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Abstract The classification of road surface wetness is important for both the devel-
opment of future driverless vehicles and the development of existing vehicle active
safety systems. Wetness on the road surface has an impact on road safety and is one
of the leading causes of weather-related accidents. Although machine learning algo-
rithms such as recurrent neural networks (RNN), support vector machines (SVM),
artificial neural networks (ANN) and convolutional neural networks (CNN) have
been studied for road surface wetness classification, the improvement of classifica-
tion performances are still widely being investigated whilst keeping network and
computational complexity low. In this paper, we propose new CNN architectures
towards further improving classification results of road surface wetness detection
from acoustic signals. Two CNN architectures with differing layouts for its dropout
layers and max-pooling layers have been investigated. The positions and the number
of the max-pooling layers were varied. To avoid overfitting, we used a 50% dropout
layers before the final dense layers with both architectures. The acoustic signals of
tyre to road interaction were recorded via mounted microphones on two distinct
cars in an urban environment. Mel-frequency cepstral coefficients (MFCCs) features
were extracted from the recordings as inputs to the models. Experimentation and
comparative performance evaluations against several neural networks architectures
were performed. Recorded acoustic signals were segmented into equal frames and
thirteen MFCCs were extracted for each frame to train the CNNs. Results show that
the proposedCMCMDD1 architecture achieved the highest accuracy of 96.36%with
the shortest prediction time.
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1 Introduction

Among the leading causes of weather related accidents is slippery road conditions.
According to [1] there were 25,777 numbers of human fatality due to weather related
accidents across Europe. The friction forces of the tyre on the road surface determine
vehicle stability on the road, and this is an essential aspect in the development of
vehicle safety systems [25]. An important aspect of developing an active safety
feature for autonomous and semi-autonomous cars is the knowledge of road surface
wetness condition. Using this knowledge, vehicles may automatically change their
speed tomaintain a safe distance from thevehicle in front of them, aswell as providing
higher manoeuvrability on slippery roads, allowing for more robust driver safety
assistant systems [11].

Recently, new experiments detecting road surface wetness using mounted micro-
phones and tyre sound recordings have been on the rise. Several studies have evalu-
ated road surface conditions using acoustic signals by installing a microphone on the
side of the road and collection of sound recordings from passing vehicles [14–16].
However with this method just a limited sections of the road acoustic signals are
captured, these recording samples do not reflect the entire road condition. Recent
investigations using data gathering on-board the vehicle have provided more com-
prehensive recording samples [2, 3, 6, 13, 19].

The use of acoustic signals can also help to overcome insufficient illumination,
which can impact the effectiveness of computer vision systems. This research may
be used in conjunction with systems like [8, 12], where one of the limitations is that
these systems require external illumination and may function inadequately in low
light. Themajority of research on road surfacewetness detection utilised octave-band
features [3, 13] or auditory spectral features (ASF) from acoustic signals [2, 19].
One of the major goals of this study is to enhance the classification performance of
the road surface wetness detection by using convolutional neural networks (CNN)
with MFCCs features from acoustic signals.

For road wetness classification, several machine learning algorithms have been
used, such as support vector machines (SVM) in research by [3, 13]. Recur-
rent neural networks (RNN), Long short-term memory (LSTM) and Bidirectional-
LSTM(BLSTM) have been used by [2]. CNN was studied by [5, 19] and artificial
neural networks (ANN) were investigated by [6]. Training a two-stream CNNmodel
is computationally complex and require significant amount of resources as discussed
in our previous work [5]. This complexity in the network architecture causes latency
in the detection of wet road surface and compromises the vehicle safety system
response time. Achieving the highest possible accuracy using less computationally
complex models is critical for road safety systems.

CNN’s superior classification performances have been demonstrated on other
tasks of acoustic signal classification, such as environment sound categorization [20,
21]. A 4-layer CNN model with 2 convolution layers with max-pooling and 2 dense
layers was trained by [20] where the feature set used was deltas of segmented spec-
trograms. The study by [21] used three convolutional layers which were interleaved
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with two pooling layers followed by two fully connected layers with 64 and 10
hidden units, respectively. This study also also investigated experiments with data
augmentation.

