UNIVERSITI PUTRA MALAYSIA

INJURY CHARACTERISTICS OF MOTORCYCLISTS INVOLVED IN MOTORCYCLE CRASHES IN KLANG VALLEY, MALAYSIA

PANG TOH YEN

FK 2000 3
INJURY CHARACTERISTICS OF MOTORCYCLISTS INVOLVED IN MOTORCYCLE CRASHES IN KLANG VALLEY, MALAYSIA

By

PANG TOH YEN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Engineering
Universiti Putra Malaysia

February 2000
Dedicated to my beloved family:

Dad, Mum,

Brother, Sister-in-law, Sister

and Grandmother
The objectives of this study were to establish the relationship between injury outcomes and i) riders' characteristics, ii) their exposure and iii) the motorcycle factors resulting from serious and fatal motorcycle crashes. Data on motorcycle crashes and injuries from January to December 1998 were obtained from two sources, namely the police reports and hospital records. These linked data were then used to examine the injury patterns sustained by the motorcyclists involved in motorcycle crashes in Malaysia. In order to assess the independent variables in influencing the injury outcome, the logistic regression method was used to determine the odds ratios and the multivariate models for the injured motorcyclists.

In the statistical analysis, a total of five independent variables were found to significantly (p<0.05) influence the fatality risk. Those variables were (i) age of motorcyclists, (ii) engine capacity of the motorcycles, (iii) objects struck, (iii) objects struck,
(iv) type of collisions and (v) location sites. Results showed that fatality risks were likely to associate with older motorcyclists, larger engine motorcycles, collision with a heavy commercial vehicle, head-on collision, and non-junction sites.

The study also revealed that the most frequent injuries to fatally injured motorcyclists were head injuries (56.5%) and chest injuries (27.4%). Injuries to the lower limbs, however, accounted for the highest proportion (54.4%) for the serious injury cases investigated. This is followed by the upper limb injuries (19.9%). Most motorcyclists were detained for one or two nights for observation and recovery. The mean stay for all patients were about 5 days. However, those motorcyclists who suffered from lower limb injuries often required longer stay in hospital.

In addition, the study indicated that side collisions presented a difficult problem in crash protection towards the lower limbs. Despite the fact that most motorcycles in Malaysia had very little crushable and protective structure around the rider’s lower limb region. Whereas, this kind of protection was found to reduce the risk of lower limb injuries in many studies. As such, further investigation on the design of effective leg protector for motorcyclists should be carried out.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

SIFAT-SIFAT KECEDERAAN PENUNGGANG MOTOSIKAL AKIBAT KECELAKAAN MOTOSIKAL DI LEMBAH KLANG, MALAYSIA

Oleh

PANG TOH YEN

Februari 2000

Pengerusi : Radin Umar Radin Sohadi, Ph.D.
Fakulti : Kejuruteraan

Objektif kajian ini adalah untuk membentuk perhubungan antara (i) individu, (ii) pendedahan trafik dan (iii) faktor-faktor kenderaan dengan tahap kecederaan akibat daripada kecelakaan parah dan maut yang melibatkan pengguna motosikal di Malaysia. Data kecelakaan jalan raya dan kecederaan yang melibatkan motosikal daripada Januari hingga Disember 1998 telah diperolehi daripada dua sumber utama iaitu laporan polis dan rekod hospital. Laporan polis dan data hospital tersebut telah dikait dan digunakan untuk memeriksa corak kecederaan dan faktor penyumbangan kepada kecederaan penunggang motosikal di Malaysia. Untuk menilai pembolehubah-pembolehubah yang mempengaruhi tahap kecederaan, kaedah regresi logistik telah digunakan untuk menentukan nisbah kebarangkalian dan membentuk model multivarite.
Daripada analisa statistik, didapati terdapat sebanyak lima pembolehubah bererti \((p<0.05) \) yang mempengaruhi tahap kecederaan. Antara pembolehubah tersebut ialah (i) umur penunggang (ii) saiz enjin motosikal, (iii) objek perlanggaran, (iv) jenis perlanggaran dan (v) tempat kejadian.

