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A study was conducted to assess the effect of different regimes of irradiance 
generated by LEDs with cool white fluorescent (CWF) on the growth and 
nutritional contents of four species of Brassica microgreens (Chinese kale, Pak 
Choy, mustard and radish). The objective of this study was to determine the effects 
of different combination of light quality (red and blue LED with CWF) and 
intensity (120, 150, 180 and 210 μmol m-² s-1), sowing density and nutrient 
concentration in influencing growth and phytochemical compound of Brassica 
microgreens. Light regime had insignificant effect on yield, however, vegetative 
features such as hypocotyl elongation, cotyledon area and stem thickness varied 
significantly under different light treatment. While yield was insignificant, 
combination of red, blue LEDs with CWF (150 μmol m-² s-¹) produced visually 
pleasing microgreens. Radish produced higher yield and higher concentration of 
phenolic and flavonoid compound than the other species. In second experiment, 
effects of light regime and sowing density (3.5 and 7.0 g seeds per container) on 
radish microgreens were determined. Higher sowing density, produced higher fresh 
weight due to increase in number of emerging shoots per area in response to higher 
seeds number, however, individual shoot weight decreased by 15%. Lower sowing 
density promoted higher individual fresh weight, nutrients, phenolic and DPPH 
activity. Five levels of nutrients concentration was used (1.0, 1.5, 2.0, 2.5 and 3.0 
mS cm-1) in the subsequent study. Results indicated that microgreens fresh weight 
increased gradually by 6%, 17%, 27% and 31% with increasing concentration (1.5, 
2.0, 2.5 and 3.0 mS cm-1) compared to microgreens grown with EC1.0. Total 
phenolic gradually increase by 28%, 47%, 65% and 81% as nutrient concentrations 
increased. Flavonoid content was highest when grown using EC2.5 but decreased 
by 57% when treated with EC 3.0. Nitrate accumulation in microgreens under 
EC2.5 was lower with 16% reduction compared to EC3.0. In conclusion, light 
regime did not affect final yield of microgreens, but the distribution of vegetative 
part of microgreens was largely affected by the combination of light spectrum and 
intensity. Increased in nutrients concentration with proper sowing rate help to 
enhance microgreens growth and increased yield. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

PENGELUARAN MIKROGREEN BRASSICACEAE DI DALAM 
BANGUNAN MENGGUNAKAN CAHAYA LED DAN INTENSITI 

CAHAYA BERBEZA 

Oleh 

NURSYAFIQAH BINTI IBRAHIM

November 2020 

Pengerusi :  Profesor Madya Yahya Awang, PhD
Fakulti : Pertanian 

Satu kajian dilakukan untuk menilai kesan pelbagai jenis pancaran cahaya yang 
dihasilkan oleh LED dengan pendarfluor putih sejuk (CWF) pada pertumbuhan dan
kandungan nutrien dari empat spesies Brassica microgreens (Kailan, Pak Choy, 
sawi dan lobak putih). Matlamat kajian ini adalah untuk mengetahui kesan 
kombinasi kualiti cahaya yang berbeza (LED merah dan biru dengan CWF) dan 
keamatan (120, 150, 180 dan 210 μmol m-² s-1), kadar penyemaian dan kepekatan 
nutrien dalam mempengaruhi pertumbuhan dan sebatian fitokimia mikro hijau 
Brassica. Rejim cahaya mempunyai kesan yang tidak ketara terhadap hasil, namun, 
ciri vegetatif seperti pemanjangan hipokotil, luas kotiledon dan ketebalan batang 
berbeza dengan ketara disebabkan oleh rawatan yang digunakan. Walaupun 
hasilnya tidak ketara, gabungan LED merah dan biru dengan CWF (150 μmol m-²
s-¹) menghasilkan microgeens yang menarik dari segi rupa bentuk. Lobak putih
menghasilkan hasil tinggi dan kepekatan kandungan fenolik dan flavonoid yang
lebih tinggi daripada spesies lain. Dalam kajian berikut, kesan rejim cahaya dan
kadar penyemaian (3. 5 dan 7.0 g biji setiap bekas) pada microgreens lobak putih
ditentukan. Kadar penyemaian yang lebih tinggi, menghasilkan berat basah yang
lebih tinggi kerana peningkatan jumlah pucuk yang muncul di setiap kawasan
sebagai tindak balas kepada jumlah biji yang lebih tinggi, namun, berat pucuk
individu menurun sebanyak 15%. Kadar penyemaian yang lebih rendah mendorong
peningkatan berat badan, nutrien, fenolik dan aktiviti DPPH individu yang lebih
tinggi. Lima tahap kepekatan nutrien digunakan (1.0, 1.5, 2.0, 2.5 dan 3.0 mS cm-
1) dalam kajian seterusnya. Hasil kajian menunjukkan bahawa berat microgreens
meningkat secara beransur-ansur sebanyak 6%, 17%, 27% dan 31% dengan
peningkatan kepekatan (1.5, 2.0, 2.5 dan 3.0 mS cm-1) berbanding dengan
microgreens yang tumbuh dengan EC1.0. Jumlah fenolik secara beransur-ansur
meningkat sebanyak 28%, 47%, 65% dan 81% apabila kepekatan nutrien
meningkat. Kandungan flavonoid adalah tertinggi ketika ditanam menggunakan
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EC2.5 tetapi menurun sebanyak 57% apabila dirawat dengan EC 3.0. Pengumpulan 
nitrat dalam microgreens di bawah EC2.5 adalah lebih rendah dengan pengurangan 
sebanyak 16% berbandingkan dengan EC3.0. Sebagai kesimpulan, rejim cahaya 
tidak mempengaruhi hasil akhir microgreens, tetapi pengagihan bahagian vegetatif 
microgreens banyak dipengaruhi oleh gabungan spektrum cahaya dan keamatan. 
Peningkatan kepekatan nutrien dengan kadar penyemaian biji benih yang 
sewajarnya membantu meningkatkan pertumbuhan microgreens dan peningkatan 
hasil. 
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CHAPTER 1 

