chloroquine targeting virus-associated autophagy. Journal of 
Gastroenterology, 45, 195–203. 

 
Mizushima, N. (2007). Autophagy: Process and function. Genes & 

Development, 21, 2861–2873.  
 
Mogensen, T. H. (2009). Pathogen recognition and inflammatory signaling in 

innate immune defenses. Clinical Microbiology Reviews, 22(2), 240–273.  
 
Morris, S., Swanson, M. S., Lieberman, A., Reed, M., Yue, Z., Lindell, D. M., & 

Lukacs, N. W. (2011). Autophagy-mediated dendritic cell activation is 
essential for innate cytokine production and APC function with respiratory 
syncytial virus responses. The Journal of Immunology, 187(8), 3953–
3961.  



© C
OPYRIG

HT U
PM

 

76 
 

 
Mufson, M. A., Orvell, C., Rafnar, B., & Norrby, E. (1985). Two distinct 

subtypes of human respiratory syncytial virus. Journal of General 
Virology, 66, 2111–2124.  

 
Muñoz-Escalante, J. C., Comas-García, A., Bernal-Silva, S., Robles-Espinoza, 

C. D., Gómez-Leal, G., & Noyola, D. E. (2019). Respiratory syncytial virus 
A genotype classification based on systematic intergenotypic and 
intragenotypic sequence analysis. Scientific Reports, 9(1).  

 
Nam, H. H., & Ison, M. G. (2019). Respiratory syncytial virus infection in adults. 

The BMJ, 366, 1–17.  
 
Ndoye, A., & Weeraratna, A. T. (2016). Autophagy- An emerging target for 

melanoma therapy. F1000Research, 5, 1–9.  
 
Ng, K. F., Tan, K. K., Sam, Z. H., Ting, G. S. S., & Gan, W. Y. (2017). 

Epidemiology, clinical characteristics, laboratory findings and severity of 
respiratory syncytial virus acute lower respiratory infection in Malaysian 
children, 2008–2013. Journal of Paediatrics and Child Health, 53(4), 399–
407.  

 
Noor, A., & Krilov, L. R. (2018). Respiratory syncytial virus vaccine: Where are 

we now and what comes next? Expert Opinion on Biological Therapy, 18, 
1–11.  

 
Nuriev, R., & Johansson, C. (2019). Chemokine regulation of inflammation 

during respiratory syncytial virus infection. F1000Research, 8, 1–11.  
 
Oh, D. S., Park, J. H., Jung, H. E., Kim, H. J., & Lee, H. K. (2020). Autophagic 

protein ATG5 controls antiviral immunity via glycolytic reprogramming of 
dendritic cells against respiratory syncytial virus infection. Autophagy, 1–
17.  

Oh, J. E., & Lee, H. K. (2012). Modulation of pathogen recognition by 
autophagy. Frontiers in Immunology, 3(44), 1–8.  

 
Okomo, U., Idoko, O. T., & Kampmann, B. (2020). Comment The burden of 

viral respiratory infections in young children in low-resource settings. The 
Lancet Global Health, 8, 454–455.  

 
Openshaw, P. J. M., Chiu, C., Culley, F. J., & Johansson, C. (2017). Protective 

and harmful immunity to RSV infection. Annual Review of Immunology, 
35, 501–532. 

 
Owczarczyk, A. B., Schaller, M. A., Reed, M., Rasky, A. J., Lombard, D. B., & 

Lukacs, N. W. (2015). Sirtuin 1 regulates dendritic cell activation and 
autophagy during respiratory syncytial virus–induced immune responses. 
The Journal of Immunology, 195, 1637–1646.  

 
Paes, B. A., Mitchell, I., Banerji, A., Lanctôt, K. L., & Langley, J. M. (2011). A 

decade of respiratory syncytial virus epidemiology and prophylaxis: 



© C
OPYRIG

HT U
PM

 

77 
 

Translating evidence into everyday clinical practice. Canadian Respiratory 
Journal, 18, 10–19.  