Keputusan menunjukkan risiko kematian adalah tinggi pada golongan yang lebih tua, mereka yang menunggang motosikal yang berkuasa tinggi, berlanggar dengan kenderaan komersil, perlanggaran depan dengan depan, dan perlanggaran yang berlaku di jalan lurus tanpa simpang.

Daripada kajian yang dilakukan, didapat juga kecederaan utama yang dialami oleh mangsa yang meninggal dunia akibat kecelakaan jalan raya adalah pada bahagian kepala (56.5%). Ini diikuti dengan kecederaan pada bahagian dada (27.4%). Walau bagaimanapun, kecederaan pada anggota kaki adalah yang paling tinggi (54.4%) bagi kecederaan parah. Ini diikuti pula dengan kecederaan pada anggota tangan (19.9%). Kebanyakan penunggang motosikal dikehendaki tinggal dalam wad selama satu atau dua hari untuk pemerhatian dan penyembuhan. Purata hari tinggal dalam hospital bagi semua pesakit akibat daripada kecelakaan adalah 5 hari. Golongan penunggang motosikal yang menerima kecederaan pada bahagian anggota kaki bagaimanapun dikehendaki untuk tinggal lebih lama dalam hospital.

Selain itu, kajian ini menunjukkan bahawa perlanggaran sisi menimbulkan masalah yang rumit dalam perlindungan kecederaan pada bahagian kaki. Ini
adalah kerana kebanyakan motosikal di Malaysia mempunyai hanya sedikit struktur kebolehlanggaran dan perlindungan pada bahagian kaki penunggang. Pada hal struktur kebolehlangaran dan perlindungan ini telahpun dilaporkan boleh mengurangkan risiko kecederaan pada bahagian kaki dalam banyak kajian yang lepas. Oleh yang demikian, kajian lanjutan ke atas keberkesanan rekabentuk alat perlindungan kaki untuk para penunggang perlu diadakan.
ACKNOWLEDGEMENTS

It is indeed a great pleasure to acknowledge my indebtedness to those who have provided me with great help and assistance upon the completion of this research study. First and foremost, I would like to express my most sincere thanks and appreciation to Assoc. Prof. Ir. Dr. Radin Umar for his guidance, advice and constructive criticism throughout the course of this study. I would like to record my appreciation for the valuable comments and guidance given by Dr. Azhar Abdul Aziz, Emergency Medical Specialist, Hospital Universiti Kebangsaan Malaysia. I also wish to extend my gratitude to Dr. Megat Mohamad Hamdan Megat Ahmad and Dr. Mohd. Nasir Mohd. Taib for their support, constructive criticisms and valuable comment in making this study a success.

I would like to thank the Ministry of Transport, Malaysia for the research fund of Motorcycle Safety Programme. This has enabled me to complete the study without encountering any financial difficulties.

I would also like to express my deep appreciation to all the staff members of Hospital Kajang (HK), Hospital Kuala Lumpur (HKL) and Hospital UKM (HUKM) who were of great help during the data collection phase. In particular, special thanks go to Dr. Zaidah bt. Hussain (former Director, HK), Mr. Gopal, Mrs. Zanariah, Mrs. Salamah and their colleagues in HK, Dr. Lim Kuan Joo (Director of HKL) and his colleagues Dr. T. Mahadevan and Ms.
Shamsinar, Dr. Abu Hassan Assari (Head of Emergency Department, HKL),
Dr. Siti Rubiah Ibrahim and Mr. How (Emergency Department, HKL), Dr. Abdul Halim (Head of Forensic Department, HKL), Dr. Zahari Noor and Dr. Mohd. Shafie (Forensic Department, HKL), Dato' Dr. Borhan Tan (Head of Orthopaedic Department, HKL), Dato’ Dr. Mahmud (Head of Surgical Department, HKL) and the staff of Neurosurgery Department, HKL. I also wish to express my sincere thanks to Assoc. Prof. Dr. Shahrom Abdul Wahid and his colleagues (Forensic Department, HUKM).