1 INTRODUCTION 

Microgreens are young, tiny versions of vegetables or herbs, loaded with 
phytonutrients and antioxidants. Microgreens can be grown by a combination of 
hydroponics and sole-source (SS) lighting in multilayer vertical growing system by 
using light-emitting diodes (LEDs) or conventional lighting. LEDs are known for 
its advantage of producing specific light wavelengths to influence plant 
morphology and phytochemical contents. LEDs has become an important device in 
many areas and applications including horticultural lighting. LED is defined as a 
solid-state semiconductor that emits light when a current is applied through the 
device. They are discovered for its functionality around the year 1897, however the 
development of LED technology and industry did not begin until the late year of 
1960 (Shubert, 2003).  

The primary role of LED in horticultural sector is to provide supplemental light 
source for the plant that are grown inside laboratory, greenhouse and structure 
house. LED is a type of semiconductor diode that can produce specific wavelength 
and able to control the spectral composition, thus allowing the adaption of light to 
be matched with the plant requirement. It is also high in energy efficiency. Most of 
the power supplied to LED is converted into radiation in the desired form. 
Efficiency of LEDs is not affected by the shape and size of the bulbs or tubes 
(Gupta et al, 2013). LEDs are also known for their long operational lifetime which 
ranged from 30,000 to 50,000 h and even beyond that. Heat generation of LEDs is 
relatively low compare to fluorescence light.  

Plant or any culture can be placed close to the light source without damaging the 
plant or causing photo-stress. It has been reported that different lights are widely 
used to study the effects of spectral quality on plant growth and it has been proven 
to induce excellent growth of plants by adjusting the spectral quality. Previous 
study had showed that by combining the spectra of both conventional lighting 
sources with LED wavelengths, it is possible to not only optimize the spectral 
quality for various plant and different physiological processes (growth, flowering, 
photosynthetic efficiency), but also to create economically efficient lighting system 
(Li & Kubota, 2009; Lin et al., 2013).  

As stated before, the blue and red zone of the visible light spectrum are the most 
beneficial for plant growth. The absence of one of the two (red or blue) light 
wavelengths creates photosynthetic inefficiencies that affect plant growth and 
development. It has also been reported that red light is important for shoot/stem 
elongation, phytochrome responses and changes in plant anatomy (Schuerger et al., 
1997). In contrast, blue light is important in chlorophyll biosynthesis, stomatal 
opening, enzyme synthesis, maturation of chloroplast and photosynthesis (Tibbitts 
et al., 1983). Sowing density and nutrient concentration are among the important 
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factor that generally affect plant growth. Optimal sowing rate is crop-specific, 
based on average seed weight, germinability and desired shoot population density.  

Currently, there are no standardize sowing rate for specific species. Growers 
usually measure the sowing rate based on their field trial by using their own seeds. 
This is because the size of the seeds can differ among varieties of the same species 
or due to different methods of seed production. However, Di Gioia & Santamaria, 
(2015) recommended general sowing density for microgreens ranging from 1 seed 
per cm2 in large-seeded species such as pea, chickpea and sunflower, up to 4 seeds 
per cm2 in small-seeded species like arugula, watercress, mustard. Murphy & Pill 
(2010) observed a linear increase in fresh yield per unit area with increasing 
sowing rate, but also a decrease in mean shoot weight in arugula microgreens. 
Increasing sowing rate to maximize yield will reflect on the cost of production, 
while excessive stand density may produce undesirably elongated shoots and 
limited air circulation which can promotes development of fungal diseases.  

Microgreens can be grown in conventional bench-top production or 
hydroponically. Plastic flats with drainage holes at the bottom are generally used 
for microgreen production. The trays are either lined with a sterile fiber-like 
seeding mat or partially filled with a peat-based soilless germinating media. 
Hydroponic producers may utilize aggregate culture with rockwool as the inert 
growing medium (Yildiz & Wiley, 2017). As microgreens are usually grown with 
soil or other soilless media (peat and peat-based media) containing nutrients, not 
much information was obtained regarding nutrient solution concentration that is 
suitable for microgreens production. Abad et al. (2001) recommended that growing 
media should have a pH of 5.5-6.5, low electrical conductivity (<500 mS/cm) and 
optimal water holding capacity (55-70% v/v) and aeration (20-30% v/v). 
Information regarding possible interaction between light treatment with sowing rate 
and nutrient concentration in microgreens is too little.  

Microgreens have been claimed as nutritionally beneficial crop and various type of 
studies were carried out to enhance the nutritional value and increase the 
production yield of microgreens. It was known that each spectral band of light can 
induce certain responses in plants from various past studies. LEDs offers an 
advantage of producing specific light wavelengths to influence plant morphology 
and phytochemical contents. Thus, by manipulating the spectra and intensity and 
other factors such as sowing rate and nutrient concentration, it is possible to 
manipulate plant growth and improve phytochemical contents. In justification, this 
study will examine the interaction between LED lightings on different mirogreens 
growth performance, beneficial nutrition and yield. Thus, the objectives of this 
study are: 

i) To measure the effects of intensity levels and spectra produced by LEDs on
growth and phytochemical content in different Brassicaceae microgreens.
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ii) To determine the interactive effect between different LED light regime and 
sowing density on growth and phytochemical contents of selected 
microgreens. 

iii) To determine the interactive effect between different LED light regimes and 
different EC nutrient solutions on growth and phytochemical content of 
microgreens. 
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