Based on the promising classification performances of these previous studies
using CNNs on environment sound classification, we had proposed and evaluated
several architectures in our previous study [5]. As for the acoustic features, MFCCs
had shown superior performance in our recent work. We continue to investigate
MFCCs with two differing CNN architectures that we propose in this paper for road
wetness detection to improve classification performance. The first architecture layout
begins with various depth of convolution layers stacked together followed by a max-
pooling layer.We used a 50% drop out before the final fully connected layers to avoid
overfitting. The convolution layer is interleaved with a pooling layer in the second
architectural layout, which is followed by fully connected layers at the end. Similar
to the first architecture, a 50% drop out was used. We validate the performance of
these proposed CNN architectures.

The rest of the paper is structured as follows. Section2 is the description of
the proposed architectures. Section3 presents the experimental setup and results.
Section4 discusses the conclusion and research directions for the future.

2 CNN Architectures for Road Wetness Detection

Two CNN architectures are investigated for road pavement wetness detection from
recorded audio of tyre to road interaction. The first architecture is inspired by
VGGNet [22] which instead of using a larger kernel size we stack multiple con-
volution layer with smaller kernel size with rectified linear activation units and the
second architecture is inspired by Alexnet [17] and ZFNet [24]. These CNN models
map a two-dimensional input X to a probability vector Z over two classes (wet and
dry) via a series of layers. The number of hidden units and kernel sizes were chosen
based on the preliminary experiments with 30 different combinations. Following
this, the top three combination were selected for each of the proposed architectures
as discussed in the following two subsections.

2.1 CnMDDm Architecture

In this architecture, three levels of convolution depths have been studied. The
sequence on how the layers are stacked up in this architecture, CnMDDm , are inves-
tigated. Convolution layers (C), Max-pooling (M), Dropout (D) and Dense layers
(D) form this sequence. Varying levels of convolution (n) depths, n = 1, 2, 4 have
been investigated. This is summarized as follows:
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Cn is the convolution layer, where n is the number of layers.
M is max-pooling layer.
D is drop out layer.
Dm is the dense layer, where m indicates the number of layers.

Starting with only one layer of convolution with kernel size of (5,5), two layers
with kernel sizes of (5,5) and (3,3) respectively, and lastly four layers of convolution
with kernel sizes of (3,3). Smaller kernel sizes and stack multiple convolution layers
were chosen as these has been discussed to be useful into obtaining higher accuracy
[20–22]. Following the convolutional layers, a max-pooling layer of (2,2) size with
a same size stride was selected. Default stride of 1 has been selected for convolution
layers since max-pooling is used for down-sampling and selecting a bigger stride
will cause more down-sampling of the feature maps. This process is followed by
a drop out operation to avoid overfitting. Two or three fully connected layers were
used for classification. Hyperparameters selected for the CnMDDm architecture are
shown in Table1.

The last architecture C4MDD3 is illustrated as an example in Fig. 1. This archi-
tecture has four convolution layers. The convolution layers start with 32 filters and
increase exponentially to 256 filters. To reduce the computational complexity of the
model,we kept the kernel sizes small and the same size across all four layers of
convolution.

Table 1 CnMDDn architecture and selected Hyperparameters.

Model Num filters Kernel size Stride shape Pool size Dense layer size

C1MDD2 32 (5,5) (1,1) (2,2) 128,2

C2MDD2 64,128 (5,5)(3,3) (1,1) (2,2) 128,2

C4MDD3 32,64,128,256 (3,3)(3,3)(3,3)(3,3) (1,1) (2,2) 256,128,2

Fig. 1 C4MDD3 architecture with MFCC as the input layer
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2.2 CMCMDD Architecture

With an increase in the depth of convolution layers in the first architecture and pos-
sibly making the network more computationally complex, a second architecture is
proposed. Pooling layers can be placed between convolution layers and lower kernel
sizes can be used to improve network performance, as discussed in [24] and [22].
This has also been discussed as a better option for larger datasets in these studies.
Two convolution layers are interleaved with a pooling layer in the second proposed
network architecture. Convolution layers are followed by a drop out operation and
deep fully connected layers for classification, similar to the first architecture. The
sequence of how these layers are stacked up in this architecture is—convolution
layer followed by max-pooling repeated twice and finishing with dropout and dense
layers therefore we call it CMCMDD. Three layouts CMCMDD1, CMCMDD2 and
CMCMDD3 are proposed. For this architecture, we kept the number of layers con-
stant during the experiment and only changed the kernel sizes in convolution layers.
Hyperparameters selected for the CMCMDD architecture are shown in Table2:

Figure2 illustrates theCMCMDD3as an example,which has 2 convolution layers,
the convolution layers start with 32 filters and then interleaved with a 2 by 2 max-
pooling before going through the second convolution. The final dense layers and
operations are similar with the first architecture.

Table 2 CMCMDD architecture and selected Hyperparameters

Model CNN Layer Size Kernel Shape Stride Shape Pool Size Dense layer size

CMCMDD1 32,64 (5,5)(5,5) (1,1) (2,2)(2,2) 128,64,2

CMCMDD2 32,64 (5,5)(3,3) (1,1) (2,2)(2,2) 128,64,2

CMCMDD3 32,64 (3,3)(3,3) (1,1) (2,2)(2,2) 128,64,2

Fig. 2 CMCMDD architecture with two layers of convolution and kernel size of (3,3)
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3 Experiments and Results

The accuracy measures of the proposed architectures are compared to the CNN
architecture used in [19] and the BLSTM used in [2] which are the best performing
state-of-the-art neural network approaches in road surface wetness detection. The
input layer used to train the models for benchmarking is MFCCs of the acoustic
signals. In addition, we also compared the proposed models to RNN-LSTM. The
RNN-LSTM model that is used for benchmarking has two LSTM layer each with
128 units followed by a dropout layer. A single dense layer with 2 hidden units using
so f tmax activation function is used to classify the MFCCs of the signal.

3.1 Experimental Setup

This section discusses the experimental setup, the dataset and the acoustic features
that were used for training and testing the models. Accuracy performance metric
were used to compare our best performing CNN architecture with state-of-the-art
models.

For training of the models, similar experimental setup to our previous study has
been used. This includes the using the Adam optimizer with beta1 and beta2 set 0.9
and 0.999 respectively, learning rate of 0.001, batch size of 32 and a patience of 10
epochs with a maximum of 1000 epochs. For further details of the selection of these
hyperparameters refer to [5].

DatasetAcoustic signals of tyre to road interaction needed for the experimentation
in this study were recorded using microphones mounted on cars driven in urban
environment.

To record the acoustic signals of tyre to road interaction, two Comica CVM-V02
microphones were placed near the tyre and the road surface. Previous studies [2, 3,
6, 13, 14] placed a single microphone near the rear tyres where there are less engine
noise. In this study, acoustic signals were collected from two microphones mounted
near both rear tyres. The same two cars used in our previous study [5] were used
for data collection. Car 1 is a 2012 Toyota Aygo and Car 2 is a 2015 VW Tiguan.
As shown in Fig. 3 a down facing camera and a dashcam were used to inspect the
state of the road’s surface. Both microphones were positioned on the front side of the
tyres, which is less impacted by water splashing. The microphones were fitted with
a deadcat furry windshield to reduce wind impact noises. Rest of the setup is similar
to our previous study, for more details please refer to [5]. Figure3b shows the setup
of microphones and Fig. 3a shows in-cabin interface.

For data collection, two different routes were selected around city of Lincoln, UK,
which consist of dual carriageways and urban roads. Data were collected for wet and
dry condition during the daylight and night time. The wet condition was recorded
either during the rain or right after rain has finished as shown in Fig. 3c, d. In total 8
recording session were conducted which resulted in 390min of audio and video data.
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in-cabin setup microphone setup dry road wet road

Fig. 3 Data acquisition setup on Car 1 and sample images recorded using a down-facing camera

On each of the selected routes two session of dry recordings and two session of wet
recording was conducted. This Complete data set has been made publicly available
at https://sbahrami.com/dataset/ICCST21/.