I am deeply indebted to Dr. Ahamedali M.H from Birmingham University for his valuable help and advice, and Assoc. Prof. Dr. Harwant Singh, Faculty of Medicine and Health Sciences, UPM, for his valuable advice.

My deep appreciation goes to all the police officers from both Kajang and Jalan Bandar Police Stations, in particular ASP Nik Lokman from Kajang Police Station and ASP Saiful Bahri from Jalan Bandar Police Station, who provided various assistance that contributed towards the success of this study.

I would like to express my sincere thanks to other postgraduate students in the research centre, particularly Mr. Law Teik Hua, Mr. How Chee Keong, Mr. Kulanthayan S., Mr. Mohd Faudzi, who have been great friends and helpful in many aspects. I would also like to extend gratitude to all my friends for the discussion, continuous support and encouragement.
Last but not least, may my family be blessed with good health, long life and happiness for all the love and care they have given me all this while. Thanks also for always having faith in me.
I certify that an Examination Committee met on 1st February, 2000 to conduct the final examination of Pang Toh Yen on his Master of Science thesis entitled “Injury Characteristics of Motorcyclists Involved in Motorcycle Crashes in Klang Valley, Malaysia” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

ABDEL MAGID HAMOUDA, PhD.
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

RADIN UMAR RADIN SOHADI, PhD.
Associate Professor/Dean
Faculty of Engineering
Universiti Putra Malaysia
(Member)

MEGAT MOHAMAD HAMDAN MEGAT AHMAD, PhD.
Head
Department of Mechanical and Manufacturing Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

MOHD. NASIR MOHD. TAIB, DrPH.
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Professor/Deputy Dean of Graduate School

Date: 10 MAR 2000
This thesis was submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfilment of the requirements for the degree of Master of Science.

KAMIS AWANG, Ph.D.
Associate Professor,
Dean of Graduate School,
Universiti Putra Malaysia.

Date: 11 MAY 2000
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

(PANG TOH YEN)
Date: 10/3/2000
TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVAL SHEETS	xi
DECLARATION FORM	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xx
LIST OF ABBREVIATIONS	xxi

CHAPTER

I INTRODUCTION

- Background of the Study
- Problem Statement
- Objectives
- Hypotheses
- Definition of Terms
- Organisation of the Thesis

II LITERATURE REVIEW

- Age
- Gender
- Riding Experience of Motorcyclists
- Engine Size
- Injury Patterns in Motorcycle Crashes
- Causes of Injuries
- Objects Struck
- Types of Kinematics
- Lower Limb Injuries
- Head Injuries
- Special Problem: Loss of Helmets
- Statistical Analysis Method
- Conclusion

III METHODS AND MATERIALS

- Methodology
- Sample Selection
- Geographical Area of Data Collection

xv
Instruments Used
 Accident Interview Form 53
 Motorcycle Inspection Form 54
 Injury Data Form 55
Vehicle Inspection
 Vehicle Damage Configuration 56
 The Need of CDC 57
 Photographs 58
Injury Data
 Injury Severity 58
 Injury Severity Score 60
Clothing Inspection 60
Case Compilation 61
Data Organisation 62
Statistical Analysis 64
Resource Limitations 64

IV RESULTS: INJURY CHARACTERISTICS OF INJURED MOTORCYCLISTS 65
 Distribution of Injuries with MAIS by Body Region 66
 Injury Characteristics of Fatally Injured Motorcyclists 67
 Head Injuries 68
 Safety Helmets 69
 Cervical Spine Injuries 71
 Chest Injuries 72
 Abdominal Injuries 73
 Lower Limb Injuries 74
 Sources of Fatal Injuries 75
 Non-Fatal Injuries 77
 Head Injuries 77
 Spine Injuries 78
 Upper Limb Injuries 79
 Lower Limb Injuries 80
 Sources of Non-fatal Injuries 84
Conclusion 86