Parhizgar, A. R. (2017). Introducing new antimalarial analogues of chloroquine 
and amodiaquine: A narrative review. Iranian Journal of Medical 
Sciences, 42(2), 115–128. 

  
Pasquier, B. (2015). SAR405, a PIK3C3/VPS34 inhibitor that prevents 

autophagy and synergizes with MTOR inhibition in tumor cells. 
Autophagy, 11(4), 725–726.  

 
Pe rarca L, Jacin   T, N. R. (2017). The  rea men   f acu e br nchi li is : Pas  , 

present and future. Breathe, 13, 24–26. 
 
Pokharel, S. M., Shil, N. K., & Bose, S. (2016). Autophagy, TGF-β, and SMA -

2/3 signaling regulates interferon-β resp nse in respira  ry syncytial virus 
infected macrophages. Frontiers in Cellular and Infection Microbiology, 
6(174), 1–9. 

 
Qian, M., Fang, X., & Wang, X. (2017). Autophagy and inflammation. Clinical 

and Translational Medicine, 6(24), 1–11.  
 
Rahman, M. M., Wong, K. K., Hanafiah, A., & Isahak, I. (2014). Influenza and 

respiratory syncytial viral infections in Malaysia: Demographic and clinical 
perspective. Pakistan Journal of Medical Sciences, 30(1), 161–165. 

  
Rayavara, K., Kurosky, A., Stafford, S. J., Garg, N. J., Brasier, A. R., Garofalo, 

R. P., & Hosakote, Y. M. (2018). Proinflammatory effects of respiratory 
syncytial virus–induced epithelial HMGB1 on human innate immune cell 
activation. The Journal of Immunology, 201, 2753–2766.  

 
Reed, M., Morris, S. H., Owczarczyk, A. B., & Lukacs, N. W. (2015). Deficiency 

of autophagy protein Map1-LC3b mediates IL-17-dependent lung 
pathology during respiratory viral infection via ER stress-associated IL-1. 
Mucosal Immunology, 8(5), 1118–1130.  

 
Reed, Michelle, Morris, S. H., Jang, S., Mukherjee, S., Yue, Z., & Lukacs, N. 

W. (2013). Autophagy-inducing protein Beclin-1 in dendritic cells 
regulates CD4 T cell responses and disease severity during respiratory 
syncytial virus infection. The Journal of Immunology, 191, 2526–2537.  

 
Rezaee, F., Linfield, D. T., Harford, T. J., & Piedimonte, G. (2017). Ongoing 

devel pmen s in RSV pr ph laxis: A clinician’s anal sis. Current Opinion 
in Virology, 24, 70–78.  

 
Richetta, C., & Faure, M. (2013). Autophagy in antiviral innate immunity. 

Cellular Microbiology, 15(3), 368–376.  
 
Rima, B.,   llins, P., Eas  n, A., F uchier, R., Kura h, G., Lamb, R. A., … 

Wang, L. (2017). ICTV virus taxonomy profile: Pneumoviridae. Journal of 
General Virology, 98(12), 2912–2913. 

 



© C
OPYRIG

HT U
PM

 

78 
 

R nan, B., Flamand, O., Vesc vi, L.,  ureuil,  .,  urand, L., Fass , F., … 
Pasquier, B. (2014). A highly potent and selective Vps34 inhibitor alters 
vesicle trafficking and autophagy. Nature Chemical Biology, 10, 1013–
1019.  

 
Rosenberg, H. F., & Domachowske, J. B. (2012). Inflammatory responses to 

respiratory syncytial virus (RSV) infection and the development of 
immunomodulatory pharmacotherapeutics. Current Medicinal Chemistry, 
19(10), 1424–1431. 

 
Rossi, G. A., & Colin, A. A. (2014). Infantile respiratory syncytial virus and 

human rhinovirus infections: Respective role in inception and persistence 
of wheezing. European Respiratory Journal, 1–16.  