Feature extraction For the training and evaluation of the models, MFCCs of
the acoustic signals were used as feature inputs. MFCCs have been used for speech
processing and were designed to retain phonetically significant acoustic information
[10] but proven to be effective in other tasks such as music [18] and environment
audio analysis [9]. To calculate MFCCs we must apply a mel-filter bank to the power
spectrumof the signal and calculate the summation of the energy for each filter. To get
the coefficients, logarithmic discrete cosine transform of each frequency component
will be calculated. Unlike rain sound classification [7], audio recordings of tyre to
pavement interaction is structured and has a constant sound that can be generally
classified more accurately with MFCCs.

In total using all these data resulted in 63,334 mel-frequency ceptrum from the
all the recording of the datasets six trips. The CNN models were trained using 13
MFCCs. By applying 26 filters to the signal, 26 coefficients will be obtained. To
reduce feature vector complexity, we discard half of the coefficients as only lower
frequencies are needed. Preliminary experimentswere performedwith higher number
of coefficients.We found that by selecting a larger number of cepstral coefficients the
model’s complexity increased and it did not have a significant effect on the model’s
accuracy. Short-time fourier transform (STFT)was applied to extractMFCCs using a
frame size of 30milliseconds to obtainmore samples from the data. For example, for a
frame size of 30milliseconds and a 16kHz signal, 480 samples are generated(0.030 ∗
16000 = 480 samples).

Evaluation metrics On a similiar approach as [4], to evaluate the performance
of the models accuracy, recall, precision and F − measure were used [23] and
are defined as follow:

accuracy = tp + tn

tp + f p + f n + tn
(1)

recall = tp

tp + f n
(2)

https://sbahrami.com/dataset/ICCST21/
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precision = tp

tp + f p
(3)

F − measure = (β2 + 1) ∗ precision ∗ recall

β2 ∗ precision + recall
(4)

where in this is case tp is when wet road detected correctly, f p dry road detected
correctly, tn wet road detected incorrectly, f n dry road detected incorrectly. The
β = 1 is used to evenly balance the F − measure , also refer to as F1. If β > 1 it
will favour precision and if β < 1 it will favour recall.

3.2 Results

The various hyperparameters discussed in Sect. 2 are used in the experimentation.To
overcome the problem of overfitting, K-fold validations are commonly used. In order
insure that we did not overfit the models we applied a 3-fold validation similar to
our previous study. Details of these are available in [5]. The total of 162,221 samples
were divided into 3 equal parts. For training and validation of the models 147,474
samples were used and the remaining of 14,747 were used for testing. The test data
was only used for prediction and kept constant during all 3-folds. Based on the 3-fold
iterations the average mean accuracy of the models were calculated. For each model
we calculate, out of sample score base on the average of root mean square error
(RMSE) of each iteration.

Tables3 shows the overall performances of both models for CnMDDm and
CMCMDD architecture. All CNN models perform well in detecting road surface
wetness but the CMCMDD1 architecture with 2 layers of convolution and 2 layers
of dropout has achieved the highest overall average accuracy. The highest precision,
recall and F1 measures were achieved by CMCMDD1 as well. Higher precision and
recall can be interpreted as, better prediction of the wet road. It can be concluded that
using a larger kernel size with max-pooling overall performance is better. C4MDD3

architecture was able to achieve 96.19% accuracy which is similar to CMCMDD1.
Following the best performing architecture fromTable3, further experimentswere

conducted to evaluate the effect of car and tyre differences on the classification
performance of the proposed architectures.CMCMDD1 andC4MDD3, were trained
and tested using data recorded from Car 1 and Car 2 individually. Table4 shows
when the model is trained using Car 1 and tested using Car 2 and inversely, the
classification performance of the models drop by 40%. This drop in classification
performance can be attributed to the two vehicles’ tyre types and sizes. Despite the
fact that both cars were equipped with summer tyres at the time of recording, Car
1 had a smaller tyre than Car 2. As it can be seen in Table4 when the models are
trained and tested using data collected from the same car, better performance and the
models can achieve accuracies above 99%. The study by [19] investigated the effect
of tyre type, summer orwinter tyre, on the classification performance. In our previous
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Table 3 CnMDDn andCMCMDD architecture and configurationwith corresponding overallmean
accuracy performance