V RESULTS: STATISTICAL ANALYSIS AND MODELLING OF MOTORCYCLE CRASHES 87
 Characteristics of Motorcyclists 88
 Age and Gender 89
 Riding Experience 91
 Crashes by Engine Capacity 92
 Crashes by Objects/Vehicles Struck 94
 Crashes by Collision Type 96
 Crashes by Road Type 97
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Motorcyclist Casualty Rates, 1986</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Injury Patterns and Severity Sustained by Motorcyclists</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Distribution of Injuries by Severity</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Somatic Injury Distribution – All Severities</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Frequency of Injuries by Head-Neck Region</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Objects Causing Injury to Motorcyclists by Severity</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Injury Severity by Objects Struck</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Frequency of Objects Struck by Motorcycles</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Objects Hit by Motorcycles</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Frequency and Severity of Lower Extremity Injuries</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>Structure Involved in Principal Leg Injury</td>
<td>37</td>
</tr>
<tr>
<td>2.12</td>
<td>Retention System Failures</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequency of Injuries Rated AIS ≥ 3 Sustained by Fatalities</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Source of Most Severe Head Injuries in Fatalities</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Head Injuries and Helmet Wearing during Fatal Motorcycle Crashes</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of Fatalities with Cervical Spine Injuries</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Distribution of Abdominal Injuries in Fatally Injured Motorcyclists</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>Collision Types against Objects Struck in Fatal Motorcycle Crashes</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary of Non-Fatal Motorcyclists with Spine Injuries</td>
<td>79</td>
</tr>
</tbody>
</table>
4.8 Distribution of Upper Limb Injuries with AIS ≥ 2 by Casualties