 
Ruckwardt, T. J., Morabito, K. M., & Graham, B. S. (2019). Immunological 

lessons from respiratory syncytial virus vaccine development. Immunity, 
51(3), 429–442. 

 
Rudan,  ., O’Brien, K. L., Nair, H., Liu, L., The d ra  u, E., Qazi, S., … 

Campbell, H. (2013). Epidemiology and etiology of childhood pneumonia 
in 2010: Estimates of incidence, severe morbidity, mortality, underlying 
risk factors and causative pathogens for 192 countries. Journal of Global 
Health, 3(1), 1–14. 

 
Russell, C. D., Unger, S. A., Walton, M., & Schwarze, J. (2017). The human 

immune response to respiratory syncytial virus infection. Clinical 
Microbiology Reviews, 30(2), 481–502.  

 
S., S., & Patel, S. (2018). A study on distribution pattern of lower respiratory 

tract infections in children under 5 years in a tertiary care centre. 
International Journal of Contemporary Pediatrics, 5(2), 456.  

 
Sabbah, A., Chang, T. H., Harnack, R., Frohlich, V., Tominaga, K., Dube, P. H., 

… B se, S. (2009). Ac iva i n  f inna e immune an iviral resp nse b  
NOD2. Nat Immunol, 10(10), 1073–1080. https://doi.org/10.1038/ni.1782 

 
Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., & Cassone, A. (2006). New 

insights into the antiviral effects of chloroquine. Lancet Infectious 
Diseases, 6, 67–69.  

 
Schweitzer, J. W., & Justice, N. A. (2020). Respiratory syncytial virus infection 

(RSV). In StatPearls. 16(4), 232-241. 
 
Sigurs, N., Gustafsson, P. M., Bjarnason, R., Lundberg, F., Schmidt, S., 

Sigurbergsson, F., & Kjellman, B. (2005). Severe respiratory syncytial 
virus bronchiolitis in infancy and asthma and allergy at age 13. American 
Journal of Respiratory and Critical Care Medicine, 171(2), 137–141.  

 
Son, Y. O., Pratheeshkumar, P., Divya, S. P., Zhang, Z., & Shi, X. (2017, May 

19). Nuclear factor erythroid 2-related factor 2 enhances carcinogenesis 
by suppressing apoptosis and promoting autophagy in nickel-transformed 



© C
OPYRIG

HT U
PM

 

79 
 

cells. Journal of Biological Chemistry, 292, 8315–8330.  
 
Subramanian, G., Kuzmanovic, T., Zhang, Y., Peter, C. B., Veleeparambil, M., 

 hakravar i, R., …  ha   padh a , S. (2018). A new mechanism  f 
in erfer n’s an iviral ac i n:  nduc i n  f au  phag , essential for 
paramyxovirus replication, is inhibited by the interferon stimulated gene, 
TDRD7. PLoS Pathogens, 14(1) 1-25.  

 
Tan, L., Lemey, P., Houspie, L., Viveen, M. C., Jansen, N. J. G., van Loon, A. 

M., …   enjaer s, F. E. (2012). Gene ic Variabili   am ng   mple e 
Human Respiratory Syncytial Virus Subgroup A Genomes: Bridging 
Molecular Evolutionary Dynamics and Epidemiology. PLoS ONE, 7(12), 
51439. 

 
Tripp, R. A. (2004). Pathogenesis of respiratory syncytial virus infection. Viral 

Immunology, 17(2), 165–181.  
 
Tr eger,  ., F r uzanfar, M., Ra , P.  ., Khalil,  ., Br wn, A., Swar z, S., … 

Mokdad, A. H. (2017). Estimates of the global, regional, and national 
morbidity, mortality, and aetiologies of lower respiratory tract infections in 
195 countries: a systematic analysis for the Global Burden of Disease 
Study 2015. The Lancet Infectious Diseases, 17, 1133–1161.  