Model Accuracy Precision Recall F1 RMSE

C1MDD2 0.9399 0.9400 0.9390 0.9394 0.2143

C2MDD2 0.9612 0.9608 0.9612 0.9610 0.1718

C4MDD3 0.9619 0.9611 0.9631 0.9618 0.1688

CMCMDD1 0.9636 0.9628 0.9644 0.9635 0.1686

CMCMDD2 0.9594 0.9587 0.9600 0.9592 0.1767

CMCMDD3 0.9607 0.9598 0.9617 0.9605 0.1734

Table 4 Classification performance of best performing CnMDDm and CMCMDD architectures
trained and tested using data collected from Car 1 and Car 2 separately

Trained Tested Accuracy Precision Recall F1 Accuracy Precision Recall F1

C4MDD3 CMCMDD1

Car 1 Car 1 0.9946 0.9947 0.9945 0.9946 0.9959 0.9958 0.9959 0.9958

Car 1 Car 2 0.5197 0.5303 0.5297 0.5193 0.5441 0.5538 0.5532 0.5439

Car 2 Car 2 0.9911 0.9915 0.9906 0.9910 0.9945 0.9945 0.9944 0.9944

Car 2 Car 1 0.4326 0.3758 0.4157 0.3707 0.4587 0.4031 0.4403 0.3879

study [5] we investigated the effect of car type on classification performance using a
smaller dataset. In this paper we investigate the effect using a larger dataset. Training
the models with this larger dataset improved the overall classification performance.
However, the problem still remains where the models only trained on a single car’s
acoustic data the classification performance drops significantly.

Achieving the best overall performance byCMCMDD1 in our experiments above,
a benchmarking evaluation is performed againstRNN-LSTM,CNN[19] andBLSTM
[2]. The training was performed using the same dataset and MFCCs feature vectors.
Table5 presents the mean average accuracy over 3-fold and CMCMDD1 model
achieved the best accuracy of 96.36% and F1 score of 96.35%. Although the
CMCMDD1 model improvement of accuracy performance over the BLSTM [2] and
RNN-LSTM is relatively small, the training and predication time for BLSTMmodels
are higher. The training time per epoch forCMCMDD1 using aNvidia GeForce GTX
1080 GPU is 28s while for the BLSTM is 149s. All the models can classify MFCC
of 1s signal under 1 millisecond. The prediction time of 14,747 testing samples for
the BLSTM is 4.52 s which is more than ten times of the CMCMDD1 model which
only took 0.332s. The training and prediction time of BLSTM was also discussed
by [19] whereby the implementation of such models to the on-board vehicle safety
system have to be considered, making the CNNmodels favourable over the BLSTM.
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Table 5 Mean average accuracy over 3 folds

Model Accuracy (%) F1 (%) Model Accuracy (%) F1 (%)

CMCMDD1 96.36 96.35 CNN [19] 93.29 93.26

RNN-LSTM 95.26 95.24 BLSTM [2] 95.05 95.02

4 Conclusion and Future Work

In this study, two differing CNN architectures CnMDDm , a seven-layer CNN with
1 to 4 layers of convolution followed by 2 or 3 dense layers and CMCMDD, a five-
layers CNN with 2 layers of convolution and 3 dense layers were proposed and
evaluated for wet road surface detection. These architectures use small kernel sizes
to improve computation complexity. MFCCs have been proven to be an effective
feature set as input layers. The proposed CMCMDD1 architecture with 2 layers of
convolution and 5 by 5 kernel size achieved the best result of 96.36% mean average
accuracy and CMCMDD1 would be useful as an overall road wetness classification
approach.We showed that high level of classification performance is achievable using
a simple network architecture that is less computationally complex and has a faster
prediction time. Using CNN for road surface wetness detection has been shown
comparable performance to using ANN, LSTM and BLSTM methods. Accuracy
performance of the new CNN architectures proposed are promising for road wetness
classification.Wewill continue to study the placement andnumber of themaxpooling
layers for prediction time optimization and higher classification performance. Further
investigation on acoustic features or classification models that can better generalize
the road surface acoustic data.

Future work will be to evaluate on a larger dataset and a more robust evaluation
using data augmentation techniques to be performed for automated road surface
wetness detection.
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