4.9 Distribution of Overall Injuries to the Lower Limbs of Motorcyclist Casualties

4.10 Lower Limb Injuries against Type of Collision in Motorcycle Crashes

4.11 Collision Types against Objects Struck in Non-fatal Motorcycle Crashes

5.1 Summary of Motorcyclist Characteristics

5.2 Odds Ratios and 95% Confidence Interval by Age (as a continuous variable) of Motorcyclists in Motorcycle Crashes

5.3 Odds Ratios and 95% Confidence Interval by Age of Motorcyclists in Motorcycle Crashes

5.4 Odds Ratios and 95% Confidence Interval by Riding Experience in Motorcycle Crashes

5.5 Distribution of Motorcyclist by Age Group and Engine Capacity

5.6 Odds Ratios and 95% Confidence Interval by Engine Capacity of Motorcycles in Motorcycle Crashes

5.7 Vehicles/Objects Struck by Motorcyclists during Motorcycle Crashes

5.8 Odds Ratios and 95% Confidence Interval by Objects Struck in Motorcycle Crashes

5.9 Collision Type in Motorcycle Crashes

5.10 Odds Ratios and 95% Confidence Interval by Collision Type in Motorcycle Crashes

5.11 Road Travelled-on by Motorcyclists during Motorcycle Crashes
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Total Number of Registered Motorcycles and Total Number of Fatally Injured Motorcyclists in Road Crashes</td>
</tr>
<tr>
<td>1.2</td>
<td>Number of Deaths for Car and Motorcycle Road Users</td>
</tr>
<tr>
<td>1.3</td>
<td>Total Number of Motorcycle Casualties by Age Group in 1997</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart of Data Collection on Motorcycle Crashes in Malaysia</td>
</tr>
<tr>
<td>4.1</td>
<td>Injury Distribution of Motorcyclist Casualties with MAIS by body Region</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of Lower Limb Fracture to the Bony Tissues of Fatalities by Anatomical Region</td>
</tr>
<tr>
<td>4.3</td>
<td>Injury Distribution of Non-fatal Motorcyclist Casualties with MAIS by Body Region</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution of Lower Limb Fracture to the Bony Tissues of Non-fatal Motorcyclists by Anatomical Region</td>
</tr>
<tr>
<td>4.5</td>
<td>Number of Hospital In-patients and Length of Stay</td>
</tr>
<tr>
<td>5.1</td>
<td>Distribution of Motorcyclists against Outcome</td>
</tr>
<tr>
<td>5.2</td>
<td>Distribution of Motorcycle Riders by Experience</td>
</tr>
<tr>
<td>5.3</td>
<td>Distribution of Motorcycle Crashes by Hour of Day</td>
</tr>
<tr>
<td>5.4</td>
<td>Distribution of Motorcycle Crashes by Day of Week</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CI</td>
<td>95% Confidence Interval</td>
</tr>
<tr>
<td>AIS</td>
<td>Abbreviated Injury Scale</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomographic</td>
</tr>
<tr>
<td>HCVs</td>
<td>Heavy Commercial Vehicles</td>
</tr>
<tr>
<td>HKL</td>
<td>Hospital Kuala Lumpur</td>
</tr>
<tr>
<td>HUKM</td>
<td>Hospital Universiti Kebangsaan Malaysia</td>
</tr>
<tr>
<td>ISS</td>
<td>Injury Severity Score</td>
</tr>
<tr>
<td>LCVs</td>
<td>Light Commercial Vehicles</td>
</tr>
<tr>
<td>MAIS</td>
<td>Maximum Abbreviated Injury Scale</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratios</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PDRM</td>
<td>Royal Malaysia Police</td>
</tr>
<tr>
<td>RSRC</td>
<td>Road Safety Research Centre</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

This thesis describes a study on motorcycle crashes and injury characteristics of motorcyclists within the context of Malaysia. The overall objective of this study was to obtain a complete picture on the circumstances of motorcycle crashes, and also to identify the injury causes. In order to make any mode of transport safe, it is necessary to understand how accidents occurred, the causes of injuries, and the nature of contact during the crash. Then it may be possible to take some effective remedial actions to reduce the likelihood of crashes and to minimise the severity of injuries on motorcyclists during an accident.

Initially, this chapter considers the background of the study which includes the overall registered motorcycles in Malaysia. It then describes motorcycle crashes and injury rates in Malaysia, leading to the identification of the magnitude and seriousness of the motorcycle safety problem.
Background of the Study

The motorcycle is a major mode of personal transport in Malaysia, because it is relatively affordable and 'reliable' compared to other motor vehicles. As such, about 53% of the registered vehicles in this country are motorcycles. In addition, for the last decade or so, the number of registered motorised two-wheelers (motorcycles and scooters) increased tremendously from 830,834 in 1976 to 4,328,997 in 1997 (Figure 1.1). Consequently, motorcycle crashes also increased dramatically during that period from 18,187 in 1978 to 80,100 in 1997. Likewise, the annual motorcycle fatalities rose in the same period from less than 400 in 1976 to 3,760 in 1997 (PDRM 1993, 1997).

Figure 1.1: Total Number of Registered Motorcycles and Total Number of Fatally Injured Motorcyclists in Road Crashes. (Source: Royal Malaysia Police (PDRM) 1993, 1997)
The increased popularity of motorcycles and the concurrent rise in motorcycle crashes had led to the recognition that the motorcycle was associated with higher risk of death or injury than any other forms of transportation. In Malaysia, it is reported that the overall relative risk is about 20 times greater for motorcycles than passenger cars (Radin et al. 1995). Likewise, it can be seen that the average annual increase in motorcycle fatalities is greater than that of car (Figure 1.2). This increase, however, should be seen against the increased motorcycle ownership in the country (Figure 1.1). Therefore, it is not surprising that motorcycle riders and the pillions constituted almost 60%, an alarmingly high percentage of death in road traffic crash in 1997.

![Figure 1.2: Number of Deaths for Car and Motorcycle Road Users](Source: Royal Malaysia Police (PDRM) 1997)