 
Vandini, S., Biagi, C., & Lanari, M. (2017). Respiratory syncytial virus: The 

influence of serotype and genotype variability on clinical course of 
infection. International Journal of Molecular Sciences, 18, 1–17.  

 
Vandini, S., Calamelli, E., Faldella, G., & Lanari, M. (2017). Immune and 

inflammatory response in bronchiolitis due to respiratory Syncytial Virus 
and Rhinovirus infections in infants. Paediatric Respiratory Reviews, 24, 
60–64.  

 
Vázquez, Y., González, L., Noguera, L., González, P. A., Riedel, C. A., 

Bertrand, P., & Bueno, S. M. (2019). Cytokines in the respiratory airway 
as biomarkers of severity and prognosis for respiratory syncytial virus 
infection: An update. Frontiers in Immunology, 10(1154), 1–13.  

 
Wang, C., Wang, X., Su, Z., Fei, H., Liu, X., & Pan, Q. (2015). The novel 

mTOR inhibitor Torin-2 induces autophagy and downregulates the 
expression of UHRF1 to suppress hepatocarcinoma cell growth. 
Oncology Reports, 34, 1708–1716.  

 
Wang, L., & Ou, J. H. J. (2018). Regulation of autophagy by hepatitis C virus 

for its replication. DNA and Cell Biology, 37(4), 287–290. 
  
Wang, R., Zhu, Y., Zha , J., Ren,  ., Li, P.,  hen, H., … Zh u, H. (2018). 

Autophagy promotes replication of influenza A virus in vitro. Journal of 
Virology, 93(4), 1–17.  

 
Weinberg, G. A. (2017). Respiratory syncytial virus mortality among young 

children. The Lancet Global Health, 5, 951–952.  



© C
OPYRIG

HT U
PM

 

80 
 

 
White, E. (2015). The role for autophagy in cancer. Journal of Clinical 

Investigation, 125(1), 42–46. https://doi.org/10.1172/JCI73941 
 
Yeganeh, B., Ghavami, S., Rahim, M. N., Klonisch, T., Halayko, A. J., & 

Coombs, K. M. (2018). Autophagy activation is required for influenza A 
virus-induced apoptosis and replication. Biochimica et Biophysica Acta - 
Molecular Cell Research, 1865, 364–378.  

 
Yoneyama, M., & Fujita, T. (2010). Recognition of viral nucleic acids in innate 

immunity. Reviews in Medical Virology, 20, 4–22.  
 
Yordy, B., Tal, M. C., Hayashi, K., Arojo, O., & Iwasaki, A. (2013). Autophagy 

and selective deployment of Atg proteins in antiviral defense. International 
Immunology, 25(1), 1–10. 

 
Zetti, R. Z., Lee, P. C., Ali, K., Najihan, M., Samat, A., & Tang, S. F. (2018). 

Multiplex real-yime PCR detection of respiratory viruses in lower 
respiratory tract infections in children. Sains Malaysiana, 47(11), 2821–
2829.  

 
Zhang, S., Yi,  ., Li,  ., Zhang, F., Peng, J., Wang, Q., … Qu, L. (2019). 

Chloroquine inhibits endosomal viral RNA release and autophagy-
dependent viral replication and effectively prevents maternal to fetal 
transmission of Zika virus. Antiviral Research, 169.  

 
Zh u,  ., Kang, K. H., & Spec  r, S. A. (2012). Pr duc i n  f in erfer n α b  

human immunodeficiency virus type 1 in human plasmacytoid dendritic 
cells is dependent on induction of autophagy. Journal of Infectious 
Diseases, 205, 1258–1267.  

 
Zlateva, K. T., Lemey, P., Moës, E., Vandamme, A.-M., & Van Ranst, M. 

(2005). Genetic variability and molecular evolution of the human 
respiratory syncytial virus subgroup B attachment G protein. Journal of 
Virology, 79(14), 9157–9167.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




